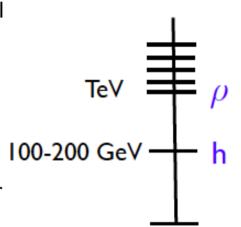
Gearing up for LHC13, GGI, Florence, Oct 13-16, 2105


Direct Probes of Top and Higgs Compositeness at the LHC

Aurelio Juste ICREA/IFAE, Barcelona

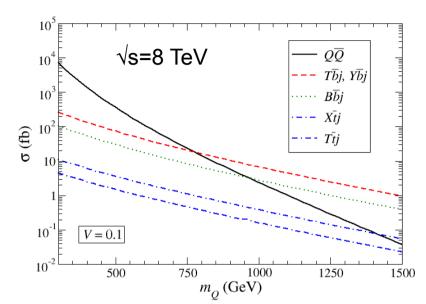
Composite Higgs Paradigm

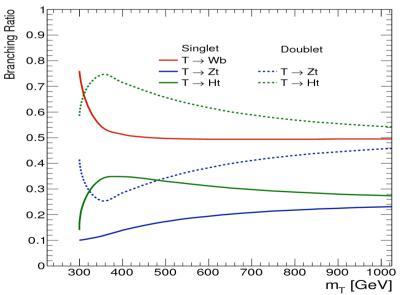
- Models where the Higgs boson is a composite state give a natural solution to the hierarchy problem.
- The Higgs boson can be light if it is a PNGB emerging from the breaking of a global symmetry (e.g. SO(5)→SO(4)).
- Partial compositeness:
 - SM fermions mix linearly with composite fermions.
 - Fermion mass generation needs separate composite partner for each SM fermion.

- Basic phenomenology:
 - Vector boson scattering not fully unitarized by the composite Higgs.
 Need new heavy gauge bosons. (Not the subject of this talk).
 - Deviations in Higgs couplings to fermions and vector bosons.
 (Not the subject of this talk).
 - New fermionic resonances → searches for top/bottom partners
 - (Partially) composite top quark can be strongly coupled to the composite sector
 - → anomalous four-top-quark production

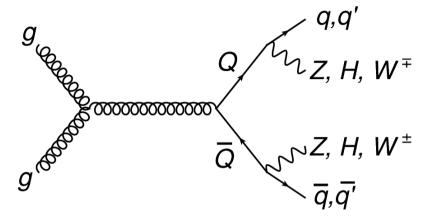
Outline

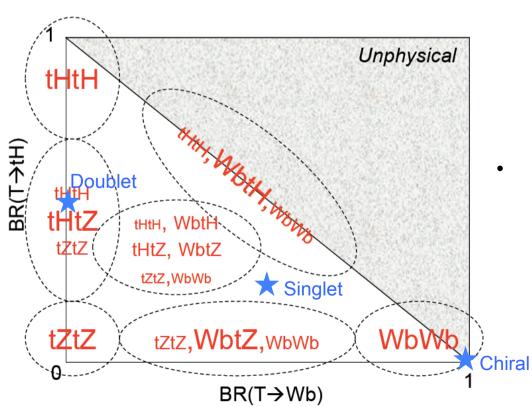
- Introduction
- Overview of Run 1 LHC results on
 - Vector-like quarks
 - Four-top-quark production
- Tentative plans and prospects for LHC Run 2
- Summary and outlook


Vector-Like Quarks: Production and Decay


- Production:
 - Pair production via QCD: "universal" mode (just depends on m_o).
 - → Focus of Run 1 searches
 - Single production via EW: potentially important at high m_Q (depends on coupling strength).
 - → Important to consider in Run 2
- Decay: Q→Wq, Zq, Hq all with sizable BR

JHEP 11, 030 (2009)


(triplets not included)


	Label	Charge	Decay mode
T singlet	T _s	+2/3	T→W⁺b, Zt, Ht
B singlet	B_S	-1/3	B→W⁺t, Zb, Hb
(T,B) doublet	TB _d	(+2/3, -1/3)	T→Zt, Ht B→W·t
(X,T) doublet	XT _d	(+5/3, +2/3)	X→W ⁺ t T→Zt, Ht
(B,Y) doublet	BY _d	(-1/3, -4/3)	B→Zb, Hb Y→W ⁻ b

Strategies

- Very rich phenomenology, depending on the heavy quark mass and quantum numbers.
- Goal is to probe full BR plane in as model independent possible way.
 - → Searches specialized on particular heavy quark decay modes, but also able to probe part of the plane.
 - → Multiple searches required, ideally overlapping in the plane.
- Searches typically have considered one heavy quark at a time, assuming other resonances do not contribute to the signature. Single production typically neglected.
 - → Something to improve upon for Run 2.

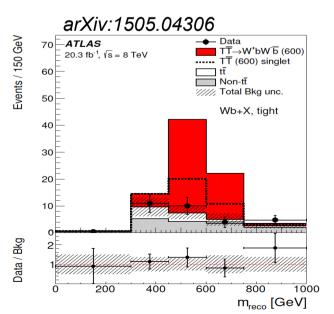
Signatures

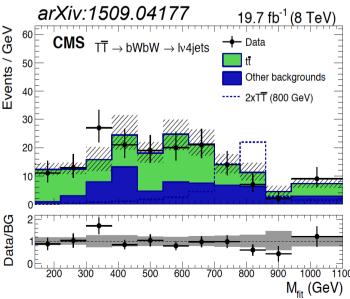
• There are many signatures that could be exploited, and which are ultimately needed both to enhance discovery potential and model discrimination. Just looking at pair-production:

