EPS CONFERENCE ON HIGH ENERGY PHYSICS 2015 VIENNA, AUSTRIA 22 - 29 JULY 2015

Neutrinoless double beta decay, nuclear environment and structure

Fedor Šimkovic

OUTLINE

- Introduction
- Effective Majorana neutrino mass in vacuum and nuclear matter
- 0 vββ-decay NMEs (uncertainty and quenching)
- DBD NMEs and SU(4) symmetry
- $0 \nu \beta \beta$ -decay with emission of $p_{1/2}$ -electrons
- Heavy/sterile neutrinos
- 0 vββ-decay with right-handed currents revisited
- Conclusions

Amand Faesler, V. Rodin (U. Tuebingen), P. Vogel (Caltech), J. Engel (North Caroline U.), S. Kovalenko (Valparaiso U.), M. Krivoruchenko (ITEP Moscow), J. Vergados (U. Ioannina), S. Petcov (SISSA), D. Štefánik, R. Dvornický (Comenius U.), E. Lisi, G. Fogli (U. Bari) etc

7/23/2015

Fedor Simkovic

2

After 59 years we know

3 families of light (V-A) neutrinos: ν_e, ν_µ, ν_τ
ν are massive: we know mass squared differences
relation between flavor states and mass states (neutrino mixing)

No answer yet

- Are v Dirac or Majorana?
- •Is there a CP violation in v sector?
- Are neutrinos stable?
- What is the magnetic moment of v?
- Sterile neutrinos?
- Statistical properties of v? Fermionic or partly bosonic?

Currently main issue

 $0\nu\beta\beta$ -decay: Nature, Mass hierarchy, CP-properties, sterile ν

The observation of neutrino oscillations has opened a new excited era in neutrino physics and represents a big step forward in our knowledge of neutrino properties

Neutrinoless Double-Beta Decay $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

300

 $\left(T^{0\nu}_{1/2}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M^{0\nu}_{\nu}\right|^2 G^{0\nu}$

transition	$G^{01}(E_0, Z)$	$Q_{\beta\beta}$	Abund.	$ M^{0\nu} ^2$
	$ imes 10^{14} y$	[MeV]	(%)	
$^{150}Nd \rightarrow ^{150}Sm$	26.9	3.667	6	?
${}^{48}Ca \rightarrow {}^{48}Ti$	8.04	4.271	0.2	?
${}^{96}Zr \rightarrow {}^{96}Mo$	7.37	3.350	3	?
$^{116}Cd \rightarrow ^{116}Sn$	6.24	2.802	7	?
$^{136}Xe \rightarrow ^{136}Ba$	5.92	2.479	9	?
$^{100}Mo \rightarrow {}^{100}Ru$	5.74	3.034	10	?
$^{130}Te \rightarrow ^{130}Xe$	5.55	2.533	34	?
$^{82}Se \rightarrow {}^{82}Kr$	3.53	2.995	9	?
$^{76}Ge \rightarrow {}^{76}Se$	0.79	2.040	8	?

The NMEs for Ονββ-decay must be evaluated using tools of nuclear theory

Issue: Lightest neutrino mass m₀

Complementarity of $0 \lor \beta\beta$ -decay, β -decay and cosmology β -decay (Mainz, Troitsk) $m_{\beta}^2 =$ $\sum_i |U_{ei}^L|^2 m_i^2 \leq (2.2 \text{ eV})^2$

KATRIN: (0.2 eV)²

Cosmology (Planck)

 $\sum_{i} m_{i} \le 0.23 - 1.08 \text{ eV}$

 $m_0 \le 0.07 \,\,\mathrm{eV}$

Nuclear medium effect on the light neutrino mass exchange mechanism of the $0\nu\beta\beta$ decay

S.G. Kovalenko, M.I. Krivoruchenko, F. Š., Phys. Rev. Lett. 112 (2014) 142503

- A novel effect in $0\nu\beta\beta$ decay related with the fact, that its underlying mechanisms take place in the nuclear matter environment:
- + Low energy 4-fermion $\Delta L \neq 0$ Lagrangian
- + In-medium Majorana mass of neutrino
- + $0\nu\beta\beta$ constraints on the universal scalar couplings

Non-standard interactions might be easily detected in nucleus rather than in vacuum

Classification of the vertices gO_A and gO'_A

In nuclei, mean fields are created by scalar and vector currents (σ , ω). Vector currents do not flip the spin of neutrinos and do not contribute to the $0\nu\beta\beta$ decay.

Symmetric and antisymmetric scalar neutrino currents J^a_{ij}

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline a & S & a & S & a & A \\ \hline 1 & \bar{\nu}_{i}^{c}\nu_{j} & 3 & \partial_{\mu}(\bar{\nu}_{i}^{c}\gamma_{5}\gamma^{\mu}\nu_{j}) & 5 & \partial_{\mu}(\bar{\nu}_{i}^{c}\gamma^{\mu}\nu_{j}) \\ \hline 2 & \bar{\nu}_{i}^{c}i\gamma_{5}\nu_{j} & 4 & \bar{\nu}_{i}^{c}\gamma^{\mu}i\overleftrightarrow{\partial}_{\mu}\nu_{j} & 6 & \bar{\nu}_{i}^{c}\gamma_{5}\gamma^{\mu}i\overleftrightarrow{\partial}_{\mu}\nu_{j} \end{array}$$

 g^{a}_{ij} are real symmetric for a = 1,2,3,4 and imaginary antisymmetric for a = 5,6. In the limit of $R = \infty$, the currents a = 3,5 vanish.

