Constraining new physics in the Higgs sector using differential and fiducial cross section measurements from the LHC.

Florian Bernlochner

University of Bonn, Germany

on behalf of the **Hype collaboration**: FB, Dag Gillberg, Robert Kowalewski, Holger Schulz, Michaela Queitsch-Maitland, Andrew Pilkington, Yanping Huang

July 23, 2015

EPS 2015 Vienna, Austria

Introduction

Two goals for this talk:

- i. Tell you about Hype a statistical tool that makes it easy to perform hypothesis tests with unfolded distributions.
- ii. Advertise such tests for fiducial Higgs cross section measurements performed at the LHC.

To that end: show you three results obtained using LHC Run 1 data:

1 μ determination

2 κ framework both from $H \to \gamma \gamma$ and $H \to 4\ell$ cross sections

3 Confront LHC $H \rightarrow \gamma \gamma$ measurements with Spin 2 models

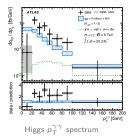
Fiducial measurements of the H(125) Higgs

Fiducial measurements are carried out close to experimental region.

 \rightarrow minimizes extrapolation of regions of phase space that are not actually measured.

Two sets of fiducial Higgs Boson cross sections from ATLAS.

[JHEP09(2014)112] [Physics Letters B 738 (2014) 234-253] similar results from CMS are in preparation



Measured channels: $H \rightarrow \gamma\gamma$ and $H \rightarrow 4\ell$ Assumptions: Existence of narrow resonance at $m_H = 125.4$ GeV. \rightarrow Measured yields unfolded to **particle level**. \rightarrow Available on **HepData**:

http://hepdata.cedar.ac.uk/view/ins1306615

1 Minimal *underlying* physics dependence

unfolding into truth fiducial region closely related to measured fiducial selection

2 Full set of systematic bin-by-bin correlations

Ok - so do you want to get hyped?

Treasure chest for theorists and phenomenologists:

Do you have a new physics model and it impacts kinematics in the Higgs sector? Why not test it! Do you want to know how well certain dim-6 operator hold up against the measurements? Want to do your own Spin test?

\rightarrow Hype – (Hyp)othesis (e)valuator for unfolded distributions

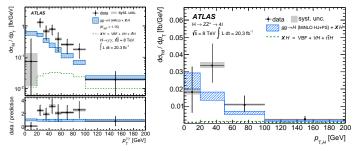
Features:

- i. Easily perform hypothesis tests between two or more hypotheses
- ii. Plug-ins: μ and κ -type scans
- iii. Direct import of Hep-Data measurements
- iv. Easy to interface custom code
- v. For hypothesis tests: automatically determines number of pseudo-experiments needed

Project home: https://hype.hepforge.org/

Results with Run 1 data: Higgs signal strength μ fits

Analyze two differential distributions with Hype simultaneously: $p_T^{\gamma\gamma}$ and $p_T^{4\ell}$



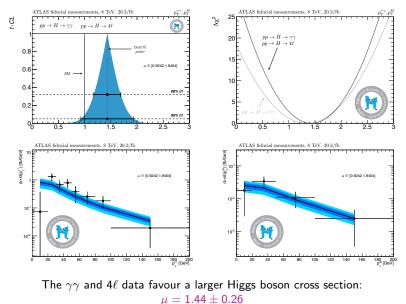
Blue: SM; green: non-ggF contribution

Simplest test:

ightarrow fit 'global' signal strength μ

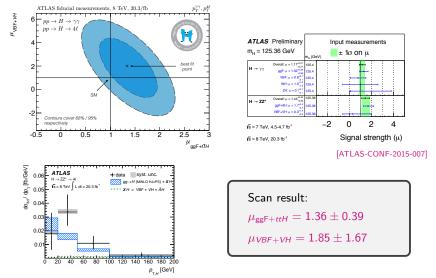
or

ightarrow production mode dependent coupling strengths $\mu_{\text{ggF+}ttH}$: $\mu_{\text{VBF+}VH}$



Results with Run 1 data: μ fits

Results with Run 1 data: $\mu_{ggF+ttH}$ versus μ_{VBF+VH}



Note: The Hype results shown here are based on only on the Higgs pT spectrum. This gives a less precise (and larger) VBF component than that from the official coupling fit that has optimized VBF categories.