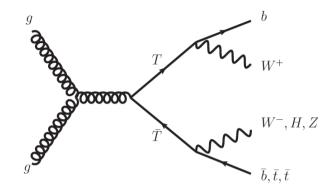
SU(2) singlet

SU(2) doublet

		T_{S}	$\mathbf{B_{S}}$	TB _d	XT_d	$\mathbf{BY_d}$
	41 (2Z)	ΤŢ	$B\overline{B}$	TT̄,BB̄	$T\overline{T}$	$B\overline{B}$
7	41 (1Z)	$T\overline{T}$	$B\overline{B}$	$T\overline{T}$, $B\overline{B}$	$T\overline{T}$	$B\overline{B}$
4 leptons	41 (0Z)	$T\overline{T}$	$B\overline{B}$	TT̄,BB̄	$T\overline{T},X\overline{X}$	$B\overline{B}$
	31 (1Z)	$T\overline{T}$	$B\overline{B}$	$T\overline{T}$, $B\overline{B}$	$T\overline{T}$	
3 leptons	31 (0Z)	$T\overline{T}$	$B\overline{B}$	TT̄,BB̄	$T\overline{T},X\overline{X}$	
	l+l-(1Z)	$T\overline{T}$	$B\overline{B}$	T₹,B₽	$T\overline{T}$	$B\overline{B}$
OS dileptons	l+l- (0Z)	$T\overline{T}$	$B\overline{B}$	TT̄,BB̄	$T\overline{T},X\overline{X}$	$B\overline{B}, Y\overline{Y}$
SS dileptons ->-	1±1±		$B\overline{B}$	$B\overline{B}$	$X\overline{X}$	
lepton+jets	$l^{\pm}(4j)$	$T\overline{T}$		$T\overline{T}$	$T\overline{T}$	$Y\overline{Y}$
	l± (≥6j)	$T\overline{T}$	$B\overline{B}$	TT̄,BB̄	$T\overline{T},X\overline{X}$	


And not even including all-hadronic final state and Higgs tagging!


Of course, some of them are more challenging and/or powerful than others...

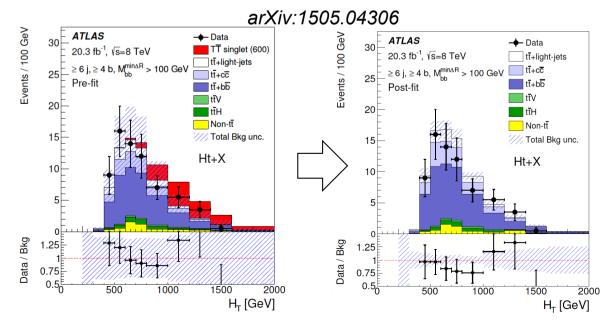

Run 1 Results

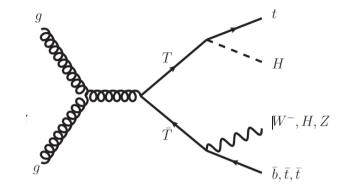
Vector-Like Top: 1-lepton Searches

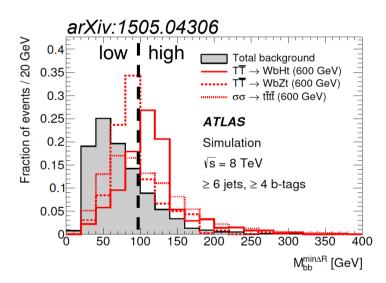
- Searches targeting high BR($T_{2/3} \rightarrow W^+b$), but also sensitive to other decay modes.
- Most sensitive searches exploit lepton+jets final state.
 Also searches on all-hadronic mode but lower sensitivity.
- Basic strategy:
 - Presel: 1 lepton, high E_T^{miss}, ≥4 jets/≥1 b-tags.
 - Reconstruct boosted hadronic W boson.
 - Tight cuts: high H_T (*), additional cuts to exploit boosted topology for W bosons.
 - Uses reconstruct heavy quark mass.
 - All BRs tested. Best exclusion for BR(T→Wb)=1.

(*)
$$H_T = \sum p_T^{\text{jets}} + p_T^{\text{lep}} + E_T^{\text{miss}}$$

95% CL obs (exp) limits [100% WbWb]:


ATLAS: m_T>**770** (795) GeV


CMS: m_T>**912** (851) GeV


Limits also apply to $Y_{-4/3}$, since BR($Y_{-4/3} \rightarrow W^-b$)=1.

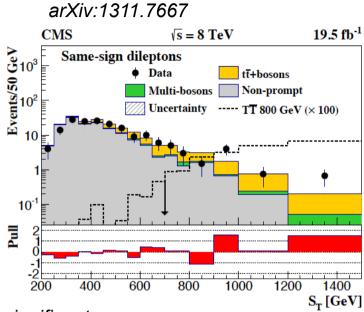
Vector-Like Top: 1-lepton Searches

- Search targeting high BR(T_{2/3}→Ht), but designed as broad-band search sensitive to multiple decay modes: TT→HtHt, HtWb, HtZt, ZtZt, ZtWb
- Basic strategy:
 - Presel: 1 lepton, high E_T^{miss}, ≥5 jets/≥2 b-tags.
 - Analyze H_T spectrum across 8 channels:
 (5 jets, ≥6 jets) x (2 b-tags, 3 b-tags, ≥4 b-tags)
 ≥6 jets/≥3 b-tags channels split in low/high M_{bb}
 - Signal-depleted channels used to constrain in-situ bkg uncert. through likelihood fit to data.
- All BRs tested. Best exclusion for BR(T→Ht)=1.

95% CL obs (exp) limits:

Singlet: m_T>**765** (720) GeV

Doublet: m_T>**855** (820) GeV

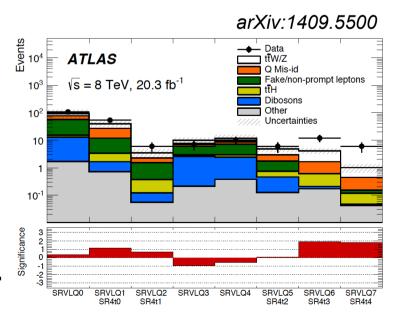

BR(T→Ht)=1: m_T>**950** (885) GeV

Vector-Like Top: Multilepton Searches

- Inclusive multilepton searches. Consider multiple search channels that are eventually combined.
- CMS search:

	OS1	OS2	SS	Multileptons
H _T (GeV)	> 300	> 500	> 500	> 500
S_{T} (GeV)	> 900	> 1000	> 700	> 700
Number of jets	2 or 3	\geq 5	\geq 3	\geq 3
b tags	≥ 1	\geq 2	≥ 1	≥ 1
$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	> 30	> 30	> 30	> 30
$M_{\mathrm{b}\ell}$ (GeV)	> 170	_	_	_
$M_{\ell\ell}$ (GeV)	> 20	> 20	> 20	> 20
Z boson veto	yes	no	no	no

