Gravitino and axino dark matter with low reheating temperature

Sebastian Trojanowski

National Centre for Nuclear Research, Warsaw

July 23, 2015

Introduction

- What is the nature of dark matter (DM)?
 \[\Rightarrow \text{Lightest Supersymmetric Particle(?)} \]

- if we find SUSY at the LHC and no sign of DM in upcoming experiments
 \[\Rightarrow \text{maybe hint for supersymmetric DM with very tiny interaction rates: gravitino or axino} \]

 - gravitino \(\tilde{G} \) is a superpartner of graviton
 - QCD – strong CP problem \[\Rightarrow \text{axion (Peccei-Quinn)} \]
 - axino \(\tilde{a} \) is a fermionic superpartner of axion
 - \(\tilde{G} \) and \(\tilde{a} \) are extremely weakly interacting massive particle (EWIMP) – interaction rates suppressed by \(M_{\text{Pl}} \) or \(f_{\tilde{a}} \sim 10^{11} \text{ GeV} \)

- cosmological constraints
Introduction

- What is the nature of dark matter (DM)?
 \[\Rightarrow \text{Lightest Supersymmetric Particle(?)} \]

- if we find SUSY at the LHC and no sign of DM in upcoming experiments
 \[\Rightarrow \text{maybe hint for supersymmetric DM with very tiny interaction rates: gravitino or axino} \]

- gravitino \(\tilde{G} \) is a superpartner of graviton
- QCD – strong CP problem \[\Rightarrow \text{axion (Peccei-Quinn)} \]
- axino \(\tilde{a} \) is a fermionic superpartner of axion
- \(\tilde{G} \) and \(\tilde{a} \) are extremely weakly interacting massive particle (EWIMP) – interaction rates suppressed by \(M_{P1} \) or \(f_\tilde{a} \sim 10^{11} \text{ GeV} \)

- cosmological constraints
 - Gravitino and axino DM – typically discussed upper limit on the reheating temperature \(T_R \lesssim 10^7 - 10^8 \text{ GeV} \)
 - What about lower limit on \(T_R \)?
Introduction

- What is the nature of dark matter (DM)?
 ⇒ Lightest Supersymmetric Particle(?)

- if we find SUSY at the LHC and no sign of DM in upcoming experiments
 ⇒ maybe hint for supersymmetric DM with very tiny interaction rates: gravitino or axino

 - gravitino \tilde{G} is a superpartner of graviton
 - QCD – strong CP problem ⇒ axion (Peccei-Quinn)
 - axino \tilde{a} is a fermionic superpartner of axion
 - \tilde{G} and \tilde{a} are extremely weakly interacting massive particle (EWIMP) – interaction rates suppressed by M_{Pl} or $f_{a} \sim 10^{11}$ GeV

- cosmological constraints

 - Gravitino and axino DM – typically discussed upper limit on the reheating temperature $T_{R} \lesssim 10^{7} – 10^{8}$ GeV
 - What about lower limit on T_{R}?
 - Axino DM – how heavy can it be (from phenomenological perspective)?
Introduction

- What is the nature of dark matter (DM)?
 ⇒ Lightest Supersymmetric Particle (?)

- if we find SUSY at the LHC and no sign of DM in upcoming experiments
 ⇒ maybe hint for supersymmetric DM with very tiny interaction rates:
 gravitino or axino

- gravitino \tilde{G} is a superpartner of graviton
- QCD – strong CP problem ⇒ axion (Peccei-Quinn)
- axino \tilde{a} is a fermionic superpartner of axion
- \tilde{G} and \tilde{a} are extremely weakly interacting massive particle (EWIMP) –
 interaction rates suppressed by M_{Pl} or $f_a \sim 10^{11}$ GeV

- cosmological constraints

- Gravitino and axino DM – typically discussed upper limit on the reheating temperature $T_R \lesssim 10^7 - 10^8$ GeV
 What about lower limit on T_R?

