

SUSY and the Higgs

Giovanni Villadoro

in collaboration with: Javier Pardo Vega JHEP 1507 (2015) 159 – [1504.05200] **SusyHD**

The Quest for SUSY (beyond the hierarchy problems)

$$\begin{array}{ccc} \text{Poincaré} & \rightarrow & \text{SUSY} \\ \mathcal{P} & & \mathcal{S} \end{array} & \begin{cases} [\mathcal{P}, \mathcal{P}] = \mathcal{P} \\ [\mathcal{P}, \mathcal{S}] = \mathcal{S} \\ \{\mathcal{S}, \mathcal{S}\} = \mathcal{P} \end{cases} \end{array}$$

Poincaré
$$\rightarrow$$
SUSY $\left\{ \begin{array}{l} [\mathcal{P},\mathcal{P}] = \mathcal{P} \\ [\mathcal{P},\mathcal{S}] = \mathcal{S} \\ \{\mathcal{S},\mathcal{S}\} = \mathcal{P} \end{array} \right.$

Remarkable features in QFT: CFT, Dualities, Finiteness, L.P., etc...

Poincaré
$$\mathcal{P}$$
 \rightarrow SUSY
 \mathcal{S} $\left\{ \begin{array}{l} [\mathcal{P},\mathcal{P}] = \mathcal{P} \\ [\mathcal{P},\mathcal{S}] = \mathcal{S} \\ \{\mathcal{S},\mathcal{S}\} = \mathcal{P} \end{array} \right.$

Remarkable features in QFT: CFT, Dualities, Finiteness, L.P., etc...

...and in QG: Supergravity, String Theory

 $\mathcal{P}|0\rangle = 0 \qquad \mathcal{S}|0\rangle \neq 0$

SUSY breaking scale?

 $\mathcal{P}|0\rangle = 0 \qquad \mathcal{S}|0\rangle \neq 0$

SUSY breaking scale?

$$\delta m_h^2 \sim m_{\rm SUSY}^2$$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