	OS1	OS2	SS	Multileptons
Total background	17.4 ± 3.7	84 ± 12	16.5 ± 4.8	3.7 ± 1.3
Data	20	86	18	2

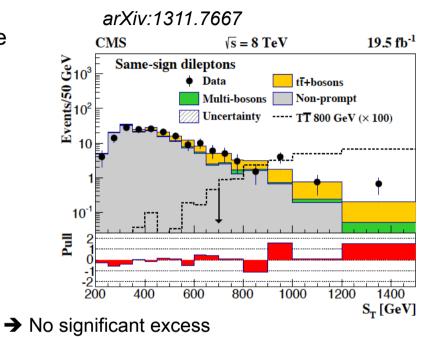


→ No significant excess

ATLAS search:

$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu$	$u^{\pm}\mu^{\pm} + ee$	$e + ee\mu + e\mu\mu + \mu\mu\mu, N_{\rm J}$	$j \geq 2$
	$N_b = 1$		SRVLQ0
$400 < H_{\rm T} < 700 {\rm GeV}$	$N_b = 2$	$E_{\rm T}^{\rm miss} > 40~{ m GeV}$	SRVLQ1
	$N_b \ge 3$		SRVLQ2
	$N_b = 1$	$40 < E_{\rm T}^{\rm miss} < 100 { m GeV}$	SRVLQ3
		$E_{\mathrm{T}}^{\mathrm{miss}} \geq 100 \;\; \mathrm{GeV}$	SRVLQ4
$H_{\rm T} \geq 700~{ m GeV}$	M o	$40 < E_{\rm T}^{\rm miss} < 100 { m GeV}$	SRVLQ5
	$N_b = 2$	$E_{\rm T}^{\rm miss} \ge 100~{ m GeV}$	SRVLQ6
	$N_b \ge 3$	$E_{\mathrm{T}}^{\mathrm{miss}} > 40 \; \mathrm{GeV}$	SRVLQ7

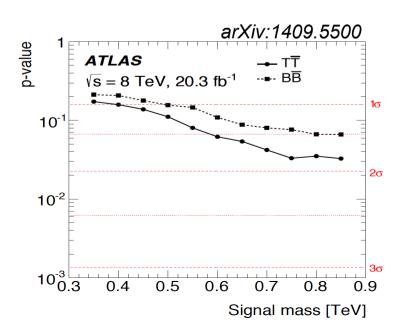
Apparent excess in VLQ6 and VLQ7 SRs ←


Vector-Like Top: Multilepton Searches

• Inclusive multilepton searches. Consider multiple search channels that are eventually combined.

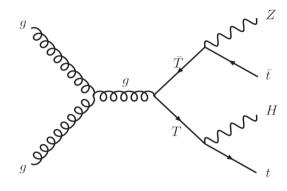
CMS search:

	OS1	OS2	SS	Multileptons
H _T (GeV)	> 300	> 500	> 500	> 500
$S_{\rm T}$ (GeV)	> 900	> 1000	> 700	> 700
Number of jets	2 or 3	\geq 5	\geq 3	\geq 3
b tags	≥ 1	\geq 2	≥ 1	≥ 1
$E_{\rm T}^{\rm miss}$ (GeV)	> 30	> 30	> 30	> 30
$M_{\mathrm{b}\ell}$ (GeV)	> 170	_	_	_
$M_{\ell\ell}$ (GeV)	> 20	> 20	> 20	> 20
Z boson veto	yes	no	no	no

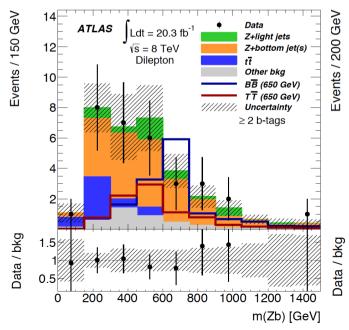

	OS1	OS2	SS	Multileptons
Total background	17.4 ± 3.7	84 ± 12	16.5 ± 4.8	3.7 ± 1.3
Data	20	86	18	2

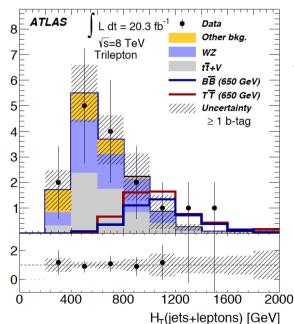
ATLAS search:

	SRVLQ5/SR4t2	SRVLQ6/SR4t3	SRVLQ7/SR4t4
$t \bar{t} W/Z$	$1.87 \pm 0.09 \pm 0.80$	$2.46 \pm 0.11 \pm 1.06$	$0.57\pm0.05\pm0.25$
t ar t H	$0.31\pm0.04\pm0.05$	$0.44\pm0.04\pm0.06$	$0.08\pm0.02\pm0.02$
Dibosons	$0.33 \pm 0.14 \pm 0.10$	$0.04\pm0.12\pm0.03$	$0.00\pm0.12\pm0.00$
Fake/Non-prompt	$1.03\pm0.97\pm0.60$	$0.00\pm1.02\pm0.28$	$0.04\pm0.83\pm0.24$
Q mis- Id	$1.17\pm0.16\pm0.38$	$1.09\pm0.14\pm0.34$	$0.30\pm0.09\pm0.10$
Other bkg.	$0.16\pm0.08\pm0.02$	$0.23\pm0.08\pm0.05$	$0.14\pm0.08\pm0.08$
Total bkg.	$4.9 \pm 1.0 \pm 1.0$	$4.3 \pm 1.1 \pm 1.1$	$1.1 \pm 0.9 \pm 0.4$
Data	6	12	6
<i>p</i> -value	0.46	0.029	0.036


 1.9σ 1.8σ

Vector-Like Top: Multilepton Searches


- Dedicated search probing TT→Zt+X (*).
- Multiple search channels that are eventually combined.