- Axino DM – how heavy can it be (from phenomenological perspective)?
Introduction

- What is the nature of dark matter (DM)?
 \[\Rightarrow \text{Lightest Supersymmetric Particle(?)} \]

- if we find SUSY at the LHC and no sign of DM in upcoming experiments
 \[\Rightarrow \text{maybe hint for supersymmetric DM with very tiny interaction rates: gravitino or axino} \]

 - gravitino \tilde{G} is a superpartner of graviton
 - QCD – strong CP problem \[\Rightarrow \text{axion (Peccei-Quinn)} \]
 - axino \tilde{a} is a fermionic superpartner of axion

 - \tilde{G} and \tilde{a} are extremely weakly interacting massive particle (EWIMP) – interaction rates suppressed by M_{Pl} or $f_a \sim 10^{11} \text{ GeV}$

 - cosmological constraints

- Gravitino and axino DM – typically discussed upper limit on the reheating temperature $T_R \lesssim 10^7 - 10^8 \text{ GeV}$

 What about lower limit on T_R?

- Axino DM – how heavy can it be (from phenomenological perspective)?
How to produce relic supersymmetric EWIMPs?

Assumption: after inflation maximum temperature too low for EWIMPs to be in thermal equilibrium. We consider then two main mechanism of production:

$$\Omega_{\text{EWIMP}} h^2 = \Omega_{\text{EWIMP}}^{\text{NTP}} h^2 + \Omega_{\text{EWIMP}}^{\text{TP}} h^2$$

Non-Thermal Production
- late decays of the next-to-LSP
- possible electromagnetic and hadronic cascades that destroy light nuclei in the early Universe
- this alters predictions of the Big Bang Nucleosynthesis (BBN)
- late-time injection of light (fast) particles may cause problem with the Large Scale Structure (LSS) formation
- too warm dark matter (WDM)
- T_R-dependent only for low T_R

Thermal production
- scatterings of superparticles in the thermal plasma
- depends on T_R
- generally larger $T_R \Rightarrow$ larger yield $\gamma^{\text{TP}} = n^{\text{TP}}/s$
- different dependence on the m_{EWIMP} for the axino and the gravitino

$$\Omega_{\text{EWIMP}}^{\text{TP}} h^2 \propto m_{\text{EWIMP}}$$

$$\gamma^{\text{TP}} \propto \begin{cases} T_R/m_\tilde{G} \\ T_R m_\tilde{\sigma} \end{cases}$$
How to produce relic supersymmetric EWIMPs?

Assumption: after inflation maximum temperature too low for EWIMPs to be in thermal equilibrium. We consider then two main mechanism of production:

$$\Omega_{\text{EWIMP}} h^2 = \Omega_{\text{EWIMP}}^{\text{NTP}} h^2 + \Omega_{\text{EWIMP}}^{\text{TP}} h^2$$

Non-Thermal Production

late decays of the next-to-LSP

- possible electromagnetic and hadronic cascades that destroy light nuclei in the early Universe

→ this alters predictions of the

Big Bang Nucleosynthesis (BBN)

- late-time injection of light (fast) particles may cause problem with the Large Scale Structure (LSS) formation

→ too warm dark matter (WDM)

- T_R-dependent only for low T_R

Thermal production

scatterings of superparticles in the thermal plasma

- depends on T_R
 → generally larger T_R ⇒ larger yield
 $$\gamma_{\text{TP}} = n_{\text{TP}} / s$$

- different dependence on the m_{EWIMP} for the axino and the gravitino

$$\Omega_{\text{EWIMP}}^{\text{TP}} h^2 \propto m_{\text{EWIMP}} \gamma_{\text{TP}} \propto \left\{ \begin{array}{c} T_R / m_\tilde{G} \\ T_R / m_\tilde{a} \end{array} \right.$$
How to produce relic supersymmetric EWIMPs?