 $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	¹] Mass limit	Reference
Inclusive Searches	MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{x}_{1}^{0}$ (compressed) $\tilde{g}\tilde{x}, \tilde{g} \rightarrow q\tilde{x}_{1}^{0}$ (compressed) $\tilde{g}\tilde{x}, \tilde{g} \rightarrow q\tilde{q}\tilde{x}_{1}^{0}$ $\tilde{g}\tilde{x}, \tilde{g} \rightarrow q\tilde{q}\tilde{x}_{1}^{0} \rightarrow qqW^{\pm}\tilde{x}_{1}^{0}$ $\tilde{g}\tilde{x}, \tilde{g} \rightarrow q\tilde{q}(U/t/v/v)\tilde{x}_{1}^{0}$ GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) Gravitino LSP	$\begin{matrix} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 1 - 2 \tau + 0 - 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
$\frac{3^{rd}}{\tilde{g}}$ gen.	$\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{\ell} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ž 1.25 TeV m(x_1^0)<400 GeV ž 1.1 TeV m(x_1^0)<430 GeV ž 1.34 TeV m(x_1^0)<400 GeV ž 1.34 TeV m(x_1^0)<400 GeV ž 1.3 TeV m(x_1^0)<400 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{c} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow c \tilde{k}_1^+ \\ \tilde{i}_1 \tilde{c}_1, \tilde{i}_1 \rightarrow b \tilde{k}_1^+ \\ \tilde{i}_1 \tilde{c}_1, \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{c}_1, \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{c}_1, \tilde{i}_1 \rightarrow c \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{c}_1, \tilde{i}_1 \rightarrow c \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{c}_1 c c c c \delta \\ \tilde{i}_2 \tilde{c}_2, \tilde{i}_2 \rightarrow \tilde{i}_1 + Z \end{array} $	$\begin{array}{c} 0 \\ 2 e, \mu (\mathrm{SS}) \\ 1-2 e, \mu \\ 2 e, \mu \\ 0-1 e, \mu \\ 0 \\ 1 \\ 0 \\ 3 \\ e, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 1-2 b nono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes tag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \bar{\ell}_{L,R} \bar{\ell}_{L,R}, \bar{\ell} \rightarrow \ell \bar{\chi}_{1}^{0} \\ \bar{\chi}_{1}^{+} \bar{\chi}_{1}^{-}, \bar{\chi}_{1}^{+} \rightarrow \bar{\ell} \nu (\ell \bar{\nu}) \\ \bar{\chi}_{1}^{+} \bar{\chi}_{1}^{-}, \bar{\chi}_{1}^{+} \rightarrow \bar{\tau} \nu (\tau \bar{\nu}) \\ \bar{\chi}_{1}^{+} \bar{\chi}_{2}^{0} \rightarrow \bar{\ell}_{L} \nu \bar{\ell}_{L} (\ell \bar{\nu}), (\bar{\ell} \bar{\ell}_{L} \ell (\bar{\nu} \nu) \\ \bar{\chi}_{1}^{+} \bar{\chi}_{2}^{0} \rightarrow W \bar{\chi}_{0}^{0} Z \bar{\chi}_{1}^{0} \\ \bar{\chi}_{1}^{+} \bar{\chi}_{2}^{0} \rightarrow W \bar{\chi}_{1}^{0} \bar{\chi}_{1}^{0} \\ \bar{\chi}_{2}^{0} \bar{\chi}_{2}^{0} \bar{\chi}_{3}^{0} Z_{3} \\ \bar{\chi}_{2}^{0} \bar{\chi}_{3}^{0} \bar{\chi}_{3}^{0} - \bar{\chi}_{2}^{0} \rightarrow \bar{\ell}_{R} \ell \end{array} $	$ \begin{array}{c} 2 e, \mu \\ 2 e, \mu \\ 2 \tau \\ 3 e, \mu \\ 2 - 3 e, \mu \\ \gamma \gamma \\ e, \mu, \gamma \\ 4 e, \mu \end{array} $	0 0 - 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	$ \begin{array}{l} \mbox{Direct $\tilde{x}_1^+\tilde{\chi}_1^-$ prod., long-lived \tilde{x}_1^+ Stable, stopped \tilde{g} R-hadron $Stable \tilde{g} R-hadron $GMSB, stable $\tilde{\tau}, $\tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, $GMSB, $\tilde{x}_1^0 \rightarrow \tilde{q}, $\log-lived \tilde{x}_1^0 $$$ $$$$ $$$$ $$$$ $$$$$$$$$$$ $$$$$$$	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow e e \tilde{v}_\mu, e \mu \tilde{v}_e \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v}_\tau \\ \tilde{x}_1^- \tilde{x}_1^- \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v}_\tau \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow b s \end{array} $	$\begin{array}{c} 2 e, \mu \\ 1 e, \mu + \tau \\ 2 e, \mu (\text{SS}) \\ 4 e, \mu \\ 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (\text{SS}) \end{array}$	- 0-3 <i>b</i> - 6-7 jets 0-3 <i>b</i>	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ $\sqrt{s} = 7 \text{ TeV}$	0 √s = 8 TeV	2 c $\sqrt{s} =$	Yes 8 TeV	20.3 1	č 490 GeV m(\$\car{C}_1)<200 GeV)^{-1} 1 ••••••••••••••••••••••••••••••••••••	1501.01325
	full data D	artial data	full	data		Mass scale lev	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

<u>The CC problem:</u>

$$\Lambda = -m_K^2 f_K^2 - \frac{1}{2}m_h^2 v^2 + \dots + M_{\rm NP}^4$$

The CC problem: $\Lambda = -m_K^2 f_K^2 - \frac{1}{2}m_h^2 v^2 + \dots +$

$$\Lambda = -m_K^2 f_K^2 - \frac{1}{2} m_h^2 v^2 + \dots + M_{\rm NP}^4$$
10⁻⁴⁷ GeV⁴ 10⁻³ GeV⁴ 10⁸ GeV⁴

The CC problem: $\Lambda = -m_K^2 f_K^2 - \frac{1}{2} m_h^2 v^2 + \dots + M_{NP}^4$ 10⁻⁴⁷ GeV⁴ 10⁻³ GeV⁴ 10⁸ GeV⁴