Event selection				
	Z boson candida	te preselection		
	$\geq 2 \text{ cent}$	ral jets		
	$p_{\mathrm{T}}(Z) \geq 1$	$150 \mathrm{GeV}$		
Dilepton channel Trilepton chan			n channel	
= 2 le	eptons	≥ 3 leptons		
$\geq 2 b$ -tag	gged jets	≥ 1 b-tagged jet		
Pair production	Single production	Pair production	Single production	
$H_{\rm T}({\rm jets}) \ge 600 \; {\rm GeV}$	≥ 1 fwd. jet	$ \geq 1$ fwd. jet		
Final discriminant				
m(.	Zb)	$H_{ m T}({ m jets}$	+ leptons)	

(*) Not orthogonal to inclusive multilepton search.

arXiv:1409.5500

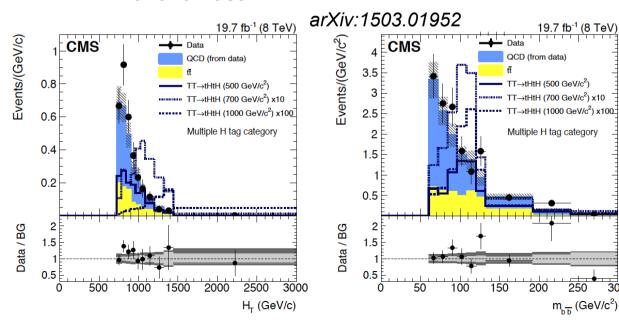
95% CL obs (exp) limits:

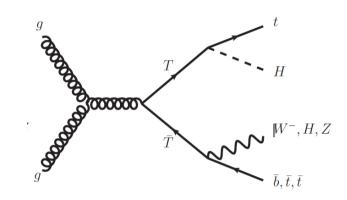
Zt+X search:

Singlet: m_T>**655** (625) GeV

Doublet: m_T>**735** (720) GeV

BR($T \rightarrow Zt$)=1: $m_T > 810$ (810) GeV

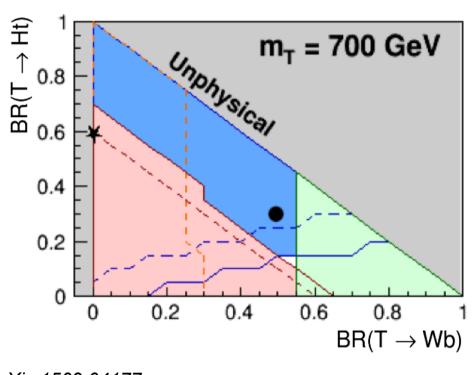

Inclusive multilepton search Singlet: m_T>**590** (660) GeV


Vector-Like Top: All-Hadronic Searches

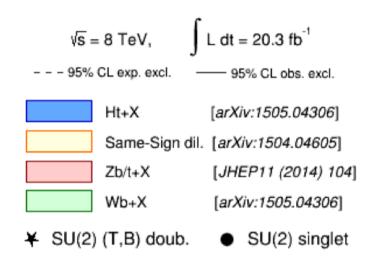
 CMS has performed several VLQ searches in the allhadronic final state using jet substructure techniques.

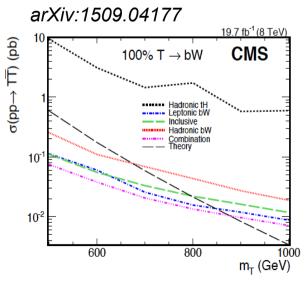
TT→Ht+X, H→bb

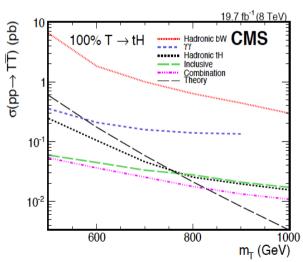
- CA R=1.5 jets used as input to HepTopTagger and Higgs tagging (based on subjet b-tagging)
- ≥1 HTT candidate (p_T>200 GeV).
- ≥1 Higgs candidate (p_T>150 GeV), m_i>60 GeV
- Categorize events depending on number of Higgs candidates (=1 and ≥2).
- Uses likelihood discriminant based on H_T and Higgs invariant mass.

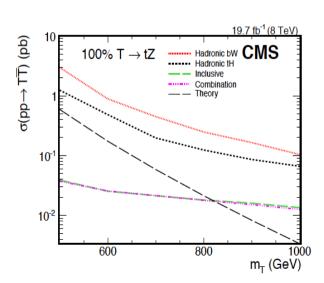

95% CL obs (exp) limits [100% HtHt]:

m_B>**900** (810) GeV

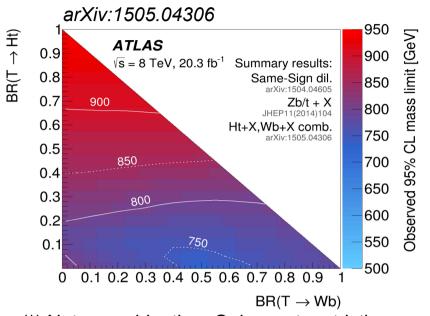

Competitive with inclusive CMS search, which combines 1-lepton and multilepton searches

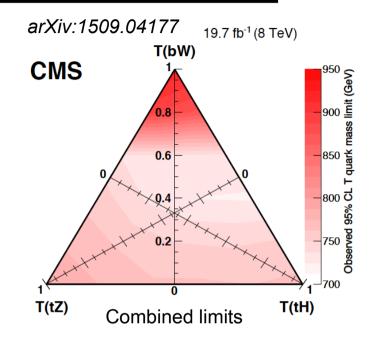

arXiv:1311.7667


Vector-Like Top: Complementarity



ATLAS



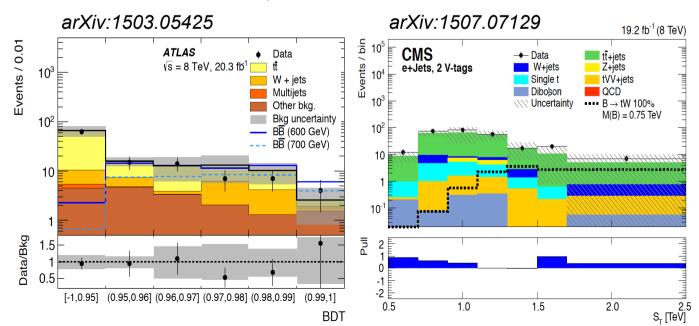


Vector-Like Top Summary

CMS

(*) Not a combination. Only most restrictive individual bounds shown.

100% Ht


Vector-like top masses below ~720 GeV excluded for any possible combination of BRs.