Assumption: after inflation maximum temperature too low for EWIMPs to be in thermal equilibrium. We consider then two main mechanism of production:

\[\Omega_{\text{EWIMP}} h^2 = \Omega_{\text{EWIMP}}^{\text{NTP}} h^2 + \Omega_{\text{EWIMP}}^{\text{TP}} h^2 \]

Non-Thermal Production
- late decays of the next-to-LSP
 - possible electromagnetic and hadronic cascades that destroy light nuclei in the early Universe
 - this alters predictions of the Big Bang Nucleosynthesis (BBN)
- late-time injection of light (fast) particles may cause problem with the Large Scale Structure (LSS) formation
 - too warm dark matter (WDM)
- \(T_R \)-dependent only for low \(T_R \)

Thermal production
- scatterings of superparticles in the thermal plasma
 - depends on \(T_R \)
 - generally larger \(T_R \) \(\Rightarrow \) larger yield
 - different dependence on the \(m_{\text{EWIMP}} \) for the axino and the gravitino

 \[\Omega_{\text{EWIMP}}^{\text{TP}} h^2 \propto m_{\text{EWIMP}} \gamma^{\text{TP}} \propto \begin{cases}
 T_R / m_{\tilde{G}} \\
 T_R m_{\tilde{a}}
 \end{cases} \]
Non-thermal production of EWIMPs

\[\chi \rightarrow \text{EWIMP} + \ldots \]

- in the early Universe \(\chi \) remained in thermal equilibrium
- when temperature \(T \) dropped down \(\Rightarrow \) freeze-out of \(\chi \)

\[\Omega_{\text{NTP}}^{\text{EWIMP}} h^2 = \frac{m_{\text{EWIMP}}}{m_\chi} \Omega_\chi h^2 \]
Non-thermal production of EWIMPs

\[\chi \rightarrow \text{EWIMP} + \ldots \]

- in the early Universe \(\chi \) remained in thermal equilibrium
- when temperature \(T \) dropped down \(\Rightarrow \) freeze-out of \(\chi \)

\[\Omega_{\text{EWIMP}} h^2 = \frac{m_{\text{EWIMP}}}{m_{\chi}} \Omega_{\chi} h^2 \]

\[\log Y = \frac{n_{\chi}}{s} \sim \text{comoving number density} \]

\[x = \frac{m_{\chi}}{T} \text{ grows with time} \]
Non-thermal production of EWIMPs

\[\Omega_{\text{EWIMP}}^\text{NTP} h^2 = \frac{m_{\text{EWIMP}}}{m_\chi} \Omega_\chi h^2 \]

\(\chi \rightarrow \text{EWIMP} + \ldots \)

- in the early Universe \(\chi \) remained in thermal equilibrium
- when temperature \(T \) dropped down \(\Rightarrow \) freeze-out of \(\chi \)

\text{low } T_R \quad \Omega_\chi h^2(\text{low } T_R) < \Omega_\chi h^2(\text{high } T_R)
Non-thermal production of EWIMPs

\[\chi \rightarrow \text{EWIMP} + \ldots \]

- in the early Universe \(\chi \) remained in thermal equilibrium
- when temperature \(T \) dropped down \(\Rightarrow \) freeze-out of \(\chi \)

\[\Omega_{\chi} h^2 (\text{low } T_R) < \Omega_{\chi} h^2 (\text{high } T_R) \]

\[\Omega_{\chi} h^2 (\text{low } T_R) \approx 0.12 \]

along the lines of constant \(T_R \)

\[\Omega_{\chi} h^2 (\text{high } T_R) \]
Gravitino DM – low T_R \[\Rightarrow \text{NTP dominates for not very light } \tilde{G} \]