SUSY is the only known* solution

The CC problem: $\Lambda = -m_K^2 f_K^2 - \frac{1}{2} m_h^2 v^2 + \dots + M_{\rm NP}^4$ 10⁻⁴⁷ GeV⁴ 10⁻³ GeV⁴ 10⁸ GeV⁴

SUSY is the only known* solution

 $\Lambda \sim M_{\rm SUSY}^4$ $m_h^2 \sim M_{\rm SUSY}^2$

The CC problem: $\Lambda = -m_K^2 f_K^2 - \frac{1}{2} m_h^2 v^2 + \dots + M_{\rm NP}^4$ 10⁻⁴⁷ GeV⁴ 10⁻³ GeV⁴ 10⁸ GeV⁴

SUSY is the only known* solution

 $\Lambda \sim M_{\rm SUSY}^4 \quad \fbox{ stronger pressure for } \log M_{\rm SUSY}$ $m_h^2 \sim M_{\rm SUSY}^2$

Weaker hint:

Gauge Coupling Unification

SUSY breaking scale?

ATLAS + CMS $m_h^{exp} = 125.09 \pm 0.24 \text{ GeV}$

ATLAS + CMS $m_h^{exp} = 125.09 \pm 0.24 \text{ GeV}$

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + \frac{3}{\pi^2} \frac{m_t^4 \sin^4 \beta}{v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \tilde{X}_t^2 \left(1 - \frac{\tilde{X}_t^2}{12} \right) \right] + \dots$$

 $\textbf{ATLAS + CMS} \qquad m_h^{\rm exp} = 125.09 \pm 0.24 ~{\rm GeV}$

$$m_h^2 \simeq m_Z^2 \boxed{\cos^2 2\beta} + \frac{3}{\pi^2} \frac{m_t^4 \sin^4 \beta}{v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \tilde{X}_t^2 \left(1 - \frac{\tilde{X}_t^2}{12} \right) \right] + \dots$$

only *log*-dependence on new physics scale

ATLAS + CMS $m_h^{exp} = 125.09 \pm 0.24 \text{ GeV}$

$$m_h^2 \simeq m_Z^2 \underbrace{\cos^2 2\beta}_{\pi^2} + \frac{3 m_t^4 \sin^4 \beta}{\pi^2 v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \tilde{X}_t^2 \left(1 - \frac{\tilde{X}_t^2}{12} \right) \right] + \dots$$

only *log*-dependence on new physics scale ⇒ high precision to get reliable constraints

ATLAS + CMS $m_h^{\text{exp}} = 125.09 \pm 0.24 \text{ GeV}$

ATLAS + CMS $m_h^{\text{exp}} = 125.09 \pm 0.24 \text{ GeV}$

Exploiting the Hierarchy Problem:

the EFT technique

Small improvement w.r.t. to a longstanding effort

Pokorski, Rosiek, Dabelstein, Zhang, Espinosa, Quiros, Hempfling, Hoang, Heinemeyer, Hollik, Weiglein, Brignole, Slavich, Zwirner, Degrassi, Martin, Giudice, Strumia, Wagner ... many many others

apologies to the missing ones

Small improvement w.r.t. to a longstanding effort

Pokorski, Rosiek, Dabelstein, Zhang, Espinosa, Quiros, Hempfling, Hoang, Heinemeyer, Hollik, Weiglein, Brignole, Slavich, Zwirner, Degrassi, Martin, Giudice, Strumia, Wagner ... many many others

apologies to the missing ones

Our contribution: (mostly w.r.t. Bagnaschi et al. '14)

- Recomputation of $O(\alpha_s \alpha_t)$ corrections
- Computation of $O(\alpha_t^2)$ with scale dependence
- Inclusion bottom/tau corrections (w/ resummation of tan β enhanced corr.)
- Computation both in DRbar and OS schemes
- Study of the uncertainties and comparison with existing computations
- A "fast" Mathematica[®] package: SusyED

SusyED

www.ictp.it/~susyhd

A "natural" SUSY-like spectrum: $\tan\beta = 20$, $\mu = 300 \text{ GeV}$, $m_{\text{SUSY}} = 2 \text{ TeV}$ 20 Susy ID 10 m_t^2 (TeV) 5 3 2 1∟ -3 -2 -1 0 2 1 3 $A_t/m_{\tilde{t}}$

 $\partial A_t / \partial \mu > 0$

Estimate of the Uncertainties:

Estimate of the Uncertainties:

Where is the Simplest SUSY?