Slightly more complicated: κ fits

 \rightarrow Leading order tree-level motivated framework

Basic idea simple: allow modifications of prod. and decay of the Higgs

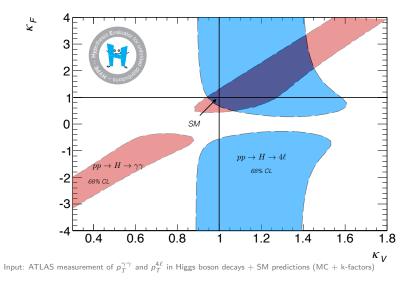
E.g. for $gg \rightarrow H \rightarrow \gamma \gamma$ introduce individual couplings for the top loop:

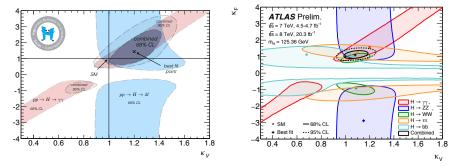
 $\sigma_{gg \to H} \sim a \kappa_t^2 + b \kappa_b^2 + c \kappa_t \kappa_b$

$$\mathcal{B}(H \to \gamma \gamma) \sim \left(a \kappa_W^2 + b \kappa_t^2 + c \kappa_W \kappa_t \right) / \Gamma_H(\kappa_i)$$

Simplifications possible, e.g. alter couplings to fermions $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$ and vector bosons $\kappa_V = \kappa_Z = \kappa_W$

Fit of the Higgs boson's coupling to fermions κ_F and vector bosons κ_V :





Fairly good agreement with official ATLAS results!

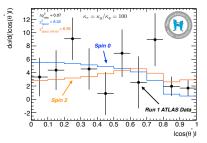
Results with Run 1 data: Spin 2 tests

Is the H(125) a Spin 2 imposter? Not a nested Hypothesis as μ and κ Zero Hypothesis: SM

Alternative Hypothesis: Spin 2⁺ with given set of couplings

Effective Lagrangian of alternative hypothesis: arXiv:1306.6464v3

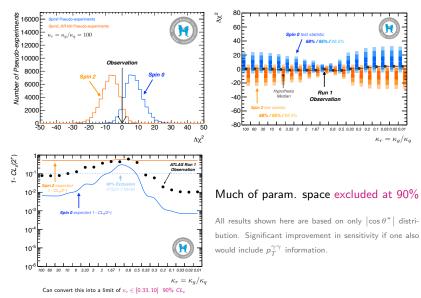
$$\mathcal{L} = -\frac{\kappa}{\Lambda} \sum_{f=q,\ell} \kappa_f T^f_{\mu\nu} X_2^{\mu\nu} - \frac{\kappa}{\Lambda} \sum_{V=Z,W,\gamma,g} \kappa_V T^V_{\mu\nu} X_2^{\mu\nu}$$



Variable sensitive to spin: $|\cos \theta^*|$

Hype generates pseudo-experiment ensembles to calculates test statistic distributions for CL_s test.

Results with Run 1 data: Spin 2 tests



Conclusions

Since fiducial/differential measurements are model independent:

- i. Possible to confront with any prediction (data stays the same!)
- ii. Easy to do interpretations, e.g. extract μ , κ , or spin as shown in this talk!

Already with Run 1 data, possible to do tests using more advanced theoretical frameworks:

- i. General EFT tests (LO or NLO)
- ii. Simplified cross-sections

 \rightarrow Tests would be even more powerful if statistical correlation between distributions were available: can then do simultaneous fits with several distributions.

Also presented you the **Hype** tool: a statistics code that makes it easy to carry out such tests; close to release version 1.0.

Features:

- i. For nested and non-nested Models
- ii. Plug-ins: μ , κ -type scans
- iii. Hep-Data files can be imported
- iv. Easy to interface with custom code
- v. Includes large set of examples; including how to reproduce all results in this talk

https://hype.hepforge.org/

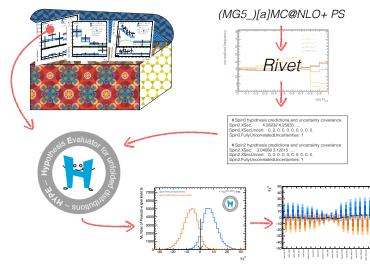
Backup

Hyped!?