Mean field approximation

Mean field:

$$\overline{q}q
ightarrow \langle \overline{q}q
angle$$
 an

and
$$\langle \overline{q}q \rangle \approx 0.5 \langle q^{\dagger}q \rangle \approx 0.25 \, \mathrm{fm}^{-3}$$

$$\langle \chi \rangle = -\frac{g_{\chi}}{m_{\chi}^2} \langle \overline{q}q \rangle$$

To compare with weak interaction:

Typical scale:

$$\langle \chi \rangle g_{ij}^{a} = -\frac{G_{F}}{\sqrt{2}} \langle \overline{q}q \rangle \varepsilon_{ij}^{a} \approx -25 \varepsilon_{ij}^{a} \text{ eV}$$

We expect:

 $25\varepsilon_{ij}^{a} < 1 \rightarrow m_{\chi}^{2} > 25\frac{g_{\chi}g_{ij}^{a}\sqrt{2}}{G_{F}} \sim 1 \text{TeV}^{2}$

Regions of admissible values of $\langle \chi \rangle g_1$ and m_0 ($m_{\beta\beta}=0.2 \text{ eV}$)

$$\langle \chi \rangle = 0.17 \ fm^{-3} = \frac{0.17}{(5.07)^3} GeV^3$$

 $\Lambda_{LNV} \ge 2.4 \,\mathrm{TeV} \,(\mathrm{Planck})$

 $1.1\,\mathrm{TeV}\,(\mathrm{Tritium})$

 $\varepsilon_{ij} \leq 0.02$ (Planck), 0.1 (Tritium)

Using experimental data on the $0\nu\beta\beta$ decay in combination with β -decay and cosmological data we evaluated the characteristic scales of 4-fermion neutrino-quark operators, which is $\Lambda_{LNV} > 2.4$ TeV.

Pion decay: BR($\pi^0 \rightarrow \nu \nu$) $\leq 2.7 \ 10^{-7}$

 $\Lambda_{\rm LNV} \ge 560 {\rm GeV}$

The Ovββ-decay Nuclear Matrix Elements

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M_{\nu}^{0\nu}\right|^2 G^{0\nu}$$

QRPA and isospin symmetry restoration F.Š., V. Rodin, A. Faessler, and P. Vogel PRC 87, 045501 (2013)

Close values and => no new parameter

Separation of g_{pp} **into** $g_{pp}^{T=0}$ **and** $g_{pp}^{T=1}$

1/12/2015

ISM: Menendez et al. NPA 818 (2009) 139 ISM: Brown, Horoi etc., Phys.Rev.Lett. 113 (2014) 262501 ...

20

IBM: Barea, Kotila, Iachello, PRC (2013) 014315

QRPA versus EDF/PHFB

22

Is there a connection between 0vbb- and 2vbb-decay NME?

Quenching of g_A (systematic error) $g_A^4 = (1.269)^4 = 2.6$ Strength of GT trans. (approx. given by Ikeda sum rule =3(N-Z)) $(g^{eff}{}_{\Lambda})^4 - 1.0$ has to be quenched to reproduce experiment $g_{A-1.269} => g^{eff}_{A=0.75} g_{A} \approx 1$ $(g^{eff}{}_{A})^{4} = (0.8)^{4} = 0.41$ In QRPA g^{eff}_A and isoscalar force were fitted to reproduce the $2\nu\beta\beta$ -decay half-life, β^- decay rate and β^+ /EC rate $(g^{eff}{}_{A})^{4} = (0.7)^{4} = 0.24$ $=> g^{eff}_{A}$ is smaller than unity. Faessler, Fogli, Lisi, Rodin, Rotunno, F. Š, J. Phys. G 35, 075104 (2008). g_A^{eff} is highly dependent on the model calculations and $g_{A}^{eff-ISM} = 0.57-0.90$ assumptions made $g_{A}^{\text{eff-IBM}} = 0.35 - 0.71$ Barea, Kotila, Iachello, PRC 87, 014315 (2013)

Is g_A^{eff} different for different (A,Z) and different spin-dependent transition operators?

Quenching of g_A and two-body currents Menendez, Gazit, Schwenk, PRL 107 (2011) 062501; MEDEX13 contribution

$$\mathbf{J}_{i,2b}^{\text{eff}} = -g_A \boldsymbol{\sigma}_i \tau_i^{-} \frac{\rho}{F_{\pi}^2} \left[\frac{2}{3} c_3 \frac{p^2}{4m_{\pi}^2 + p^2} + I(\rho, P) \left(\frac{1}{3} (2c_4 - c_3) + \frac{1}{6m} \right) \right] = -g_A \boldsymbol{\delta}(p) \boldsymbol{\sigma}_i \tau_i^{-}$$

The $0\nu\beta\beta$ operator calculated within effective field theory. Corrections appear as 2-body current predicted by EFT. The 2-body current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calc.