Bino LOSP

- $B_h \gtrsim 0.1$
- $\tau \sim \frac{m_{\tilde{B}}^2}{m_{\tilde{B}}^2}$ for $m_{\tilde{B}} \gg m_{\tilde{G}}$
- BBN requires $\tau \lesssim 0.1\text{ s}$

\[\Rightarrow m_{\tilde{B}} \gtrsim 1.4 \left(\frac{m_{\tilde{G}}}{\text{GeV}} \right)^{2/5} \text{TeV} \]

\[\Omega_{\tilde{G}} h^2 = \frac{m_{\tilde{G}}}{m_{\text{LOSP}}} \Omega_{\text{LOSP}} h^2 \]

more general notation

\[\chi \rightarrow \text{LOSP} \]

lightest ordinary supersymmetric particle
Gravitino DM – low T_R

\Rightarrow NTP dominates for not very light \tilde{G}

$\Omega_{\tilde{G}h^2} = \frac{m_{\tilde{G}}}{m_{\text{LOSP}}} \Omega_{\text{LOSP}} h^2$

more general notation

$\chi \rightarrow \text{LOSP}$

lightest ordinary supersymmetric particle

BBN + relic density constraints

\Rightarrow lower limit on T_R

$\min T_R \sim \mathcal{O}(100 \text{ GeV})$

Supersymmetric dark matter with low reheating temperature of the Universe
Gravitino DM – low T_R (2) \Rightarrow NTP dominates

$$\Omega_{\tilde{G}} h^2 = \frac{m_{\tilde{G}}}{m_{\text{LOSP}}} \Omega_{\text{LOSP}} h^2$$

for not very light \tilde{G}

more general notation

$$\chi \rightarrow \text{LOSP}$$

lightest ordinary supersymmetric particle

Slepton LOSP

- lower $\Omega_i h^2 \Rightarrow$ larger $m_{\tilde{G}}$
- low B_h
- $\tau \sim \frac{m_{\tilde{G}}^2}{m_i^5} \left(1 - \frac{m_{\tilde{G}}^2}{m_i^2}\right)^{-4}$

![Graph showing the relationship between m_{LOSP} and $\Omega_{\text{LOSP}} h^2$ for different values of T_R.]
Gravitino DM – low T_R (2) \(\Rightarrow \) NTP dominates $\Omega_{\tilde{G}} h^2 = \frac{m_{\tilde{G}}}{m_{\text{LOSP}}} \Omega_{\text{LOSP}} h^2$ for not very light \tilde{G}

Slepton LOSP

- lower $\Omega_i h^2 \Rightarrow$ larger $m_{\tilde{G}}$
- low B_h
- $\tau \sim \frac{m_{\tilde{G}}^2}{m_i^5} \left(1 - \frac{m_{\tilde{G}}^2}{m_i^2} \right)^{-4}$

BBN + relic density constraints

\(\chi \rightarrow \text{LOSP} \)

\(\Rightarrow \) lower limit on T_R

\[\min T_R \sim \mathcal{O}(100 \text{ GeV}) \]

"Supersymmetric dark matter with low reheating temperature of the Universe"
Axino DM – low T_R

Non-thermal production – analogous to the case of gravitino DM, but...

→ BBN constraints become milder (shorter lifetime) if $\chi \rightarrow \tilde{a}\gamma$ decays are allowed, i.e., if $C_{aYY} \neq 0$ where $\mathcal{L}_a^{\text{eff}} \supset i \frac{\alpha_Y}{16\pi} \frac{C_{aYY}}{f_a} \tilde{a} \gamma_5 [\gamma^\mu, \gamma^\nu] \tilde{B} B_{\mu\nu}$

\Rightarrow if $C_{aYY} \neq 0$ BBN constraints become mild

→ if $C_{aYY} = 0$, decays to $\tilde{a}\gamma$ are suppressed, while $\chi \rightarrow \tilde{aq}\bar{q}$ becomes dominant with hadronic branching fraction $B_h = 1$ and larger lifetime

$$\tau_{\tilde{B}} \approx 120 \text{sec} \left(\frac{100 \text{ GeV}}{m_{\tilde{B}}} \right)^5 \left(\frac{m_{\tilde{q}}}{1 \text{ TeV}} \right)^4 \left(\frac{1 \text{ TeV}}{m_{\tilde{g}}} \right)^2 \left(\frac{f_{\tilde{a}}}{10^{11} \text{ GeV}} \right)^2 .$$

\Rightarrow if $C_{aYY} = 0$ BBN constraints become strong
Axino DM – low T_R

Non-thermal production— analogous to the case of gravitino DM, but...