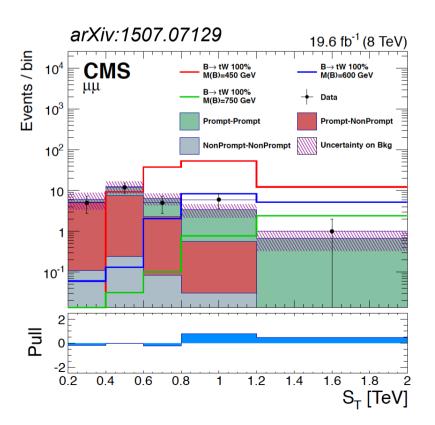
ATLAS (*) **Vector-like T** 95% CL Limit on m_T (GeV) 95% CL Limit on m_T (GeV) **BR Hypothesis** obs (exp) obs (exp) 100% Wb (chiral, Y) 770 (795) 920 (890) 100% Zt **810** (810) 790 (830)

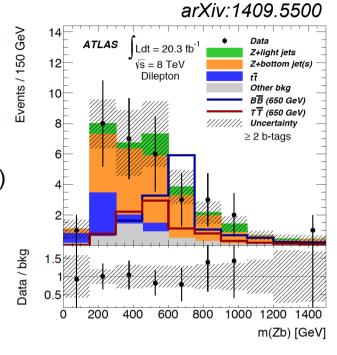
950 (885) **770** (840) 740 (800) T singlet 800 (755) 855 (820) 760 (820) T in (T, B) doublet

Vector-Like Bottom: 1-lepton Searches

- Searches targeting high BR(B_{-1/3}→W⁻t), but also sensitive to other decay modes.
- Basic strategy:
- ATLAS -
- Preselection: 1 lepton, ≥6 jets w/ p_T>25 GeV ≥1 b-tags, H_T>500 GeV
- ≥1 hadronic W/Z candidate
- Dijet pair with ΔR_{jj} <1.0, $p_{T,jj}$ >200 GeV, 60< m_{jj} <110 GeV
- Uses BDT as final discriminant variable.
- CMS -
- Preselection: 1 lepton, ≥4 jets w/ p_T>200,60,40,30 GeV, ≥1 b-tags
- Categorize events in 0, 1, ≥2 tagged W/Z candidates
- CA R=0.8 jets, p_T>200 GeV, pruned/mass drop, 50<m_i<150 GeV
- Uses S_T as final discriminant variable.

95% CL obs (exp) limits


[100% WtWt]:


ATLAS: m_B>**810** (760) GeV

CMS: $m_B > (\sim 800) \text{ GeV}$

Vector-Like Bottom: Multilepton Searches

- ATLAS: same multilepton searches used for vector-like top interpreted in the context of vector-like bottom (sometimes even better optimized for the latter, e.g. Zb+X).
- CMS: several analysis channels
 - SS 2I, ≥4 jets, E_T^{miss}>30 GeV; uses S_T
 - OS 2I, Z candidate, ≥1 b-jet, p_{T,Z}>150 GeV; uses M(Zb)
 - Multileptons: ≥3 leptons (incl τ), several categories depending on number of leptons and flavor; uses S_T

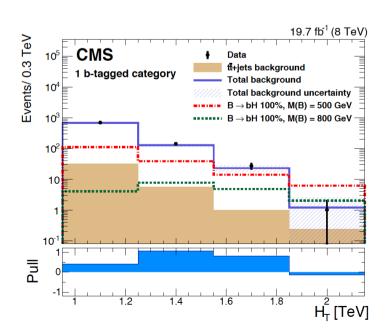
95% CL obs (exp) limits:

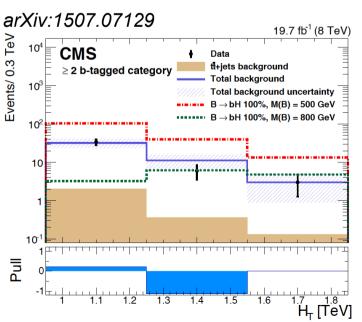
ATLAS:

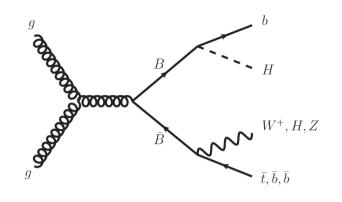
BR(B \rightarrow Wt)=1: m_B>**730** (790) GeV [Multilepton]

 $BR(B \rightarrow Zb) = 1: m_B > 790 (800) GeV [Zb + X]$

CMS multilepton combination:

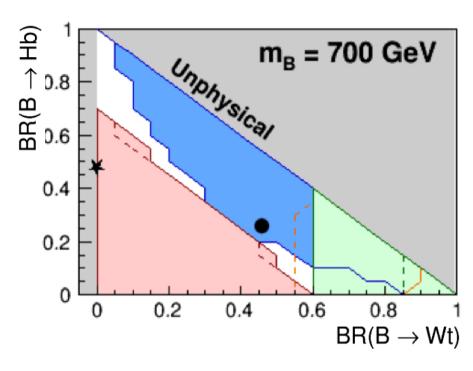

BR(B \rightarrow Wt)=1: m_B>(~800) GeV

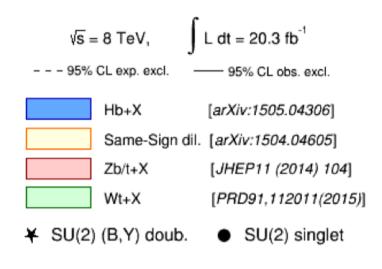

 $BR(B\to Zb)=1: m_B>(740) \text{ GeV}$

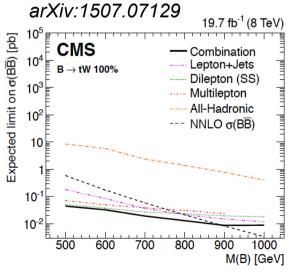

Vector-Like Bottom: All-Hadronic Searches

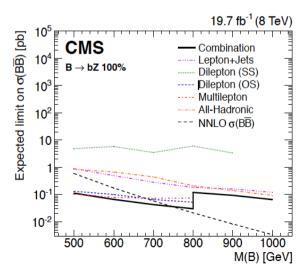
BB→Hb+X, H→bb

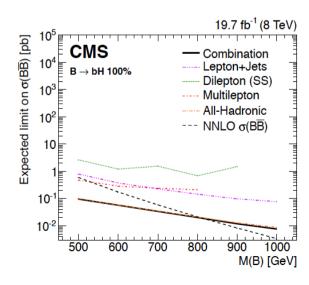
- Search targeting high BR(B→Hb), with H→bb.
- Strategy:
 - ≥1 Higgs-tagged jet
 - CA R=0.8, p_T>300 GeV, pruned, 90<m_i<140 GeV
 - 2-prong-like $(\tau_2/\tau_1<0.5)$, 2 b-tagged subjets
 - $H_T>950 \text{ GeV}$ (from AKT5 jets with $p_T>50 \text{ GeV}$)
 - ≥1 additional b-tagged AKT5 jet
 - Events categorized into =1 and ≥2 additional b-tagged jets
 - Uses H_T as final discriminant