Quenching of g_A, two-body currents and QRPA (Suppression of about 20%)

Engel, Vogel, Faessler, F.Š., PRC 89 (2014) 064308

112312013

*__*J

Momentum distribution of NME normalized to unity

The DBD Nuclear Matrix Elements and the SU(4) symmetry D. Štefánik, F.Š., A. Faessler, PRC 91, 064311 (2015)

Suppression of the Two Neutrino Double Beta Decay by Nuclear Structure Effects P. Vogel, M.R. Zirnbauer, PRL (1986) 3148

6.0

4.0

O. Civitarese, A. Faessler, T. Tomoda, PLB 194 (1987) 11 E. Bender, K. Muto, H.V. Klapdor, PLB 208 (1988) 53

> The isospin is known to be a good approximation in nuclei

In heavy nuclei the SU(4) symmetry is strongly broken by the spin-orbit splitting.

7/23/2015

 M_{GT} 2.0 0 -2.0 -4.0 0.8 1.2 1.6 0.4 0 q'pp/q^{pair} Fedor Simkovic 27 What is beyond this behavior? Is it an artifact of the QRPA?

About 30 years ago

2.0

2νββ-decay rate

$$\begin{bmatrix} T_{1/2}^{2\nu\beta\beta}(0^{+}) \end{bmatrix}^{-1} = \frac{m_e}{8\pi^7 \ln 2} (G_{\beta} m_e^2)^4 I^{2\nu} (0^{+}) , \qquad I^{2\nu} (0^{+}) = \frac{1}{m_e^2} \int_{m_e}^{E_i - E_f - m_e} F_0(Z_f, E_{e_1}) p_{e_1} E_{e_1} dE_{e_1} dE_{e_1} dE_{e_2} dE_{e_1} dE_{e_$$

 $\begin{array}{l} g_{pair} \text{-} strength \ of \ isovector \ like \ nucleon \ pairing \ (L=0, \ S=0, \ T=1, \ M_T=\pm 1) \\ g_{pp}^{\ T=1} \text{-} \ strength \ of \ isovector \ spin-0 \ pairing \ (L=0, \ S=0, \ T=1, \ M_T=0 \\ g_{pp}^{\ T=0} \text{-} \ strength \ of \ isoscalar \ spin-1 \ pairing \ (L=0, \ S=1, \ T=0) \\ g_{ph} \text{-} \ strength \ of \ particle-hole \ force \end{array}$

M_F and M_{GT} do not depend on the mean-field part of H and are governed by a weak violation of the SU(4) symmetry by the particle-particle interaction of H

$$\begin{split} M_F^{2\nu} &= -\frac{48\sqrt{\frac{33}{5}}\left(g_{pair} - g_{pp}^{T=1}\right)}{(5g_{pair} + 3g_{ph})(10g_{pair} + 6g_{ph})} \\ M_{GT}^{2\nu} &= \frac{144\sqrt{\frac{33}{5}}}{5g_{pair} + 9g_{ph}} \left\{\frac{(g_{pair} - g_{pp}^{T=0})}{(10g_{pair} + 20g_{ph})} + \frac{2g_{ph}(g_{pair} - g_{pp}^{T=1})}{(10g_{pair} + 20g_{ph})(10g_{pair} + 6g_{ph})} \right. \end{split}$$

7/23/2015

Energies of excited states for the case of conserved SU(4) symmetry $M_F=0, M_{GT}=0$ (see SU(4) multiplets)

M_{GT} up to the second order of perturbation theory due to violation of the SU(4) symmetry by the particle-particle interaction of H

Results confirm dependence of M_F and M_{GT} on $g_{pp}^{T=0}$ and $g_{pp}^{T=1}$ by the QRPA

The Ονββ-decay with emission of electrons in p_{1/2} wave state D. Štefánik, R. Dvornický, F.Š., Nuclear Theory 33 (2014) 115

