Non-Abelian dark matter and large scale structure

- M. Schmaltz (Boston U.)
- W. G. Marques-Tavares (Stanford) M. Buen-Abad (BU)
 - J. Lesgourgues (Aachen)

1505.03542

Dark matter with multiplicity

3 short stories : 1. Xⁱ multiplicity factors

- 2. g^a dark radiation
- 3. dark matter drag

eegeeery da < 10⁻⁸

1. dark matter multiplicity

Example: Multiple "winos" $SU(2)_{W}$ triplet $\longrightarrow \chi^{\pm i} = \frac{\chi^{\pm i}}{\chi^{\circ i}} = \frac{160 \text{ MeV}}{160 \text{ MeV}}$

~ TeV Dirac mass $M \bar{\chi} \chi$

 $\chi^{oi} = \text{dark matter}$

DM abundance DDM~ KUV>

 χ^{i} χ^{i}

 $\implies M_{\chi} = M_{\chi}^{N=1} / \sqrt{2N}$

Indirect detection

Colliders: mono-jets

HL-LHC

100 TeV

jet

Cosmology for model builders

to decide if a process is important compare

dark radiation, DNeff

important difference to v's : 9 selfinteractions

dark gluons do not free-stream --- "perfect fluid "

CMB can distinguish!

3. dark matter - dark radiation coupling

Weakly coupled fluids. Impact on structure formation?

"drag" inhibits growth of DM density perturbations

growth of perturbations

k=0.2 Mpc⁻¹

growth of perturbations

k=0.2 Mpc⁻¹

power spectrum change

Summary: 3 stories

1. dark matter multiplicity -> N-factors

2. self-interacting radiation ANeff, Sue

3. LSS prefers DM drag >35

dark matter-neutrino "drag"?

$$\sim \left(\frac{m_v}{M_x}\right)^2 \alpha^2 \frac{T_v^2}{M_x}$$

back up!

FIG. 5: Posterior probabilities for the eight parameters forming the basis of our model and for two derived parameters (Ω_m , σ_8), for CMB data combined with BAOs (black), LSS (blue), BAO+LSS (red), BAO+LSS+ H_0 (yellow). See the text for details on parameter definitions and units, and for the

linear perturbations in fluids

S density pert. O velocity pert.

DM, DR, SM V V, V, B

- •
- 2

linear perturbations

 $\sigma_{SI} = 1.3 \times 10^{-47} \text{ cm}^2$

Snowmass CF1 Summary: WIMP Dark Matter Direct Detection arxiv:1310.8327