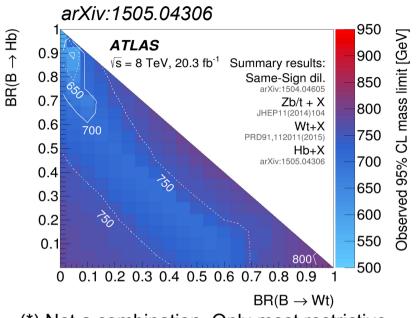

95% CL obs (exp) limits [100% HbHb]:

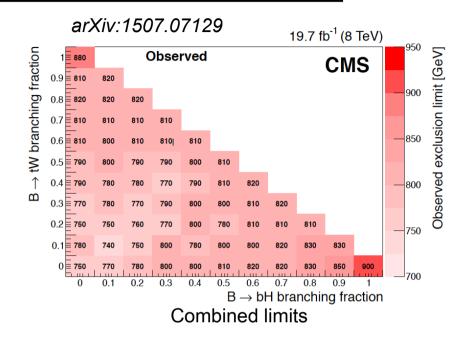

m_B>900 (810) GeV


Vector-Like Bottom: Complementarity



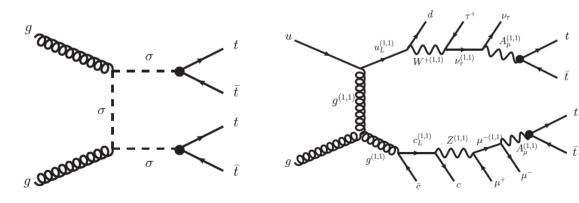
ATLAS

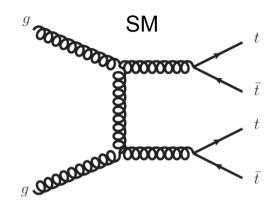


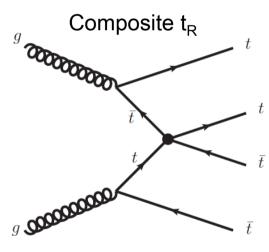


Vector-Like Bottom Summary

(*) Not a combination. Only most restrictive individual bounds shown.


Vector-like bottom masses below ~740 GeV excluded for any possible combination of BRs.


ATLAS (*) CMS


Vector-like B BR Hypothesis	95% CL Limit on m _B (GeV) obs (exp)	95% CL Limit on m _B (GeV) obs (exp)
100% Wt (chiral, X)	730 (790)	880 (890)
100% Zb	790 (800)	750 (740)
100% Hb	700 (625)	900 (810)
B singlet	685 (670)	780 (760)
B in (B, Y) doublet	755 (755)	810 (800)

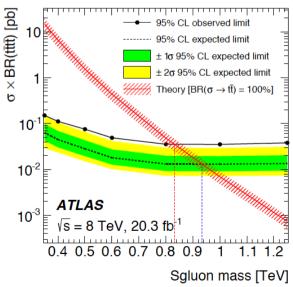
Four-Top-Quark Production

- Production cross section for 4-top within the SM very small (~1 fb).
- (Partially) composite top quark strongly coupled to composite sector. Most economical solution is to have composite t_R:
 - → anomalous four-top-quark production that can be orders of magnitude larger than the SM prediction.
- Other BSM scenarios that can lead to enhanced 4-top production:
 - Sgluon pair production
 - Universal extra-dimensions
 - etc

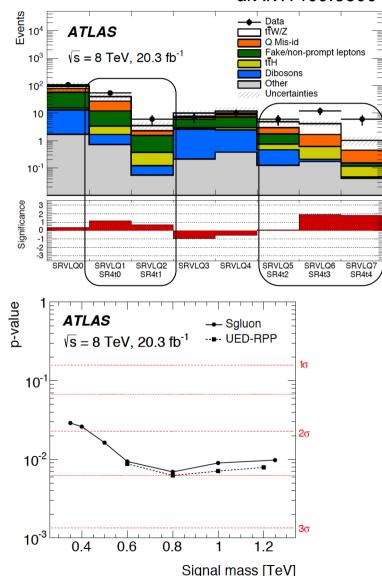
$$\mathcal{L}_{4t} = \frac{|C_{4t}|}{\Lambda^2} (\bar{t}_{R} \gamma^{\mu} t_{R}) (\bar{t}_{R} \gamma_{\mu} t_{R})$$

Four-Top-Quark Production: Searches

 VLQ searches for SS dileptons/trileptons and TT→Ht+X reinterpreted in the context of SM and BSM 4-top production.


ATLAS SS dilepton/trileptons:

- Most search channels in common with VLQ search → excess
- 95% CL obs (exp) limits:


SM 4-top: σ_{SM-4t} <**70** (27) fb

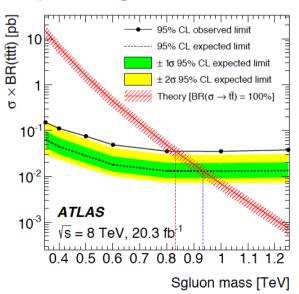
EFT 4-top: σ_{EFT-4t} <61 (22) fb

Sgluon: m_o>**0.94** (0.83) TeV

 Data excess actually more compatible with 4-top than with VLQ hypothesis.

Four-Top-Quark Production: Searches

 VLQ searches for SS dileptons/trileptons and TT→Ht+X reinterpreted in the context of SM and BSM 4-top production.