$$\begin{split} \psi(\mathbf{r},p,s) &\simeq \psi_{s_{1/2}}(\mathbf{r},p,s) + \psi_{p_{1/2}}(\mathbf{r},p,s) = (\begin{array}{c} (9) \\ g_{-1}(\varepsilon,r)\chi_{s} \\ f_{+1}(\varepsilon,r)(\vec{\sigma}\cdot\hat{\mathbf{p}})\chi_{s} \end{array}) + \begin{pmatrix} ig_{+1}(\varepsilon,r)(\vec{\sigma}\cdot\hat{\mathbf{p}})(\vec{\sigma}\cdot\hat{\mathbf{p}})\chi_{s} \\ -if_{-1}(\varepsilon,r)(\vec{\sigma}\cdot\hat{\mathbf{r}})\chi_{s} \end{array}) \end{split} \\ \\ J^{\rho}(\mathbf{x}) &= \sum_{n} \tau_{n}^{+}\delta(\mathbf{x}-\mathbf{r}_{n})\left[(g_{V}-g_{A}C_{n})g^{\rho0}+g^{\rho k} \\ \times \left(g_{A}\sigma_{n}^{k}-g_{V}D_{n}^{k}-g_{P}\left(p_{n}^{k}-p_{n}^{'k}\right)\frac{\vec{\sigma}_{n}\cdot\left(\mathbf{p}_{n}-\mathbf{p}_{n}^{'}\right)}{2m_{N}}\right)\right] \end{aligned} \\ \begin{array}{c} \text{Higher order terms of nucleon current with nucleon recoil} \\ \\ \\ \mathcal{C}_{n} &= \frac{\vec{\sigma}_{n}\left(p_{n}+p_{n}^{'}\right)}{2m_{N}}\frac{g_{P}}{q_{A}}\left(E_{n}-E_{n}^{'}\right)\frac{\vec{\sigma}_{n}\cdot\left(\mathbf{p}_{n}-\mathbf{p}_{n}^{'}\right)}{2m_{N}}}{D_{n} &= \frac{(9)}{2m_{N}}-i\left(1+\frac{g_{M}}{g_{V}}\right)\frac{\vec{\sigma}_{n}\times\left(\mathbf{p}_{n}-\mathbf{p}_{n}^{'}\right)}{2m_{N}}} \end{aligned}$$

$$\begin{aligned} & \left[T_{1/2}^{0\nu\beta\beta} \right]^{-1} = \frac{\left| m_{\beta\beta} \right|^2}{m_e^2} g_A^4 \left(2Re \left\{ M_s M_r^* \right\} G_{sr} \right. \\ & \left. + 2Re \left\{ M_s M_p^* \right\} G_{sp} + 2Re \left\{ M_r M_p^* \right\} G_{rp} \right. \\ & \left. + 2Re \left\{ M_s M_p^* \right\} G_{sp} + 2Re \left\{ M_r M_p^* \right\} G_{rp} \right. \\ & \left. + 2Re \left\{ M_s M_p^* \right\} G_{sp} + 2Re \left\{ M_r M_p^* \right\} G_{rp} \right. \\ & \left. + G_{ss} \left| M_s \right|^2 \right\} + G_{rr} \left| M_r \right|^2 + G_{pp} \left| M_p \right|^2 \right), \end{aligned} \\ & \left[M_s \right] = -\frac{M_F}{g_A^2} + M_{GT} + M_T \right] M_{F,GT,T} = \sum_{r,s} \left\langle 0 \right| h_{F,GT,T} (r_-) \mathcal{O}_{F,\mathcal{GT},\mathcal{T}} \left| 0 \right\rangle \\ & M_p = -\frac{M_F'}{g_A^2} + M_{GT}' + M_T' + M_V + M_A + M_A' \right] \\ & M_V = i \sum_{r,s} \left\langle 0 \right| \frac{h_{AV}(r_-) + h_{VP}(r_-)}{2R^2} \tau_r^+ \tau_s^+ (\mathbf{r}_- \times \mathbf{r}_+) \cdot \vec{\sigma}_r \left| 0 \right\rangle \\ & M_F,_{GT,T} = \sum_{r,s} \left\langle 0 \right| h_{F,GT,T} (r_-) \mathcal{O}_{F,\mathcal{GT},\mathcal{T}} \left(\frac{|\mathbf{r}_-|^2 - |\mathbf{r}_+|^2}{4R^2} \right) \\ & M_A = \sum_{r,s} \left\langle 0 \right| \frac{h_{AP}(r_-) + h_{AA}(r_-) + h_{MM}(r_-)}{2R^2} \\ & \times \tau_r^+ \tau_s^+ (\vec{\sigma}_r \cdot \mathbf{r}_-) (\vec{\sigma}_s \cdot \mathbf{r}_+) \left| 0 \right\rangle \\ & M_r = \sum_{r,s} \left\langle 0 \right| \left(h_R(r_-) + h_R'(r_-) \right) \mathcal{O}_{\mathcal{T}} - 2h_R(r_-) \mathcal{O}_{\mathcal{GT}} \left| 0 \right\rangle \\ & 34 \end{aligned}$$