 $(m_h^{},\lambda)$ SM

 μ , $\Lambda = F/M$ fixed by m_z , m_h weak dependence on log(M)

Dine, Nir, Shirman Rattazzi, Sarid '96

spectrum mostly fixed by usual GM relations

gauginos
$$M_j = N \frac{\alpha_j}{4\pi} \Lambda$$
 scalars $m_i = 2\sqrt{N}C_{ij} \frac{\alpha_j}{4\pi} \Lambda$ higgsinos μ

Dine, Nir, Shirman Rattazzi, Sarid '96

spectrum mostly fixed by usual GM relations

gauginos
$$M_j = N \frac{\alpha_j}{4\pi} \Lambda$$
 scalars $m_i = 2\sqrt{N}C_{ij} \frac{\alpha_j}{4\pi} \Lambda$ higgsinos μ

Dine, Nir, Shirman Rattazzi, Sarid '96

spectrum mostly fixed by usual GM relations

gauginos
$$M_j = N \frac{\alpha_j}{4\pi} \Lambda$$
 scalars $m_i = 2\sqrt{N}C_{ij} \frac{\alpha_j}{4\pi} \Lambda$ higgsinos μ

no flavor problems (MFV)

Dine, Nir, Shirman Rattazzi, Sarid '96

spectrum mostly fixed by usual GM relations

gauginos
$$M_j = N \frac{\alpha_j}{4\pi} \Lambda$$
 scalars $m_i = 2\sqrt{N}C_{ij} \frac{\alpha_j}{4\pi} \Lambda$ higgsinos μ

no flavor problems (MFV)

$$A_t \leq m_0 \rightarrow no maximal mixing$$

Dine, Nir, Shirman Rattazzi, Sarid '96

spectrum mostly fixed by usual GM relations

gauginos
$$M_j = N \frac{\alpha_j}{4\pi} \Lambda$$
 scalars $m_i = 2\sqrt{N}C_{ij} \frac{\alpha_j}{4\pi} \Lambda$ higgsinos μ

no flavor problems (MFV)

 $A_t \leq m_0 \rightarrow no maximal mixing$

 $B_{\mu} \ll m_0^2 \quad \rightarrow \quad \tan(\beta) \sim 30 - 60$

Dine, Nir, Shirman Rattazzi, Sarid '96

spectrum mostly fixed by usual GM relations

gauginos
$$M_j = N \frac{\alpha_j}{4\pi} \Lambda$$
 scalars $m_i = 2\sqrt{N}C_{ij} \frac{\alpha_j}{4\pi} \Lambda$ higgsinos μ

no flavor problems (MFV)

 $A_t \leq m_0 \rightarrow no maximal mixing$

$$B_{\mu} \ll m_0^2 \quad \rightarrow \quad \tan(\beta) \sim 30 - 60$$

no CP phases \rightarrow no EDMs

MGM: minimal and most predictive implementation of SUSY

it explains:

- absense of deviation in flavor
- absence of EDMs
- absence of DM in WIMP searches
- gauge coupling unification
- absence of sparticles at the LHC!

MGM: minimal and most predictive implementation of SUSY

it explains:

- absense of deviation in flavor
- absence of EDMs
- absence of DM in WIMP searches
- gauge coupling unification
- absence of sparticles at the LHC!

Perfect target for an 100 TeV collider? Improvement on *top* mass **required**!

Backup

Effects from splitting fermions

A "natural" SUSY-like spectrum: $\tan\beta = 20$, $\mu = 300$ GeV, **7 T_V** ••• Absolute ••• Meta-Stable •• Unstable 20 10 m_t^{-} (TeV) 5 X_t/M_S from: Chowdhuri et al. '13 З $\partial A_t/\partial \mu > 0$ 2 1∟ -3 _ 1 1 2 -2 0 З $A_t/m_{\tilde{t}}$ exp th

SUSY term

μ _____