ATLAS SS dilepton/trileptons:

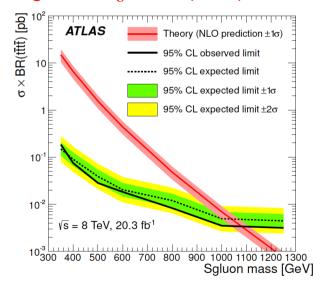
- Most search channels in common with VLQ search → excess
- 95% CL obs (exp) limits:

SM 4-top: σ_{SM-4t} <**70** (27) fb

EFT 4-top: σ_{EFT-4t} <61 (22) fb

Sgluon: m_o>**0.94** (0.83) TeV

 Data excess actually more compatible with 4-top than with VLQ hypothesis.


ATLAS TT→Ht+X (lepton+jets):

- Comparable or better sensitivity to same BSM scenarios.
- 95% CL obs (exp) limits:

SM 4-top: σ_{SM-4t} <**23** (32) fb

EFT 4-top: σ_{EFT-4t} <12 (16) fb

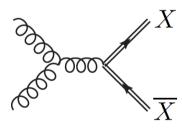
Sgluon: m_o>**1.06** (1.02) GeV

Rules out 4-top interpretation for multilepton search.

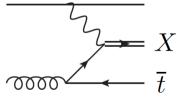
Onto Run 2!

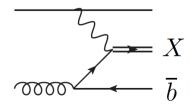
 σ (pp→ $T\overline{T}$) (pb)

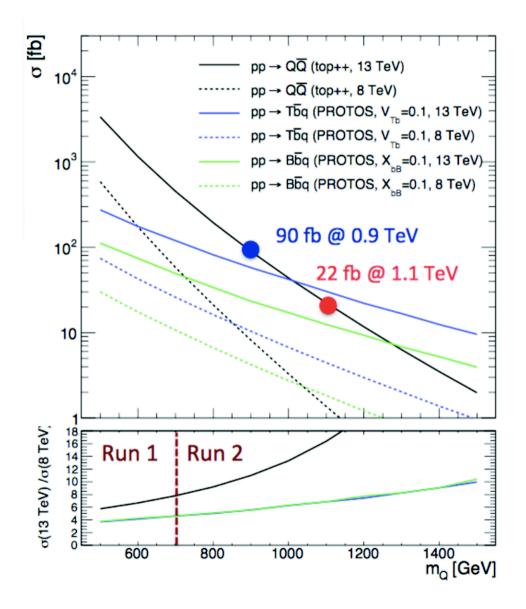
Capitalize on Run 1 experience

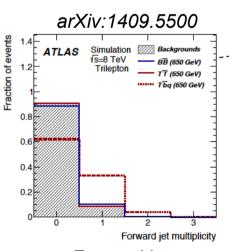

- Most sensitive channels
- Complementary channels
- Missing channels
- Most powerful experimental strategies
- Improved background estimation techniques
- Reducing the impact of systematic uncertainties

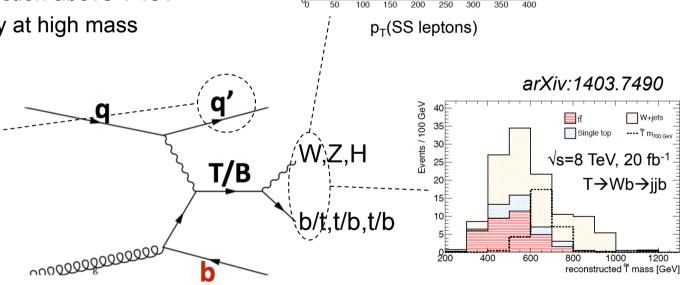
• ...




- Capitalize on Run 1 experience
- Fully exploit increased CM energy
 - Large increase in production cross section at high masses
 - Continue to exploit pair production above 1 TeV
 - Add single production above 1 TeV
 - Optimize strategy at high mass


QCD **pair prod**. model indep., relevant at low mass


single prod. with **t** model dep. coupling pdf-favoured at high mass

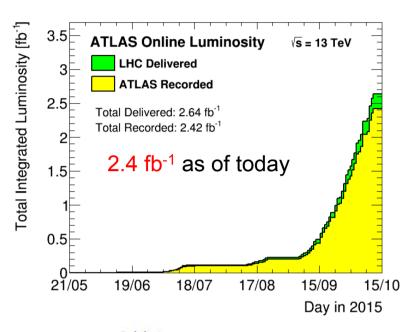

single prod. with b favoured by small b mass dominant when allowed

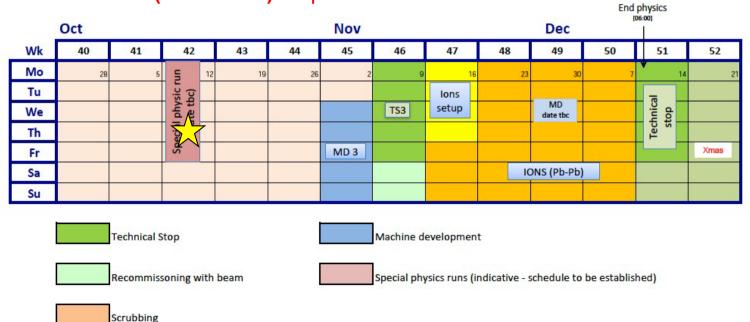
- Capitalize on Run 1 experience
- Fully exploit increased CM energy
 - Large increase in production cross section at high masses
 - Continue to exploit pair production above 1 TeV
 - Add single production above 1 TeV
 - Optimize strategy at high mass

Forward jet: $p_T>35$ GeV, 2.5< $|\eta|<4.5$

0.04 normalized rate

0.01


arXiv:1409.0100

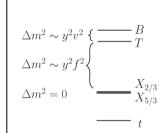

 $X \rightarrow W^+t \rightarrow I^+I^+\nu b$

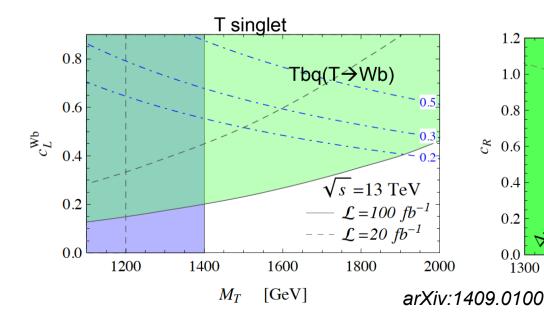
sp, left

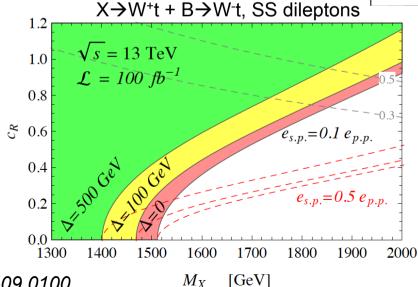
- Forward jet tagging critical.
- Many channels, with and without leptons.
- Boosted techniques for all-hadronic modes crucial.
- Must ensure proper helicity propagation in decay.