	⁴⁸ Ca	a ⁷⁶ Ge	⁸² Se	⁹⁶ Zr	$^{100}\mathrm{Mo}$	¹¹⁰ Pd
	$Q_{\beta\beta}$ [MeV] 4.27226	3 2.03904	2.99512	3.35037	3.03440	2.01785
	$G_{ss} \left[10^{-18} yr^{-1} \right] = 24\ 834$. 2 368.1	$10\ 176.$	$20\ 621.$	15 953.	$4\ 828.5$
	$G_{sr} [10^{-18} yr^{-1}] -4 \ 138.3$	3 - 529.26	$-2\ 499.4$	-5 929.3	-4738.2	-1 504.8
	$G_{rr} [10^{-18} yr^{-1}] = 690.26$	5 118.37	614.25	$1\ 705.7$	$1 \ 407.9$	469.16
	$G_{sp} \left[10^{-18} yr^{-1} \right] -171.01$	-29.513	-152.98	-424.86	-350.88	-117.07
	$G_{rp} [10^{-18} yr^{-1}] = 28.553$	6.6047	37.619	122.29	104.31	36.518
	$G_{pp} \left[10^{-18} yr^{-1} \right] = 1.1824$	0.36878	2.3055	8.7718	7.7325	2.8437
		116 0 1	194 a	130 -	136 17	150
		110Cd	¹²⁴ Sn	¹³⁰ Te	зоХе	¹⁵⁰ Nd
	Calculated phase-space	2.8135	2.28697	2.52697	2.45783	3.37138
	factor for 0v88-decay					
W	ith emission of $s_{1/2}$ and $p_{1/2}$	$16\ 734.$	$9\ 063.5$	$14\ 255.$	$14 \ 619.$	63 163.
	electrons	-5 569.5	$-3 \ 082.8$	$-5 \ 071.1$	$-5 \ 385.7$	$-26\ 409.$
	(m _{ββ} mechanism)	1 854.5	$1 \ 049.0$	$1 \ 804.7$	$1 \ 984.9$	$11 \ 045.$
		-462.44	-261.74	-450.22	-495.23	-2754.1
		154.05	89.101	160.29	182.59	1 152.3
	7/23/2015	12.802	7.5711	14.242	16.803	120.25

The 0vββ-decay mechanisms with light and heavy neutrinos Assumption M_R » m_D

See-Saw mechanism

Left-right symmetric models SO(10)

Probability of Neutrino Oscillations

As N increases, the formalism gets rapidly more complicated!

Ν	∆m _{ii} ²	θ_{ii}	СР
2	1	1	0+1
3	2	3	1+2
6	5	15	10+9

0

Why TeV Seesaws?

Is the seesaw scale very close to a fundamental physics scale?

Left-handed neutrinos: Majorana neutrino mass eigenstate N with arbitrary mass $\ensuremath{m_N}$

Faessler, Gonzales, Kovalenko, F. Š., PRD 90 (2014) 096010]

$$\begin{aligned} \left[T_{1/2}^{0\nu} \right]^{-1} &= G^{0\nu} g_{\rm A}^4 \left| \sum_{\rm N} \left(U_{e\rm N}^2 m_{\rm N} \right) m_{\rm p} \, M'^{0\nu}(m_{\rm N}, g_{\rm A}^{\rm eff}) \right|^2 \\ M'^{0\nu}(m_{\rm N}, g_{\rm A}^{\rm eff}) &= \frac{1}{m_{\rm p} m_{\rm e}} \, \frac{R}{2\pi^2 g_{\rm A}^2} \sum_{n} \int d^3x \, d^3y \, d^3p \qquad M'^{0\nu}(m_{\rm N} \to 0, g_{\rm A}^{\rm eff}) \, = \, \frac{1}{m_{\rm p} m_{\rm e}} M_{\nu}'^{0\nu}(g_{\rm A}^{\rm eff}) \\ \times e^{i_{\rm P} \cdot (\mathbf{x} - \mathbf{y})} \frac{\langle 0_F^+ | J^{\mu\dagger}(\mathbf{x}) | n \rangle \langle n | J_{\mu}^{\dagger}(\mathbf{y}) | 0_I^+ \rangle}{\sqrt{p^2 + m_N^2} (\sqrt{p^2 + m_N^2} + E_n - \frac{E_I - E_F}{2})} M'^{0\nu}(m_{\rm N} \to \infty, g_{\rm A}^{\rm eff}) \, = \, \frac{1}{m_{\rm N}^2} M_{\rm N}'^{0\nu}(g_{\rm A}^{\rm eff}) \end{aligned}$$

Particular cases

$$\begin{split} [T_{1/2}^{0\nu}]^{-1} &= G^{0\nu} g_{\mathrm{A}}^{4} \times \\ &\times \begin{cases} \left| \frac{\langle m_{\nu} \rangle}{m_{\mathrm{e}}} \right|^{2} \left| M_{\nu}^{\prime 0\nu}(g_{\mathrm{A}}^{\mathrm{eff}}) \right|^{2} & \text{for } m_{\mathrm{N}} \ll p_{\mathrm{F}} \\ \\ \left| \langle \frac{1}{m_{\mathrm{N}}} \rangle m_{\mathrm{p}} \right|^{2} \left| M_{\mathrm{N}}^{\prime 0\nu}(g_{\mathrm{A}}^{\mathrm{eff}}) \right|^{2} & \text{for } m_{\mathrm{N}} \gg p_{\mathrm{F}} \end{cases} \end{split}$$

$$\left\langle m_{\nu} \right\rangle = \sum_{\mathbf{N}} U_{\mathrm{eN}}^2 m_{\mathbf{N}}$$
$$\left\langle \frac{1}{m_{\mathbf{N}}} \right\rangle = \sum_{\mathbf{N}} \frac{U_{\mathrm{eN}}^2}{m_{\mathbf{N}}}$$

