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Higgs boson has been discovered
- mu [6eV]=125.5+0.25101+0.65yst (ATLAS 2013)
125.7+0.35ta1+0.3syst (CMS 2013)
> All measured properties are consistent with SM
expectations within experimental uncertainties
~ spin zero
~ parity +
- couples to masses of W and Z (with ¢,=1 within
experimental uncertainty)
o Yet it still could be the first element of an
extended Higgs sector (e.g. SUSY neutral Higgs)

Distinction requires high-precision prediction for
both production and decay
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Example: pp > H+ X — bb + X in PT

© rH [M@V]:407i0161'eo
= can use the narrow width approximation

do i dd*o ;Z)—>H+X D =0 drg)_)bg/ dOy;

— X x Br(H — bb)
dObE | n=0 dpJ"HdnH | L ZZO:O ngbg
known up this talk: known with

to NNLO - up to NNLO W/



pp > H+X—=>bb+XinPT

\ J

Including up to NNLO corrections for production and

decay:
T 0 0 1 2
do _ dzgz(op>—>H +X dF%{LbB/ dOyp + dF%{LbB/ dOy + dF;ILbB/ dOyp
A0 | dpr,mdnm Lo on + T ons + Toons
(1) (0) _ (1) _

| dQOpp—>H+X dFHﬁbE/dObb o dFH%bB/dObb
AP mdnm FngB ! Fg)—mﬁ
2 (2) (0) N

LT rix Wyp/ 900 | Br(H — bb)
dprdnm TP o
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Problem

O_NNLO

VV
m—|—2 -+ Om—l—l -+ Om

/ d0m+2 Jm+2 / do
m-+2 m-+1

RV
m-+1

Jm—l—l




4 N
Problem
\_ V.
oNNLO _ frszf—{l—Q o+ Om—l—l gV

E/ d0m+2Jm+2 +/ dam+1Jm+1 +/ dar,\,,{bv(]m
m-+2 m-+1 m

p the three contributions are separately divergent in d = 4
dimensions:

— in o®® kinematical singularities as one or two partons
become unresolved yielding e-poles at O(e™®, €3, €7,
e!) after integration over phase space, ho explicit -
poles

— in o®V kinematical singularities as one parton becomes
unresolved yielding e-poles at O(e %, €!) after
integration over phase space + explicit e-poles at O(e?,
el)

— in 0"V explicit e-poles at O (e, €73, €2, €)
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CoLoRFulINNLO

Completely Local SubtRactions for Fully Differential Predictions@NNLO



Structure

of subtractions is governed by the jet functions

NNLO RR RV VV
O, = 042 TOmi1 T 0 = 0Om42 T Om41 T Om
dom42 = {dafrfr{z,f—{szmw—dUSﬁ’?Q Jm— {da?ii’?l]mﬂ } }e:O
dom+1 = {[dafrfr{,,\i1+/1daii’?l] Jmt1— {dgg\:ﬁ?l - ([dgiiyﬁl)h} Jm}ezo
do = {aoi o f faait o T flanhi o (faoti )M} e
2 1 I o

~ RR,A2 regularizes doubly-unresolved limits

~ RR,A1 regularizes singly-unresolved limits

~ RR,A12 removes overlapping subtractions

~ RV,A1 regularizes singly-unresolved limits
8



Use known ingredients

\.

J

e Universal IR structure of QCD (squared) matrix elements

— €-poles of one- and two-loop amplitudes

— soft and collinear factorization of QCD matrix

elements

tree-level 3-parton splitting, double soft current:

J.M. Campbell, EEW.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002

one-loop 2-parton splitting, soft gluon current:

L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000



Use known ingredients

J

Universal IR structure of QCD (squared) matrix elements

— €-poles of one- and two-loop amplitudes
— soft and collinear factorization of QCD matrix

elements

tree-level 3-parton splitting, double soft current:
J.M. Campbell, EEW.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

Simple and general procedure for separating overlapping

singularities (using a physical gauge)
Z. Nagy, 6. Somogyi, ZT, 2007



Use known ingredients

J

Universal IR structure of QCD (squared) matrix elements

— €-poles of one- and two-loop amplitudes
— soft and collinear factorization of QCD matrix
elements

tree-level 3-parton splitting, double soft current:
J.M. Campbell, EEW.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

Simple and general procedure for separating overlapping

singularities (using a physical gauge)
Z. Nagy, 6. Somogyi, ZT, 2007
Extension over whole phase space using momentum mappings

(not unique): {ptnis — {Ptn



( N
Momentum mappings
\ J
{p }n—l—s — {p }n
» implement exact momentum conservation
» recoil distributed democratically
» different mappings for collinear and soft limits
C ,‘, ~ / } s, e ¢ N

