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mH [GeV]=125.5±0.2stat±0.6syst (ATLAS 2013) 
    125.7±0.3stat±0.3syst (CMS 2013) 

All measured properties are consistent with SM 
expectations within experimental uncertainties 

spin zero 
parity +         
couples to masses of W and Z (with cv=1 within 
experimental uncertainty) 

Yet it still could be the first element of an 
extended Higgs sector (e.g. SUSY neutral Higgs) 
!

Distinction requires high-precision prediction for 
both production and decay

Higgs boson has been discovered
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ΓH [MeV]=4.07±0.16teo 

⇒ can use the narrow width approximation 

Example: pp → H + X → bb + X in PT
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Including up to NNLO corrections for production and 
decay: 

pp → H + X → b b + X in PT
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‣ the three contributions are separately divergent in  d = 4 
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Our goal is to devise a subtraction scheme with

✓ fully local counter-terms                       
(efficiency and mathematical rigor)

✓ fully differential predictions                      
(with jet functions defined in d = 4)

✓ explicit expressions including flavor and color 
(color space notation is used)

✓ completely general construction                  
(valid in any order of perturbation theory)

✓ option to constrain subtraction near singular 
regions (important check)

CoLoRFulNNLO
Completely Local SubtRactions for Fully Differential Predictions@NNLO
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Structure

of subtractions is governed by the jet functions
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RR,A2 regularizes doubly-unresolved limits 
RR,A1 regularizes singly-unresolved limits 
RR,A12 removes overlapping subtractions 
RV,A1 regularizes singly-unresolved limits

�NNLO
m = �RR

m+2 + �RV
m+1 + �VV

m = �m+2 + �m+1 + �m
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Use known ingredients
• Universal IR structure of QCD (squared) matrix elements 

- ε-poles of one- and two-loop amplitudes 
- soft and collinear factorization of QCD matrix 

elements
tree-level 3-parton splitting, double soft current: 

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002

one-loop 2-parton splitting, soft gluon current: 
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 

Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
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• Extension over whole phase space using momentum mappings 
(not unique): {p}n+s � {p̃}n
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Momentum mappings
{p}n+s � {p̃}n

‣ implement exact momentum conservation 
‣ recoil distributed democratically  
‣ different mappings for collinear and soft limits 

!

!

!

!

‣ lead to phase-space factorization 
‣ can be generalized to any number s of unresolved 

patrons trivially



11

Momentum mappings
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define subtractions

!
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 

G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 
Z. Nagy, G. Somogyi, ZT hep-ph/0702273 
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Kinematic singularities cancel in RR

R = subtraction/RR
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Kinematic singularities cancel in RV

R = subtraction/(RV+RR,A1)
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Regularized RR & RV contributions
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G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 

G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 
Z. Nagy, G. Somogyi, ZT hep-ph/0702273 

can now be computed by numerical Monte 
Carlo integrations                           

(implementation for general m in progress)



Difficulty
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Integrated approximate xsections
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After integrating over unresolved momenta & summing 
over unresolved colors and  flavors, the subtraction 
terms can be written as products of insertion 
operators (in color space) and lower point cross 
sections:

Z

p
d�RR,Ap = I(0)

p ({p}n; ✏)⌦ d�B
n
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Structure of insertion operators

‣ the color structures are independent of the 
precise definition of subtractions (momentum 
mappings), only subleading coefficients of ε-
expansion in kinematic functions may depend 

‣ we computed all insertion operators analytically 
(defined in our subtraction scheme) up to O(ε-2) 
for arbitrary m
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Cancellation of poles

‣ we checked the cancellation of the leading and 
first subleading poles (defined in our subtraction 
scheme) for arbitrary m 

‣ for m=2,  

‣ the insertion operators are independent of the 
kinematics (momenta are back-to-back, so  
MI’s are needed at the endpoints only) 

‣ color algebra is trivial: 

‣ so can demonstrate the cancellation of poles
T 1T 2 = �T 2

1 = �T 2
2 = �CF
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Example: H→bb at µ = mH
_
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C. Anastasiou, F. Herzog, A. Lazopoulos, arXiv:0111.2368
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Example: H→bb

Scale dependence of the inclusive decay rate Γ(H -> bb)

−

!
analytic: K.G. Chetyrkin hep-ph/9608318
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Example: H→bb

 rapidity distribution      energy spectrum  
of the leading jet in the rest frame of the Higgs boson.  

jets are clustered using the Durham algorithm with ycut = 0.05
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Constrained subtractions
Constrained subtractions

We can constrain subtractions to near singular regions: α0 ∈ (0, 1]

! poles cancel numerically (α0 = 0.1)
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Gábor Somogyi | Colorful NNLO | page 26
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Conclusions
✓ Defined a general subtraction scheme for computing 

NNLO fully differential jet cross sections (presently only 
for processes with no colored particles in the initial state)

✓ Subtractions are

✓ fully local

✓ exact and explicit in color (using color state 
formalism)

✓ Demonstrated the cancellation of ε-poles

✓ First application: Higgs-boson decay into a b-quark pair
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Example: e+e-→ m(=3) jets at µ2 = s
�NNLO
m =

Z

m

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

Jm

d�VV
3 = Poles

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
+ Finite

�
A

(2⇥0)
3 +A

(1⇥1)
3

�

Poles

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
+ Poles

XZ
d�A= 200k Mathematica lines

= zero numerically in any phase space point:
             0.         2   0. nf!
        0. + --- + 0. Nc  + ----- + 0. Nc nf!
               2             Nc!
             Nc!
Out[1]= ------------------------------------ + !
                          2!
                         e!
!
          0.          2  0. nf!
     0. + --- + 0. Nc  + ----- + 0. Nc nf!
            2              Nc!
          Nc                                          0!
----------------------------------------------- + O[e]!
                    e               !
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Example: e+e-→ m(=3) jets at µ2 = s
�NNLO
m =

Z

m

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

Jm

d�VV
3 = Poles

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
+ Finite

�
A

(2⇥0)
3 +A

(1⇥1)
3

�

Poles

�
A

(2⇥0)
3 +A

(1⇥1)
3

�
+ Poles

XZ
d�A= 200k Mathematica lines

= zero analytically according to C. Duhr

Message: 
!

indeed finite in d=4 dimensions
�NNLO
3 =

Z

3

n

d�VV
3 +

X

Z

d�A
o

✏=0
J3
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 IR safe predictions w flavour-k⊥

 rapidity distribution      pT spectrum  
of the leading b-jet in the rest frame of the Higgs boson.  

jets are clustered using the flavour-k⊥ algorithm with ycut = 0.05
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 rapidity distribution      pT spectrum  
of the leading b-jet in the rest frame of the Higgs boson.  

jets are clustered using the flavour-k⊥ algorithm with ycut = 0.05