 $N = \sum U_{N\alpha} \nu_{\alpha}$

 $\alpha = s, e, \mu, \tau$

7/23/2015

Fedor Simkovic

Exclusion plot in |U_{eN}|² – m_N plane

Improvements: i) QRPA (constrained Hamiltonian by $2\nu\beta\beta$ half-life, self-consistent treatment of src, restoration of isospin symmetry ...), ii) More stringent limits on the $0\nu\beta\beta$ half-life

PHFB: K. Rath et al., PRC 85 (2012) 014308 **IBM:** Barea, Kotila, Iachello, PRC (2013) 014315

QRPA: Faessler, Gonzales, , F. Š., Kovalenko, PRD 90Fedo(2014) 096010 ``Vergados, Ejiri, F. Š., RPP 75 (2012) 106301ISM: Menendez, privite communications

Multipole decomposition of NMEs normalized to unity

Co-existence of light and heavy neutrino mass Mechanisms of the 0vββ-decay

It may happen that in year 201? (or 2???) the 0vββ-decay will be detected for 2-3 or more isotopes ...

Co-existence of 2, 3 or more interferring mechanisms of $0 \nu \beta \beta$ -decay

It is well-known that there exist many mechanisms that may contribute to the $0\nu\beta\beta$. Let consider 3 mechanisms: i) light v-mass mechanism, ii) heavy v-mass mechanism iii) R-parity breaking SUSY mechanism with gluino exchange and CP conservation

2 active mechanisms of the 0vββ-decay: Light and heavy v-mass mechanism

Non-observation of the 0vββ-decay for some isotopes might be in agreement with

non- zero m_{ββ} 7/23/2015

Only positive signs: There is a correlation of errors; It is practically not possible to distinguish both mechanisms even observating the 0vββ-decay for 3 nuclei

E. Lisi, A. Rotunno, F. Š., arXiv:1506.04058 [hep-ph]

Two non-interfering mechanisms of the 0vββ-decay (light LH and heavy RH neutrino exchange)

Two non-interfering mechanisms of the 0vββ-decay (light LH and heavy RH neutrino exchange)

The 0 vββ-decay with right-handed currents revisited (exchange of light neutrinos) D. Štefánik, R. Dvornický, F.Š., P. Vogel, arXiv:1506.07145 [hep-ph]

neutrino	lept.v.	quarkv.	hadr.m.	supp.f.	LNVp.	parameters —
light	LL	LL	2n		$\sum^{light} UUm$	\mathbf{m}_{etaeta}
	LR	LR	2n	$(\mathrm{M_1}/M_2)^2$	$\sum^{light} UV$	$<\lambda>$
	LR	LL	2n	$ an\zeta$	$\sum^{light} UV$	$<\eta>$
heavy	LL	LL	2n	—	\sum^{heavy} UUM $_p/M$	η_N
	RR	RR	2n	$(\mathrm{M_1}/M_2)^4$	$\sum^{heavy} V V m_p / M$	
	RR	LL	2n	$(an\zeta)^4$	$\sum^{heavy} V V m_p / M$	
	RR	RL	2π	$ an\zeta\;(M_1/M_2)^2$	$\sum^{heavy} V V m_p / M$	

3x3 block matrices Zhi-zhong Xing, Phys. Rev. D 85, 013008 (2012) U, S, T, V are 6x6 neutrino mass matrix generalization of PMNS matrix **Basis** $\mathcal{M} = \left(\begin{array}{cc} M_L & M_D \\ M_D^T & M_B \end{array} \right)$ $(\nu_L, (N_R)^{\bar{C}})^T$ $\mathcal{U} = \left(\begin{array}{cc} U & S \\ T & V \end{array}\right)$ **Decomposition** $\mathcal{U} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & U_0 \end{pmatrix} \begin{pmatrix} A & R \\ S & B \end{pmatrix} \begin{pmatrix} V_0 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$ Approximation **Type seesaw I** $A \approx \mathbf{1}, B \approx \mathbf{1}, R \approx \frac{m_D}{m_{LNV}} \mathbf{1}, S \approx -\frac{m_D}{m_{LNV}} \mathbf{1}$ $U_0 \simeq V_0$ LNV parameters $|\xi| = |c_{23}c_{12}^2c_{13}s_{13}^2 - c_{12}^3c_{13}^3 - c_{13}c_{23}c_{12}^2s_{13}^2$ $\langle \lambda \rangle \approx (M_{W_1}/M_{W_2})^2 \frac{m_D}{m_{LNV}} |\xi|$ $-c_{12}c_{13}\left(c_{13}^{2}s_{12}^{2}+s_{13}^{2}\right)$ $\langle \eta \rangle \approx -\tan \zeta \frac{m_D}{m_{LNV}} |\xi|,$ $\simeq 0.82$