→ BBN constraints become milder (shorter lifetime) if $\chi \rightarrow \tilde{a} \gamma$ decays are allowed, i.e., if $C_{aYY} \neq 0$ where $\mathcal{L}_{\tilde{a}}^{\text{eff}} \supset i \frac{\alpha_Y}{16\pi f_a} C_{aYY} \tilde{a} \gamma_5 \left[\gamma^\mu, \gamma^\nu \right] \tilde{B} B_{\mu\nu}$

⇒ if $C_{aYY} \neq 0$ BBN constraints become mild

→ if $C_{aYY} = 0$, decays to $\tilde{a} \gamma$ are suppressed, while $\chi \rightarrow \tilde{a} q \bar{q}$ becomes dominant with hadronic branching fraction $B_h = 1$ and larger lifetime

$$\tau_\tilde{B} \approx 120 \text{ sec} \left(\frac{100 \text{ GeV}}{m_\tilde{B}} \right)^5 \left(\frac{m_\tilde{q}}{1 \text{ TeV}} \right)^4 \left(\frac{1 \text{ TeV}}{m_\tilde{g}} \right)^2 \left(\frac{f_a}{10^{11} \text{ GeV}} \right)^2 .$$ \hspace{1cm} (1)

⇒ if $C_{aYY} = 0$ BBN constraints become strong

Thermal production— can be non-negligible even for $T_R \sim 100 \text{ GeV}$

→ axino couplings are suppressed by $1/f_a$ with $f_a \sim 10^9 - 10^{12} \text{ GeV} \ll M_{\text{Pl}}$

→ for non-instantaneous reheating larger temperatures are attainable than in the radiation dominated epoch

⇒ modified Y^{TP}
Axino TP with non-instantaneous reheating

- for high $T_R - SU(3)_c$ scatterings dominate
- for $T_R \lesssim 10^3$ GeV – squark and gluino decays become dominant
- for $T_R \lesssim 100$ GeV – neutralino (being still in thermal equilibrium) decays to axino may dominate

Axino TP with non-instantaneous reheating

- for high $T_R - SU(3)_c$ scatterings dominate
- for $T_R \lesssim 10^3$ GeV – squark and gluino decays become dominant
- for $T_R \lesssim 100$ GeV – neutralino (being still in thermal equilibrium) decays to axino may dominate

Axino TP with non-instantaneous reheating

- for high $T_R - SU(3)_c$ scatterings dominate
- for $T_R \lesssim 10^3$ GeV – squark and gluino decays become dominant
- for $T_R \lesssim 100$ GeV – neutralino (being still in thermal equilibrium) decays to axino may dominate

Axino DM with neutralino LOSP

- T_R-dependent upper bound on $m_{\tilde{a}}$
- max $m_{\tilde{a}}$ for narrow range of $T_R \sim \mathcal{O}(100 \text{ GeV})$
- lower limit on T_R for higgsino LOSP ($T_R \sim \mathcal{O}(10 \text{ GeV})$) and bino LOSP with $C_{aYY} = 0$ ($T_R \sim \mathcal{O}(1 \text{ GeV})$)

![Graphs showing the constraints on $m_{\tilde{a}}$ and T_R for bino and higgsino LOSP with KSVZ and WDM exclusions.](image-url)

"Supersymmetric dark matter with low reheating temperature of the Universe"
Efficient direct/cascade decays of the inflaton field to DM

