Prospects for SUSY dark matter after the LHC Run 1

Emanuele A. Bagnaschi (DESY Hamburg)

On behalf of the Mastercode collaboration

Exp O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, H. Flacher, S. Mallik, J. Marrouche, D. Martinez-Santos and K. J. de Vries. Theo E. Bagnaschi, M. Dolan, J. Ellis, S. Heinemeyer, G. Isidori, K. Olive, K.Sakurai and G. Weiglein.

References: hep-ph/1312.5250, hep-ph/1408.4060 and hep-ph/1504.03260.

European Physical Society Conference on High Energy Physics 23 July 2015 Vienna

The Minimal	Supers	ymmetric	Standard	Model
-------------	--------	----------	----------	-------

Chiral supermultiplets

Name	Symbol	spin 0	spin 1/2	$(SU(3)_C, SU(2)_L, U(1)_Y)$
squarks,quarks	Q	$(\tilde{u}_L, \tilde{d}_L)$	(u_L, d_L)	$(3, 2, \frac{1}{6})$
(×3 families)	ū	\widetilde{u}_R^*	u_R^{\dagger}	$\left(\overline{3},1,-\overline{3}\right)$
	đ	\widetilde{d}_R^*	d_R^\dagger	$\left(\bar{3},1,\frac{1}{3}\right)$
sleptons,leptons	L	(\tilde{v}, \tilde{e}_L)	(v, e_L)	$(1,2,-\frac{1}{2})$
(×3 families)	ē	${\widetilde e}_R^*$	e_R^\dagger	(1,1,1)
Higgses, Higgsinos	H_{μ}	$(H^+_{\!\scriptscriptstyle \rm H},H^{\rm O}_{\!\scriptscriptstyle \rm H})$	$(\widetilde{H}^+_{\!\scriptscriptstyle \rm I\!\! I}, \widetilde{H}^{\rm O}_{\!\scriptscriptstyle \rm I\!\! I})$	$(1, 2, \frac{1}{2})$
	H_d	$(H^{\rm O}_d,H^d)$	$(\widetilde{H}_d^{\rm O}, \widetilde{H}_d^-)$	$\left(1,2,-\frac{1}{2}\right)$
	G	auge supermu	ltiplets	
Name		spin 1/2	spin 1	$(SU(3)_C, SU(2)_L, U(1)_Y)$
gluino,gluon		ĝ	g	(8,1,0)
winos, W bosons		\widetilde{W}^{\pm} \widetilde{W}^{0}	W^{\pm} W^{0}	(1,3,0)
bino, B boson		\widetilde{B}^{O}	B^{0}	(1,1,0)

Physical motivations

Global fits

- In the unconstrained MSSM 105 new free parameters (masses, mixing angles and phases). Impossible/uninteresting to probe.
- Define a simplified model based on reasonable assumptions and a minor number of free parameters.
- Use of the available collider data, electro-weak precision observables and DM constraint to fit the best value and the likelihood profile of the model parameters.
- Effectively implement interplay between different searches (e.g. collider vs direct detection for DM).

The models

GUT Models

CMSSM

 $m_{\rm 0},m_{1/2},A_{\rm 0},\tan\beta$

NUHM1

 $m_0, m_{1/2}, A_0, \tan\beta, m_H$

NUHM2

 $m_0, m_{1/2}, A_0, \tan\beta, m_{H_u}, m_{H_d}$

- Based on unifications assumptions for the soft-SUSY breaking mass terms.
- Introduce correlation between the colored and uncolored sectors.

pMSSM10

 $\begin{array}{c} M_1, M_2, M_3\\ m_{\tilde{q}_{1,2}}, m_{\tilde{q}_3}, m_{\tilde{t}}\\ A\\ M_A, \tan\beta, \mu \end{array}$

- Phenomenological model with 10 low-energy input parameters.
- We assume all left and right soft-SUSY mass breaking terms to be equal.
- We assume that the first two generations of squarks have the same soft-SUSY breaking term.
- All the trilinear coupling are the same.

The framework

- Frequentist fitting framework written in Python/Cython and C++.
- We use SLHA standard as an interface between the external codes that are used to compute the spectrum and the observables.
- The Multinest algorithm is used to sample the parameter space.