The $0\nu\beta\beta$ -decay rate with right-handed currents

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = \frac{\Gamma^{0\nu}}{\ln 2} = g_A^4 |M_{GT}|^2 \left\{ C_{mm} \left(\frac{|m_{\beta\beta}|}{m_e} \right)^2 \right. \\ \left. + C_{m\lambda} \frac{|m_{\beta\beta}|}{m_e} \langle \lambda \rangle \cos \psi_1 + C_{m\eta} \frac{|m_{\beta\beta}|}{m_e} \langle \eta \rangle \cos \psi_2 \\ + C_{\lambda\lambda} \langle \lambda \rangle^2 + C_{\eta\eta} \langle \eta \rangle^2 + C_{\lambda\eta} \langle \lambda \rangle \langle \eta \rangle \cos (\psi_1 - \psi_2) \right\} \\ \begin{bmatrix} T_{i} \psi_{ej} V_{ej} (g'_{e'}/g_V) \\ K_{i} \psi_{ej} V_{ej} (g'_{e'}/g_V) \\ K_{i} \psi_{ej} = \eta |\sum_{j}^{i} U_{ej} V_{ej} (g'_{ej}/g_V) |, \\ f_{i} \psi_{ej} = \eta |\sum_{j}^{i} U_{ej} V_{ej} (g'_{ej}/g_V) |, \\ f_{i} \psi_{ej} = \pi g[\{\sum_{j}^{i} m_{j} U_{ej}^{2}\} \{\sum_{j}^{i} U_{ej} V_{ej} (g'_{ej}/g_V) | \} \\ \begin{bmatrix} C_{mm} = (1 - \chi_F + \chi_T)^2 G_{01}, \\ C_{m\eta} = (1 - \chi_F + \chi_T) [\chi_{2-} G_{03} - \chi_{1+} G_{04}], \\ C_{m\eta} = (1 - \chi_F + \chi_T) \\ & \times [\chi_{2+} G_{03} - \chi_{1-} G_{04} - \chi_P G_{05} + \chi_R G_{06}], \\ f_{i} \psi_{2} = \pi g[\{\sum_{j}^{i} m_{j} U_{ej}^{2}\} \{\sum_{j}^{i} U_{ej} V_{ej} |^{2}\}]. \\ \begin{bmatrix} C_{\eta\eta} = \chi_{2+}^2 G_{02} + \frac{1}{9} \chi_{1+}^2 G_{011} - \frac{2}{9} \chi_{1+} \chi_{2-} G_{010} , \\ C_{\lambda\eta} = -2[\chi_{2-} \chi_{2+} G_{02} - \frac{1}{9} (\chi_{1+} \chi_{2+} + \chi_{2-} \chi_{1-}) G_{010} \end{bmatrix}$$

7/23/2015

$$= -2[\chi_{2-}\chi_{2+}G_{02} - \frac{1}{9}(\chi_{1+}\chi_{2+} + \chi_{2-}\chi_{1-})G_{010} + \frac{1}{9}\chi_{1+}\chi_{1-}G_{011}].$$
(37)

Different types of electron wave functions
$$\Psi(\varepsilon, \mathbf{r}) = \Psi^{(s_{1/2})}(\varepsilon, \mathbf{r}) + \Psi^{(p_{1/2})}(\varepsilon, \mathbf{r})$$

w.f. A (Doi et al.), uniform charge distribution, only the lowest term in expansion r/R

$$\begin{pmatrix} g_{-1}(\varepsilon,r) \\ f_{+1}(\varepsilon,r) \end{pmatrix} \approx \sqrt{F_0(Z_f,\varepsilon)} \begin{pmatrix} \sqrt{\frac{\varepsilon+m_e}{2\varepsilon}} \\ \sqrt{\frac{\varepsilon-m_e}{2\varepsilon}} \end{pmatrix} \begin{pmatrix} g_{+1}(\varepsilon,r) \\ f_{-1}(\varepsilon,r) \end{pmatrix} \approx \sqrt{F_0(Z_f,\varepsilon)} \begin{pmatrix} \sqrt{\frac{\varepsilon-m_e}{2\varepsilon}} [\alpha Z_f/2 + (\varepsilon+m_e)r/3] \\ -\sqrt{\frac{\varepsilon+m_e}{2\varepsilon}} [\alpha Z_f/2 + (\varepsilon-m_e)r/3] \end{pmatrix}$$

w.f. B, the analytical solution of the Dirac equation for a point-like nucleus

$$g_{\kappa}(\varepsilon,r) = \frac{1}{pr} \sqrt{\frac{\varepsilon + m_e}{2\varepsilon}} \frac{|\Gamma(1 + \gamma_k + iy)|}{\Gamma(1 + 2\gamma_k)} (2pr)^{\gamma_k} \qquad f_{\kappa}(\varepsilon,r) = \frac{1}{pr} \sqrt{\frac{\varepsilon - m_e}{2\varepsilon}} \frac{|\Gamma(1 + \gamma_k + iy)|}{\Gamma(1 + 2\gamma_k)} (2pr)^{\gamma_k} \\ \Im\left\{e^{i(pr+\xi)} \ _1F_1(\gamma_k - iy, 1 + 2\gamma_k, -2ipr)\right\} \qquad \Re\left\{e^{i(pr+\xi)} \ _1F_1(\gamma_k - iy, 1 + 2\gamma_k, -2ipr)\right\}$$

w.f. C, the exact Dirac wave functions with finite nuclear size corrections, which are taken into account in by a uniform charge distribution in a sphere of nucleus

w.f. D, the same as w.f. C but the screening of atomic electrons included

Radial components of electron wave functions at nuclear surface

Phase-space factors for ¹⁵⁰Nd

Phase-space factors for nuclei of experimental interest in the case of left and right-handed current mechanisms of the $0 \nu\beta\beta$ -decay (light neutrino exchange)