Predictions

Flow of a typical Hype analysis:

Measurements



Hypothesis tests

Say, you have two hypothesis: SM and alternative theory

Neyman-Pearson Lemma: Likelihood ratio of both Hypothesis

 $\mathcal{L}_{\rm alt}/\mathcal{L}_{\rm zero}$

most powerful discriminator (called a test statistic) you can build.

Applied to binned data: $-2\ln(\mathcal{L}_{alt}/\mathcal{L}_{zero}) = \chi^2_{alt} - \chi^2_{zero} = \Delta \chi^2$ where

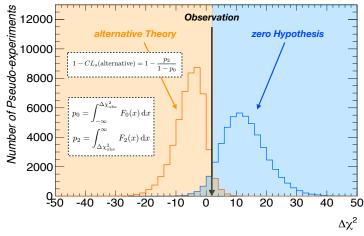
$$\chi^2_{hypo} = \left(\vec{x}_{\mathrm{data}} - \vec{x}_{\mathrm{hypo}} \right) C_{\mathrm{hypo}}^{-1} \left(\vec{x}_{\mathrm{data}} - \vec{x}_{\mathrm{hypo}} \right) \,.$$

To interpret an observed value of $\Delta \chi^2$ in data:

- * Need to know how test statistic is distributed given either zero or alternative theory is the true underlying theory.
- * Can be done using Monte Carlo Method with pseudo-experiments

Used Test Statistic and CL_s(alternative)

Example test statistic distribution for zero and alternative hypothesis:



Hype automatically determines needed number of pseudo-experiments

to achieve numerical accuracy depending on the observation.

The Hype Approach to Pseudo-Experiments

Besides this normal implementation, Hype has a fast toy option:

$$\chi^2_{hypo} = \left(ec{x}_{ ext{data}} - ec{x}_{ ext{hypo}}
ight) oldsymbol{C}^{-1} \left(ec{x}_{ ext{data}} - ec{x}_{ ext{hypo}}
ight) \,.$$

This option makes use of the asymptotic behaviour of $\Delta\chi^2$

- * Reduces the problem of generating pseudo-experiments with *N* bins to the *two* or *more* relevant degrees of freedom
- $\rightarrow~$ Cross terms cancelation in $\Delta\chi^2$; given fixed normalization test statistic normal distributed.
 - * Breaks down when floating normalization: $ec{x}_{
 m hypo} o \mu_{
 m hypo} \cdot ec{x}_{
 m hypo}$
- $\rightarrow\,$ Problem now non-linear, normalization depends on pseudo-experiment.
- \rightarrow Can be diagonalized in a new set of variables and solved for each pseudo-experiment; leaves only 2 effective degrees of freedom

Reduces toy-generation effort from 2 $\textit{N}_{\rm bins}$ to 4 random numbers.

Can also be generalized for cases where $C \rightarrow C_{\rm hypo}$.

With this options it takes **3s** to produce 1M pseudo-experiments.

It is activated automatically when the covariances are identical, and it's accuracy checked on the fly with normal pseudo-experiments.

Partial expressions for κ_F and κ_V :

$$\sigma_{gg \to H \to \gamma\gamma}^{\rm SM} \times \frac{\kappa_F^2 \left(1.59 \,\kappa_V^2 + 0.07 \,\kappa_F^2 - 0.66 \,\kappa_V \kappa_F\right)}{0.25 \,\kappa_V^2 + 0.75 \,\kappa_F^2} -$$

$$\sigma_{\mathsf{VBF},H\to\gamma\gamma}^{\mathrm{SM}} \times \frac{\kappa_V^2 \left(1.59 \,\kappa_V^2 + 0.07 \,\kappa_F^2 - 0.66 \,\kappa_V \kappa_F\right)}{0.25 \,\kappa_V^2 + 0.75 \,\kappa_F^2}$$

$$\sigma_{gg \to H \to 4\ell}^{\rm SM} \times \frac{\kappa_F^2 \kappa_V^2}{0.25 \kappa_V^2 + 0.75 \kappa_F^2}$$

$$\sigma_{\mathsf{VBF}, H \to 4\ell}^{\mathrm{SM}} \times \frac{\kappa_V^4}{0.25 \,\kappa_V^2 + 0.75 \,\kappa_F^2}$$

See [ATLAS-CONF-2015-007] for more information