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
 - 2015: expect 4 fb⁻¹
 - For the most part Run 1-style analyses with early data
 - High-priority to checking Run 1 excesses
 - Exceed Run 1 sensitivity with ~1-2 fb⁻¹
 - Optimize searches for discovery!
 - Full Run 2 (2015-2018): expect ~100-120 fb⁻¹

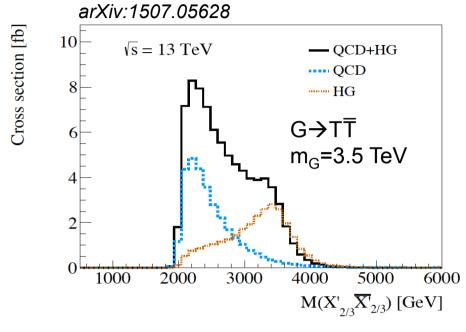
arXiv:1211.5663

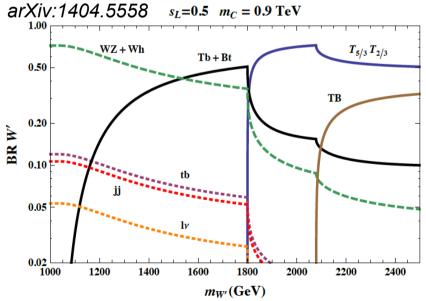

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
 - Use of simplified models
 - Combination of pair and single production
 - Take into account effect of extra resonances in some cases
 - ...

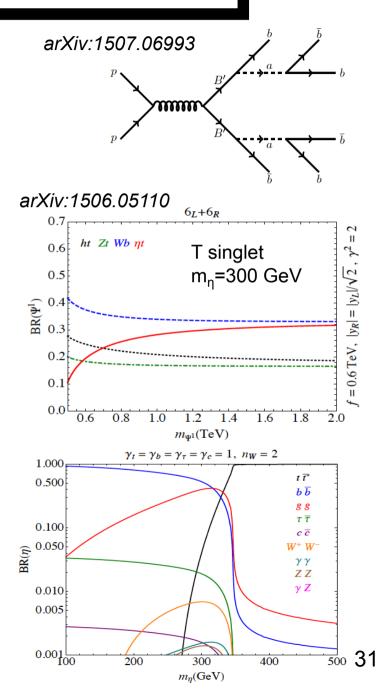

$$\mathcal{L} = \frac{g_w}{2} \left[c_R^{XV} \, \overline{X}_R \not V t_R + c_L^{XV} \, \overline{X}_L \not V t_L \right] + \frac{g_w}{2} \left[c_L^{XV} \, \overline{X}_L \not V b_L + c_R^{XV} \, \overline{X}_R \not V b_R \right]$$


$$+ \left[c_R^{Xh} \, h \, \overline{X}_L t_R + c_L^{Xh} \, h \, \overline{X}_R t_L \right] + \left[c_L^{Xh} \, h \, \overline{X}_R b_L + c_R^{Xh} \, h \, \overline{X}_L b_R \right] + \text{h.c.} ,$$

		couplings					
partner (MG name)	Q	W^{\pm}	Z	h	$W^{\pm}W^{\pm}$		
$T_{2/3} (T23)$	2/3	c_L^{TW}, c_R^{TW}	c_L^{TZ}, c_R^{TZ}	c_L^{Th}, c_R^{Th}	_		
$B_{1/3} \text{ (B13)}$	-1/3	c_L^{BW}, c_R^{TW}	c_L^{BZ}, c_R^{BZ}	c_L^{Bh}, c_R^{Bh}	_		
$X_{5/3} (X53)$	5/3	c_L^{XW}, c_R^{XW}	_	_			
$Y_{4/3} (Y43)$	-4/3	c_L^{YW}, c_R^{YW}	_	_			
$V_{8/3} \text{ (V83)}$	8/3	_	_	_	$c_L^{VW}, \ c_R^{VW}$		


Typical spectrum in minimal coset SO(5)/SO(4)




- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard production
 - Heavy gluon:
 G→QQ̄, m_G≥2m_Q
 G→Qq̄, m_Q+m_q<m_G<2m_Q
 - Heavy W'/Z':
 W'→Tb, Bt, XT, depending on custodian mass and mixing
 - ...

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard production
 - Non-standard decays
 - BR(Q \rightarrow Wq)+BR(Q \rightarrow Zq)+BR(Q \rightarrow Hq)<1
 - Examples:
 - Q→q+inv
 - Q→q+η, η CP-odd scalar
 - •
 - If exotic BRs dominant, signal may be picked by existing searches (e.g. direct sbottom searches for BB→bb+E_T^{miss}).
 - For comparable BRs, it becomes difficult as signal split into challenging channels such as TT→W+btgg.

But also promising channels: TT→W+bt̄tt̄.

Summary and Outlook

- Broad program of direct searches for top and Higgs compositeness at LHC Run 1.
 - No evidence for composite resonances found.
 - VLQs with mass below ~800 GeV excluded in typical MCHM scenarios.
 - Serves as a stepping stone for more incisive tests during Run 2.
- Great potential for discovery in Run 2:
 - First results exceeding Run 1 sensitivity by Winter 2016.
 - With 100 fb⁻¹ should be able to probe VLQ masses up to 1.5 TeV via pair production and even beyond depending of the electroweak couplings.
 - Should also target bosonic resonances!
 - We basically have a plan...

Exciting times ahead!

To do

Capitalize on Run 1 experience

Fully exploit increased CM energy

Plan according to integrated luminosity

Improved interpretation of searches

Make sure we don't miss a signal!