	^{48}Ca	$^{76}\mathrm{Ge}$	$^{82}\mathrm{Se}$	⁹⁶ Zr	¹⁰⁰ Mo	$^{110}\mathrm{Pd}$	$^{116}\mathrm{Cd}$	124 Sn	¹³⁰ Te	$^{136}\mathrm{Xe}$	$^{150}\mathrm{Nd}$
$Q_{\beta\beta}$ [MeV]	4.27226	2.03904	2.99512	3.35037	3.03440	2.01785	2.8135	2.28697	2.52697	2.45783	3.37138
$G_{01}.10^{14}$	2.483	0.237	1.018	2.062	1.595	0.483	1.673	0.906	1.425	1.462	6.316
$G_{02}.10^{14}$	16.229	0.391	3.529	8.959	5.787	0.814	5.349	1.967	3.761	3.679	29.187
$G_{03}.10^{15}$	18.907	1.305	6.913	14.777	10.974	2.672	11.128	5.403	8.967	9.047	45.130
$G_{04}.10^{15}$	5.327	0.470	2.141	4.429	3.400	0.978	3.569	1.886	3.021	3.099	14.066
$G_{05}.10^{13}$	3.007	0.566	2.004	4.120	3.484	1.400	4.060	2.517	3.790	4.015	14.873
$G_{06}.10^{12}$	3.984	0.531	1.733	3.043	2.478	0.934	2.563	1.543	2.227	2.275	7.497
$G_{07}.10^{10}$	2.682	0.270	1.163	2.459	1.927	0.599	2.062	1.113	1.755	1.812	8.085
$G_{08}.10^{11}$	1.109	0.149	0.708	1.755	1.420	0.462	1.703	0.939	1.549	1.657	8.405
$G_{09}.10^{10}$	16.246	1.223	4.779	8.619	6.540	1.939	6.243	3.301	4.972	4.956	19.454
$G_{010}.10^{14}$	2.116	0.141	0.801	1.855	1.359	0.309	1.418	0.660	1.146	1.165	7.115
$G_{011}.10^{15}$	5.376	0.476	2.183	4.557	3.502	1.010	3.704	1.955	3.148	3.238	15.055

Importance of contribution associated with G_{0k} for a given mechanism

Current constraints on the effective neutrino mass and effective right-handed current parameters

	$^{76}\mathrm{Ge}$		136	Xe
w.f.	А	D	А	D
		QRPA		
$ m_{\beta\beta} $ [eV]	0.321	0.333	0.285	0.315
$ m_{\beta\beta} $ [eV] (for $\langle \eta \rangle = \langle \eta \rangle = 0$)	0.271	0.284	0.251	0.285
$\langle \eta \rangle \times 10^{-9}$	3.093	3.239	2.077	2.337
$\langle \lambda \rangle \times 10^{-7}$	4.943	5.163	3.822	4.370
	ISM			
$ m_{\beta\beta} $ [eV]	0.515	0.535	0.222	0.245
$ m_{\beta\beta} $ [eV] (for $\langle \eta \rangle = \langle \eta \rangle = 0$)	0.436	0.458	0.193	0.220
$\langle \eta \rangle \times 10^{-9}$	6.370	6.760	2.975	3.291
$\langle \lambda \rangle \times 10^{-7}$	8.462	8.841	3.000	3.378

The single differential decay rate normalized to the total decay rate as function of electron energy for 3 limiting cases:

Results do not depend on isotope, NME and type of w.f.

i) Case $m_{\beta\beta} \neq 0$ $(\langle \lambda \rangle = 0 \text{ and } \langle \eta \rangle = 0)$ ii) Case $\langle \lambda \rangle \neq 0$ $(m_{\beta\beta} = 0 \text{ and } \langle \eta \rangle = 0)$ iii) Case $\langle \eta \rangle \neq 0$ $(m_{\beta\beta} = 0 \text{ and } \langle \lambda \rangle = 0)$ $\varepsilon_1 = \tilde{\varepsilon}_1 Q_{\beta\beta} + m_e$ $\varepsilon_2 = Q_{\beta\beta} + 2m_e - \varepsilon_1)$

Instead of Conclusions

We are at the beginning of the Road... Genuine beginnings begin within us, even when they are brought to our attention by external opportunities. William Bridges

The future of neutrino physics is bright.

7/23/2015