The SoLid sterile neutrino experiment at the BR2 reactor

Nick Ryder On behalf of the SoLid collaboration

nick.ryder@physics.ox.ac.uk Merton College, University of Oxford

EPS HEP, 23 Jul 2015

SoLid

MERTON COLLEGE OXFORD

On behalf of the SoLid collaboration

50 collaborators from Belgium, France, UK and US. Open to new collaborators: contact Antonin.Vacheret@physics.ox.ac.uk

- The SoLid approach to searching for sterile neutrinos
- Recent 288 kg module deployment
- Future planned deployments

Challenges:

- Within 5-10 m of reactor core
 - Above ground, little overburden
 - High cosmic muon rate / spallation neutron background
 - Additional gamma ray and neutron backgrounds from reactor
- Inside reactor complex
 - Few tonne experiment
 - Restrictions on materials particularly liquids
 - Access to detector limited

SoLid approach:

- Robust neutron identification
 - Neutron ID must not be sensitive to gamma background
 - ID at trigger level to reduce data from background
- Rich data set for neutrino event selection and background estimations
 - Highly segmented (5 \times 5 \times 5 cm voxel) detector
- Detector constructed from solid materials, minimal passive shielding

Composite scintillator to detect IBD events

- Both scintillation signals captured in 3 × 3 mm square wavelength shifting optical fibres
- Scintillation signal detected by 3×3 mm silicon photomultipliers

High segmentation to discriminate IBD from backgrounds

SoLid reactor off experimental data

BR2 reactor at SCK•CEN in Mol, Belgium

- Highly enriched uranium
- Up to 70 MW power
- Compact core, $\emptyset_{rms} < 0.5m$
- Closest approach 5.5 m
- Low background rate
- No nearby experiments
- Approx. 50 % duty cycle
- Collaboration with SCK+CEN $_{\mbox{\tiny CC}}$

N. Ryder (Oxford)

The SoLid Experiment

EPS HEP, 23 Jul 2015 7 / 16

288 kg module

- $\bullet~0.8\times0.8\times0.45$ m
- $16 \times 16 \times 9$ cubes
- Top/bottom muon veto panels
- 288 + 16 channels
- Deployed Dec 2014
- 1 week reactor on (Feb)
- 2 months reactor off (Mar/Apr)
- Neutron sources: ongoing
- Poster #171: Céline Moortgat

Goals:

- Demonstrate power of high segmentation detector
- Develop analysis and calibration techniques for novel detector
- Detect reactor anti-neutrinos

N. Ryder (Oxford)

The SoLid Experiment

Neutron ID

AmBe callibration run, RPS

• Poster #177: Simon Vercaemer

N. Ryder (Oxford)

The SoLid Experiment

<ロト < 団ト < 団ト < 団ト

三日 のへの

Muon tracking for in-situ MeV range energy calibration

• Poster #173: Dan Saunders

IBD candidates

IBD candidate: positron + neutron (+ accidental gammas)

N. Ryder (Oxford)

EPS HEP, 23 Jul 2015 11 / 16

Future plans

Goal: Resolve reactor anomaly by 2020

- 2013 2015: 8 kg prototype detector
- 2014 2015: 288 kg detector module
- 2016 2017: Initial oscillation search
 - 2 tonne SoLid detector
- 2017 2020: Precision oscillation search
 - Add additional tonne with better energy resolution

N. Ryder (Oxford)

EPS HEP, 23 Jul 2015 12 / 16

Future plans: initial oscillation search

N. Ryder (Oxford)

The SoLid Experiment

EPS HEP, 23 Jul 2015 13 / 16

Future plans: precision oscillation search

N. Ryder (Oxford)

The SoLid Experiment

EPS HEP, 23 Jul 2015 14 / 16

Sensitivity to 3 + 1 sterile neutrino oscillations

N. Ryder (Oxford)

ъ.

Summary

- Deployed 288 kg first module at BR2 reactor
- Collected reactor on/off data, calibration campaign ongoing
- Initial analysis to understand novel detector
- Full scale, sensitive experiment deploying next year
- Reactor anomaly solved by 2020

- $\bullet~1$ or 3 years data taking, 40 % up time
- 60 MW reactor power
- Closest approach 5.5 m
- Furthest distance 9.6 m
- BR2 core model used
- 40 % IBD efficiency
- Signal:background = 3
- Background equal combination of $1/E_{\nu}^2$ and flat

Sensitivity comparisons

N. Ryder (Oxford)

ъ