Parameter	Range	Number of
		segments
M ₁	(-1, 1) TeV	2
M ₂	(0,4)TeV	2
M ₃	(-4,4) TeV	4
mã	(0,4)TeV	2
$m_{\tilde{q}_3}$	(0,4)TeV	2
$m_{\tilde{i}}$	(0,2)TeV	1
M _A	(0,4)TeV	2
A	(-5 , 5) TeV	1
μ	(-5 , 5) TeV	1
$\tan \beta$	(1,60)	1
Total number of boxes		128

Spectrum generation SoftSUSY

Higgs sector and $(g-2)_{\mu}$ FeynHiggs, Higgssignals, Higgsbounds

B-Physics

SuFla, SuperIso

EW precision observables FeynWZ

Dark matter MicroOMEGAs, SSARD

The constraints

Indirect measurements

- (g−2)_μ. 3.4σ discrepancy may be explained with O(100) GeV smuons.
- M_W, M_Z, M_b and EWPO.
- Flavor observables $(B_s \rightarrow \mu \mu, b \rightarrow s\gamma)$.

Dark matter

Relic density and direct detection.

Collider - GUT models

- Limits are independent of A_0 , tan β , $m_{H_u}^2$ and $m_{H_d}^2$.
- Due to unification, limits on squarks and gluinos are relevant also for sleptons and electroweakinos.

The constraints - collider pMSSM10

Three classes of constraints

Electroweakinos production

Simplified ModelS (SMS) approach. Limited mass hierarchies.

- Slepton production.
- $\hat{\chi}_1^{\pm} \hat{\chi}_2^0$ via sleptons.
- $\triangleright \quad \hat{\chi}_1^{\pm} \hat{\chi}_2^0 \text{ via WZ.}$

Colored sparticle production

We have combined the following CMS searches (8 TeV, 20 fb^{-1} :)

- 0-lepton M_{T2}
- 1-lepton M_{T2}^W
- 2-lepton OS/SS
- ▶ \geq 3 leptons.

Compressed stop region

This region is separately. The stop cross-section is set to zero in the other constraints.

7/14

CMSSM

We have several different mechanism at play.

1. $\tilde{\tau}$ -coannihilation

- Leading mechanism when the mass difference between the τ̃ and the χ̃¹₁ is of the order of a few GeV.
- $\hat{\chi}_1^0$ is Bino-like.
- Also τ̃ τ̃ annihilation important in this scenario.

CMSSM

CMSSM

We have several different mechanism at play.

3. Focus point.

- Region where RGEs have focussing properties.
- We have that $\mu \approx M_1$, sizable Higgsino component of the $\hat{\chi}_1^{\circ}$.

NUHM1

In the NUHM1, we have

- $\mu < M_1 \rightarrow \text{Higgsino},$ $\tilde{\chi}_1^0 / \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0$ (chargino coannihilation region).

Another DM annihilation mechanism comes into play.

4 Chargino coannihilation.

 Dominant when χ₁[±] and χ₂⁰ are nearly degenerate with χ₁⁰.

• $\hat{\chi}_1^0$ is Bino-like or, if Higgsino-like, it must be that $m_{\hat{\chi}_1^0}$, otherwise the DM annihilation mechanism is too efficient.

NUHM2

pMSSM10 mass spectrum

- Poor determination of the mass of colored sparticles (only lower bound from LHC searches).
- ► Larger freedom allow to fullfill the $(g-2)_{\mu}$ constraint without being in tension with the LHC searches.
- Improved fit with respect to the GUT models.

pMSSM10

In the pMSSM10 we have

• $M_1 \simeq M_2$, so that Bino $\tilde{\chi_1^0}$, Wino $\tilde{\chi_1^{\pm}}/\tilde{\chi_2^0}$.

New annihilation channels appear to be part of the relevant mechanism for the pMSSM10.

5 *b*-funnel

- Mass degeneracy condition: $2 \cdot \tilde{\chi}_1^0 \approx M_h$.
- Allowed only in the pMSSM10, excluded by gluino searches in the GUT models.

pMSSM10

In the pMSSM10 we have

• $M_1 \simeq M_2$, so that Bino $\tilde{\chi}_1^0$, Wino $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$.

New annihilation channels appear to be part of the relevant mechanism for the pMSSM10.

6 Z-funnel

- Mass degeneracy condition: $2 \cdot \tilde{\chi}_1^0 \approx M_Z$.
- Allowed only in the pMSSM10, excluded by gluino searches in the GUT models.

Results

Collider vs direct detection

Prospects for SUSY dark matter after the LHC Run 1

Conclusions

- The tensions present in the GUT models between the $(g-2)_{\mu}$, sparticles searches at LHC and M_{h} is resolved in the pMSSM10.
- In the GUT models, stau-coannihilation, A/H-funnel and stop-coannihilation are in reach of LHC.
- The pMSSM10 is dominated by the chargino coannihilation mechanism, due to the χ₁⁰ being mainly bino and the χ̃₁[±]/χ̃₂⁰ being mainly Wino.
- Complementarity between colliders and direct detection searches.

Backup slides