- for low enough temperatures (after χ freezes-out) direct and/or cascade decays of the inflaton field can work as an additional source of χ
- this requires low T_R
- one may then obtain even $\Omega_\chi h^2(\text{low } T_R) > \Omega_\chi h^2(\text{high } T_R)$ depending on
 \[\eta = b \frac{100 \text{ TeV}}{m_\phi} \]
 b - average number of χ particles produced per inflaton decay
 m_ϕ - inflaton mass

Gravitino DM

Axino DM

$\Omega_\chi h^2 = 0.12$

bino LOSP

$p10MSSM$ (95% excl.)

higgsino LOSP

KSVZ

$f_a = 1 \times 10^{11}$ GeV

$\eta = 0$

$\eta = 10^{-9}$

$\eta = 10^{-7}$
Conclusions

- BBN and relic density constraints in case of gravitino DM introduce lower limit $\min T_R \gtrsim 100$ GeV
- it can be relaxed if for efficient direct/cascade decays of the inflaton to DM
- axino DM thermal production yield for non-instantaneous reheating increases up to $\sim 20 - 30\%$ with respect to an instantaneous reheating scenario
- taking into account non-instantaneous reheating leads to corrected T_R-dependent upper limit on the axino DM mass
- for axino DM $\min T_R \gtrsim \mathcal{O}(1 - 10$ GeV$)$ or even lower for bino LOSP and efficient decays $\tilde{B} \rightarrow \tilde{a} \gamma$
Reheating period in the evolution of the Universe

\[T \propto a^{-3/8} \]

\[V_{\phi} \]

INFLATION \hspace{1cm} REHEATING

\[V_{\text{end}} \]

\[\phi_{\text{end}} \]
Reheating period in the evolution of the Universe

\[T \propto a^{-1} \]

\[T \propto a^{-3/8} \]

Temperature vs. time diagram:

- **INFLATION**
- **REHEATING**

\[T_{\text{max}} \]

"Supersymmetric dark matter with low reheating temperature of the Universe"
Reheating period in the evolution of the Universe (2)

At the end of a period of cosmological inflation:

- $T \approx 0$
- large potential energy of the inflaton field ϕ is transformed into the kinetic energy of recreated particles
- then $T \uparrow$ (reheating)

If instantaneous reheating: $\Gamma_\phi = H = \sqrt{\frac{8\pi}{3M_{Pl}^2}} \rho_\phi$ and $\rho_\phi = \rho_{rad}(T_R) \sim T_R^4$

$$\Gamma_\phi = \sqrt{\frac{4\pi^3 g_*(T_R)}{45} \frac{T_R^2}{M_{Pl}}}$$

defines reheating temperature T_R

If non-instantaneous reheating – Boltzmann equations:

$$\frac{d\rho_\phi}{dt} = -3H\rho_\phi - \Gamma_\phi \rho_\phi$$

inflaton field

$$\frac{d\rho_R}{dt} = -4H\rho_R + \Gamma_\phi \rho_\phi + \langle \sigma v \rangle_{eff} \langle E_X \rangle [n_X^2 - (n_{eq_X}^e)^2]$$

radiation

$$\frac{dn_X}{dt} = -3Hn_X - \langle \sigma v \rangle_{eff} [n_X^2 - (n_{eq_X}^e)^2] \left(+ \frac{b}{m_\phi} \Gamma_\phi \rho_\phi \right)$$

dark matter

Radiation dominated (RD) epoch begins when $T \sim T_R$, before – the reheating period
Reheating period in the evolution of the Universe (2)

At the end of a period of cosmological inflation:

- \(T \approx 0 \)
- large potential energy of the inflaton field \(\phi \) is transformed into the kinetic energy of recreated particles
- then \(T \searrow \) (reheating)

If instantaneous reheating: \(\Gamma_\phi = H = \sqrt{\frac{8\pi}{3M_{Pl}^2}} \rho_\phi \) and \(\rho_\phi = \rho_{rad}(T_R) \sim T_R^4 \)

\[
\Gamma_\phi = \sqrt{\frac{4\pi^3 g_* (T_R)}{45}} \frac{T_R^2}{M_{Pl}} \quad \text{defines reheating temperature } T_R
\]