» lead to phase-space factorization

» can be generalized to any number s of unresolved
patrons trivially




Momentum mappings

define subtractions

VV _ _NNLO NNLO —I—O'NNLO

NNLO = _RR RV
o - Om—‘,—Q T O-m—l—l -+ Om == Om—l—2 -+ Om—l—l m

NNLO _ RR RR,A, RR,A4 RR, A5
Om+2 = / v {d0m+2jm+2 —do, 5 Im — (d0m+2 m+1 = doy, 5o I
m

NNLO :/ {(dgi\jrl_l_/ daii’éA‘l)Jerl—[dasxr’fl—l—(/dagi’?l)Al}Jm}
m-+1 1 -

m 2 1 1

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043

G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, 6. Somogyi, ZT hep-ph/0702273



( N

Kinematic singularities cancel in RR

Singe collinear limit e e~ — ¢qggg

Double soft limit ete~ — ¢qgqgg
| | | | ! | !
YaQ ¥5Q = 10”
Y4Q ¥5Q = 10°
M Y4QYs50= 10

|
:__nﬂjlﬂ. | .ﬂlﬂ |

99 0995 1.0 1.005 1.01 99 0995 1.0 1.005 1.01
R R

R = subtraction/RR
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Kinematic singularities cancel in RV

104
5

2

# of events
'—l
<

Single collinear limit et e~ — qqgg . Single soft limit et e~ — qqgg
= I | | | = 10 — | | ] | | =
= RV + RR, AI1 - O, l e clos 0; = 107* 3 - = RV + RR, AI1 : Sy, —I Yo = 1073 3
B ] —— 1—cosf =107° 7 C — Yo =10"" ]
B -I_ —— 1 —cosb,;, =108 i s L i — Yo = 107" _
= = 10° =
: - = E =
- — — 4(8 - —
- - % 2 = -
>
— — O 102 B —
= 3 = = = =
= - o 5 E -
C N H= B :
- 2 = -
= -d]_; 10 E =
=t 73 JJ] =
2 = -
-I I ﬂ I | ” | I I-Ll- I | I | H I | I
99 0.995 1.0 1.005 1.01 0.99 0.995 1.0 1.005
ratio ratio

R = subtraction/(RV+RR,A1)

1.01
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Regularized RR & RV contributions

can now be computed by numerical Monte
Carlo integrations
(implementation for general m in progress)

NNLO = _RR RV VV _ _NNLO NNLO NNLO
o - Om—l—Q T O-m—i—l -+ Om == Jm—l—2 -+ Om—l—l -+ Om

V.

NNLO RR RR,A RR,A RR,A
m-+2
NNLO _ RV RR7A1 RV7A1 RR7A1 A
Oyl = / { (d0m+1+/ d0m+2 )Jm—l—l_ [damJrl + dam+2 o
m—+1 1 1

m 2 1 1

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, 6. Somogyi, ZT hep-ph/0702273
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4 N

Integrated approximate xsections

J

NNLO _ _RR RV VV _ _NNLO NNLO NNLO
o) _O-m—l—Q_I_O-m—I—l_'_O-m _O-m—|—2 _|_0'm_|_1 _|_O'm

NNLO RR RR,A, RR,A, RR,A {5
oNNLO / {dam A Tan — doniede g (dam N Ty — dorihe g
m-+2

e [ (o ) . [ [t o)
m+

m 2 1 1

After integrating over unresolved momenta & summing
over unresolved colors and flavors, the subtraction
terms can be written as products of insertion
operators (in color space) and lower point cross

sections: /daRR’AP = Iéo)({p}n; €) ® da,,
p



Structure of insertion operators

\

J

» the color structures are independent of the
precise definition of subtractions (momentum
mappings), only subleading coefficients of -
expansion in kinematic functions may depend

» we computed all insertion operators analytically
(defined in our subtraction scheme) up to O(e?)
for arbitrary m



Cancellation of poles

we checked the cancellation of the leading and
first subleading poles (defined in our subtraction
scheme) for arbitrary m

for m=2,

» the insertion operators are independent of the
kinematics (momenta are back-to-back, so
MTI's are needed at the endpoints only)

» color algebra is trivial:
T,.T, = -T; = -T5=—Cr
so can demonstrate the cancellation of poles
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Example: H—bb at p = mnx

