Dulition of axion dark radiation

Osamu Seto (Hokkai-Gakuen Univ.)

With Hironori Hattori, Tatsuo Kobayashi and Naoya Omoto (Hokkaido Univ.)

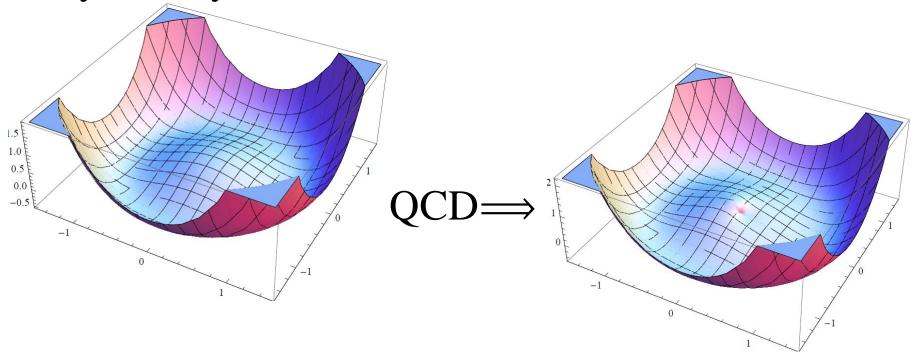
Ref: Phys. Rev. D 92, 023517 (2015)

§ Introduction

§ § SM of particle physics

Success of the standard model of particle physics

• It well explain almost all phenomena occurred at accelerator experiments.

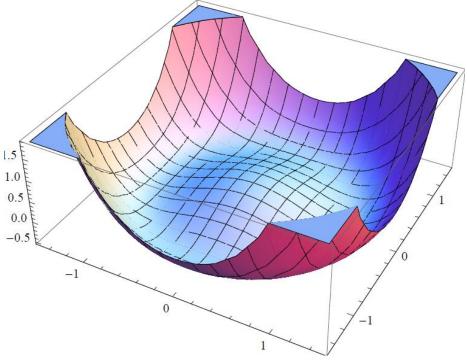

Problems of the SM

- Nonvanishing neutrino mass
- Strong CP problem → axion in PQ mechanism
- Gauge hierarchy problem

•

§ § Axion

• Axion is a NG boson of broken global U(1)PQ symmetry

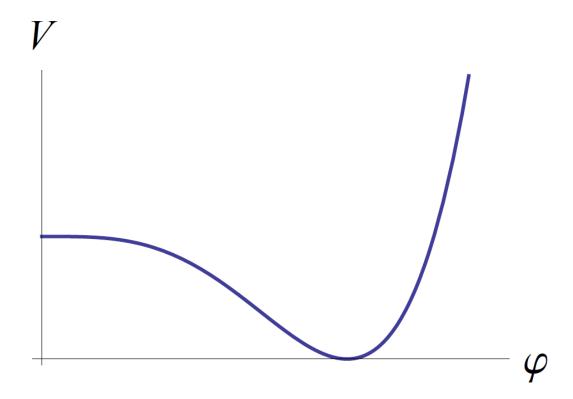


Tiny mass below QH transition.

§ § Axion

• Radial direction of the field also evolves in the

early Universe.


• The radial field (PQ field) would decay into 2axions.

§ Assumed cosmic history

- Primordial inflation
- Reheating by the primordial inflation
- PQ scalar domination
- PQ scalar decay into axions, relativistic axion dominated Universe
- Thermal inflation
- Reheating after thermal inflation
- Baryogenesis, dark matter production, etc
- Big bang nucleosynthesis

§ Thermal inflation

A promising mechanism to dilute unwanted relics

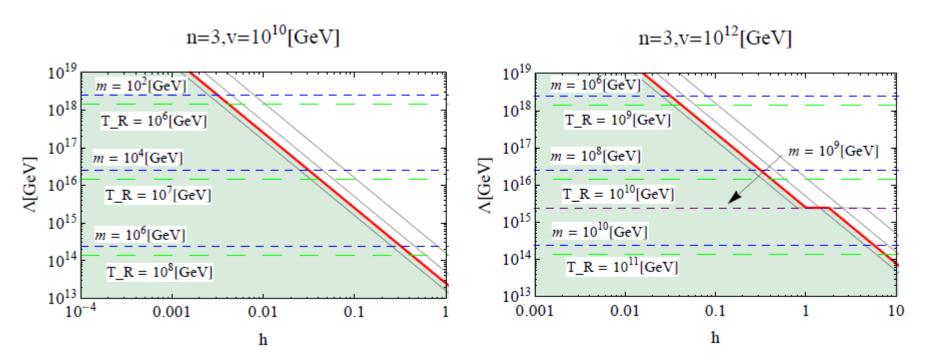
§ Thermal inflation

• Potential: Higgs for gauged U(1)

$$V(\varphi) = V_0 - m^2 |\varphi|^2 + \frac{|\varphi|^{2n}}{\Lambda^{2(n-2)}} + \frac{g_{\varphi}}{24} T^2 |\varphi|^2$$

Number of e-fold

$$N_{2n} = N_4 - \frac{1}{4} \ln \frac{n^2}{4(n-1)} + \frac{1}{2}(n-2) \ln \left(\frac{M_P}{v}\right),$$


$$N_4 = -\ln 4\sqrt{3} - \frac{1}{4} \ln \left(\frac{\pi^2}{30}g_*\right) + \frac{1}{2} \ln \frac{\Lambda}{M_P}h,$$

• Results for n=3

TABLE II: Quantities in thermal inflation by the potential (19)

$\Lambda($	(GeV)	h	$v({ m GeV})$	$T_i(\text{GeV})$	$T_f(\text{GeV})$	N	ΔN_{eff}	$T_R(\text{GeV})$
]	10^{16}	8.27×10^{-3}	10^{8}	2.79×10^3	1.03×10^3	1.00	0.05	5.9×10^3
1	10^{16}	8.27×10^{-2}	10^{10}	2.79×10^{6}	1.03×10^6	1.00	0.05	5.9×10^6
	10^{16}	8.27×10^{-1}	10^{12}	2.87×10^{9}	1.03×10^{9}	1.00	0.05	5.9×10^9

§ Relic abundance and viable baryogenesis

Compatible baryogeneis

Low scale thermal leptogenesis

High scale thermal leptogenesis

§ Summary

• PQ scalar might dominate the energy density of the early Universe and decay mostly into relativistic axion.

• Thermal inflation by a Higgs field for a gauged U(1) can dilute them.

• Promising viable baryogenesis: High or low scale thermal leptogenesis