If non-instantaneous reheating – Boltzmann equations:

\[
\frac{d\rho_\phi}{dt} = -3H\rho_\phi - \Gamma_\phi \rho_\phi \quad \text{inflaton field}
\]

\[
\frac{d\rho_R}{dt} = -4H\rho_R + \Gamma_\phi \rho_\phi + \langle \sigma v \rangle_{\text{eff}} \langle E_X \rangle [n_X^2 - (n_X^{eq})^2] \quad \text{radiation}
\]

\[
\frac{dn_X}{dt} = -3Hn_X - \langle \sigma v \rangle_{\text{eff}} [n_X^2 - (n_X^{eq})^2] \left(+ \frac{b}{m_\phi} \Gamma_\phi \rho_\phi \right) \quad \text{dark matter}
\]

Radiation dominated (RD) epoch begins when \(T \sim T_R \),

before – the reheating period

"Supersymmetric dark matter with low reheating temperature of the Universe"
Reheating period in the evolution of the Universe (2)

At the end of a period of cosmological inflation:
- \(T \approx 0 \)
- large potential energy of the inflaton field \(\phi \) is transformed into the kinetic energy of recreated particles
- then \(T \uparrow \) (reheating)

If instantaneous reheating: \(\Gamma_{\phi} = H = \sqrt{\frac{8\pi}{3M_{Pl}^2}} \rho_{\phi} \) and \(\rho_{\phi} = \rho_{rad}(T_R) \sim T_R^4 \)

\[
\Gamma_{\phi} = \sqrt{\frac{4\pi^3 g_*(T_R)}{45}} \frac{T_R^2}{M_{Pl}}
\]
defines reheating temperature \(T_R \)

If non-instantaneous reheating – Boltzmann equations:

\[
\frac{d\rho_{\phi}}{dt} = -3H\rho_{\phi} - \Gamma_{\phi}\rho_{\phi} \quad \text{inflaton field}
\]

\[
\frac{d\rho_R}{dt} = -4H\rho_R + \Gamma_{\phi}\rho_{\phi} + \langle \sigma v \rangle_{\text{eff}} \langle E_X \rangle \left[n_X^2 - (n_X^{eq})^2 \right] \quad \text{radiation}
\]

\[
\frac{dn_X}{dt} = -3Hn_X - \langle \sigma v \rangle_{\text{eff}} \left[n_X^2 - (n_X^{eq})^2 \right] \left(+ \frac{b}{m_{\phi}} \Gamma_{\phi}\rho_{\phi} \right) \quad \text{dark matter}
\]

Radiation dominated (RD) epoch begins when \(T \sim T_R \), before – the reheating period
Direct and cascade decays of the inflaton field into DM with low T_R

$$\frac{dn_X}{dt} = -3Hn_X - \langle \sigma v \rangle_{\text{eff}} [n_X^2 - (n_X^{eq})^2] + \frac{b}{m_\phi} \Gamma_\phi \rho_\phi$$

- additional non-thermal DM production in the reheating period after freeze-out
- possible increase of the relic density $\Omega_\chi h^2 \uparrow$
Direct and cascade decays of the inflaton field into DM with low T_R

\[\frac{dn_X}{dt} = -3Hn_X - \langle \sigma v \rangle_{\text{eff}} \left[n_X^2 - (n_X^{\text{eq}})^2 \right] + \frac{b}{m_\phi} \Gamma_\phi \rho_\phi \]

- additional non-thermal DM production in the reheating period after freeze-out
- possible increase of the relic density $\Omega_\chi h^2 \nearrow$

\[\eta = b \frac{100 \text{ TeV}}{m_\phi} \]

$higgsino$ DM

$\Omega_\chi h^2 = 0.12$