J

NNLO
Um

d O_VV

/m {da,VnV+ /2 [da

RR,A,

RR,A
m+2 d 12

RR,A,
— U0, 19 d

}+/1[daiﬁfl+(/l ot ) o
202 11CACr Crng \ 1

+ 6Ca —

H—bb —

_|_

(

(as

S
9

2
L4
o ) dOH—wb{+_
2 1 1
+7T >CACF (77—% LQ
L1 1
e (22 20

216
C. Anastasiou, F. Herzog, A. Lazopoulos, arXiv:0111.2368

2)\ 7 202  [11CACk
A )

e 4
2
1
“ — — U >(7§—— ] >
€
961 13(3 65CErns | 1
T 216 T 2 )CACF (8 )CF 108 ]E}

17
4+ )CaCF +
12) ATE ( 2
109
o — 143
V. Del Duca, C. Duhr, 6. Somogyi, F. Tramontano, Z. Trécsanyi, arXiv:1501.07226
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Example: H—bb
. J
NNLC_)( —m )—FLO _( —m ) 1 — % 5.660607 — % 229 149—|—O( 3)
Hopp\W=MMH) =L g g5\H="TH T . ™ . o
2.0 I | | | | | I |
13 __ X Colorful NNLO analytic predictions __
/E ° [ —— NNLO _
-=-= NLO
S LO i
Q
7 14 N
= o
/—:: —X—
= i
o I -
= | | I | =
Ols 1.1
E; 1.0 W """"""" 2<_E
ZI= 0.9 = I | I | I | | | -
0.0 0.5 1.0 1.5 2.0
p/mu

Scale dependence of the inclusive decay rate T'(H -> bb)

analytic: K.6. Chetyrkin hep-ph/9608318
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Example: H—bb

Durham clustering at y.,; = 0.05

v,
‘e
.

'C> TTT1

0.5

rapidity distribution
of the leading jet in the rest frame of the Higgs boson.

1.0

1.5
|771\

2.0

2.9

3.0

[MeV]

1071

Durham clustering at Y., = 0.05

TT
| S
l:
| -
1

IIIIIIII
1
1
1
B
B
1 -
=
Zox
@) M
=
OO
I
3
S
IIIIIIIII

1 I 1 I 1 I 1 I 1 I 1 I 1 I 1
0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6

Emax/mH

energy spectrum

jets are clustered using the Durham algorithm with y.+ = 0.05



Constrained subtractions

\. J

We can constrain subtractions near singular regions (ao<1)
Poles cancel numerically (a0 = 0.1)

5.4 X 1o 8 30x107° 33x103 6.7x103

oY+ Y [ dot = $ 29X B o)
3.1 x 107> 50x107% 8.1x10"3 7.7x10°2

o5 f10t) < T B0 0 10

Durham clustering at ye, = 0.05, p = mpg

Predictions remain the same:

3‘0_||||I||||||||||||||I||||I||||
: — I(ag=1) === T(ag=0.1)
2.5 C - FQ(O&O = 1) === Fg(Odo = 01)
- Fg(Oé() = 1) === FQ(O&Q = 01)
2.0 :T~ - F4(O{0 = 1) === F4(Oéo = 01)
= s
) S
E L5 = N
== F
1.0 = A
u .
S
-~ N
05 _— ~~~~ \\N
0.0 [z2=i= e —
0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Example: e'e= m(=3) jetsat p°='s
o /m {doy¥ + /2 doy 1y — dop i | + /1 doit + /1 daiﬁ’fl);}}m
doyV = Poles(A*Y + ALY + Finite(AT*” + A V)
Poles(Ay ™" + AL"Y) + Poles / do*= 200k Mathematica lines

= zero numerically in any phase space point:
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Example: e'e= m(=3) jetsat p°='s
o /m {doy¥ + /2 doy 1y — dop i | + /1 dopii + /1 daiﬁ’fl);}}Jm
doyV = Poles(A*Y + ALY + Finite(AT*” + A V)
Poles(Ay ™" + AL"Y) + Poles / do*= 200k Mathematica lines

= zero analytically according to C. Duhr

Message
A0 [ a3 [at)

indeed finite in d=4 dimensions
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IR safe predictions w flavour-k,

rapidity distribution pT spectrum
of the leading b-jet in the rest frame of the Higgs boson.
jets are clustered using the flavour-k, algorithm with yc.+= 0.05

Flavour k£, clustering at y.,t = 0.05 Flavour k£, clustering at y.,+ = 0.05

[MeV]

dl’
d|77b,1\

. [ | [ | | I | I | .
0.0 0.5 1.0 1.5 2.0 2.5 3.0
|77b,1’

rapidity distribution pT spectrum
of the leading b-jet in the rest frame of the Higgs boson.

jets are clustered using the flavour-k, algorithm with yc.+= 0.05
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