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The electroweak vacuum need not be absolutely stable. For certain top-quark and Higgs-boson
masses in the minimal standard model, our vacuum is instead metastable with a lifetime exceeding
the present age of the Universe. It has been suggested that a metastable vacuum is generally ruled
out because high-energy cosmic-ray collisions would have long ago induced its decay. I argue that
the reasoning for this conclusion is erroneous. As a consequence, upper bounds on the top-quark
mass derived from stability arguments are relaxed. Also presented is an analytic method for accu-
rately approximating the lifetime of the vacuum from the effective potential without solving for the
O(4) bounce solution numerically.

I. INTRODUCTION

In Weinberg-Salam theory, the weak gauge group is
broken by a Higgs sector whose renormalizable potential
is of the form

v(y) =——'p lp +—'A,y
This potential receives radiative corrections and the vac-
uum expectation of P is determined by the effective po-
tential which includes these corrections. One-loop
corrections from bosons, such as the Higgs boson, give
contributions of the form A, P 1ng times numerical fac-
tors. These corrections dominate the usual XP at large

One-loop corrections from fermions give contribu-
tions of the form —g~P in/ where the minus sign is due
to Fermi statistics. If the Yukawa couplings are large
enough, the fermion contributions will dominate over the
bosonic ones at large P with the result that our vacuum is
only metastable. ' The effective potential in such a case is
depicted schematically in Fig. 1. Generally, however, the
scale 8 at which the potential becomes unstable is very
much larger than the scale A of the false vacuum.
Flores and Sher have noted that our vacuum need not

be absolutely stable; a metastable vacuum is acceptable if
its lifetime exceeds that of the Universe. It is also neces-
sary that the Universe can be trapped in the false vacuum
in the first place, and they argue that this is plausible. In
particular, the case at hand is different from the case of
the Linde-Weinberg bound. Below the Linde-Weinberg
bound, there is a metastable vacuum at zero temperature
which disappears at high temperature. For the cases ex-
amined in this paper, however, the metastable vacuum
does not destabilize at high temperature.
The vacuum decays by quantum tunneling to form

bubbles of the unstable phase which then expand classi-
cally to absorb all of the metastable phase. There are two
types of forces acting on a bubble: the potential-energy
advantage of the interior over the false vacuum, and its
surface tension. The potential energy favors expansion of
the bubble and grows with the volume; the surface ten-
sion favors contraction and grows with the surface area

(or as the radius if the bubble has thick walls). Thus,
small bubbles are dominated by surface tension and col-
lapse. Large bubbles are dominated by the potential en-
ergy and expand. The quantum tunneling must create a
bubble large enough that the bubble will continue to ex-
pand.
In general, the larger the top-quark mass or smaller the

Higgs-boson mass, the more unstable the potential and
the shorter the lifetime of our vacuum. Flores and Sher
translated the constraint on the lifetime into a constraint
on the top-quark and Higgs-boson masses. ' Figure 2
shows my results for these constraints. Below the lower
solid curve, the vacuum is absolutely stable. Between the
two solid curves it is metastable with a lifetime exceeding
the age of the Universe. These curves apply only to the
minimal standard model with a single Higgs doublet that
is valid up to A = 10' GeV. The upper curve is also
shown for different choices of the cutoff scale A, whereas
the dependence of the lower solid curve on cutoff scale
has been examined in Ref. 5. The lifetime has been com-
puted at zero temperature. The curve corresponding to
the lifetime constraint is significantly different from that
of Ref. 2, perhaps due to the use of more modern results
for the effective potential.

(b)

FIG. 1. The effective potential (a) when our vacuum is abso-
lutely stable and (b) when fermion masses are large enough that
it is not.
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vacuum regions. Depending on the relative rates of these processes, unstable regions could

either disappear or critically threaten the existence of our universe. As we shall see, these

two outcomes have very di↵erent implications in terms of constraints on the scale of inflation

H. Ref. [12] implicitly assumed that the AdS volumes benignly crunch without destroying the

stable electroweak vacua, while Ref. [13] did not consider the post-inflationary evolution. In

Sec. III, we discuss these scenarios and define di↵erent probabilities of the universe surviving

depending on the evolution of the AdS vacua.

In Sec. IV, we discuss corrections to the Higgs potential that can be important during infla-

tion. We find that Planck-suppressed operators (which one generically expects to be present)

can significantly alter the Higgs potential (see the dashed curve in Fig. 1), greatly enhancing

electroweak vacuum stability. Finally, in Sec. V, we conclude and identify the outstanding

questions for future work.

II. HIGGS FIELD EVOLUTION DURING INFLATION

In this section, we describe the formalism for studying the evolution of the Higgs field during

inflation. We begin with a single Hubble patch, assuming hhi = 0 initially, and follow the Higgs

field evolution as this region inflates. Our goal is to calculate the probability that the universe

can undergo the necessary amount of inflation without quantum fluctuations knocking the Higgs

out of its false vacuum. For large Higgs field values h � v, where v = 246 GeV is the Higgs

vev in the electroweak vacuum, we make use of the potential1

Ve↵(h) =
�e↵(h)

4
h4. (5)

Since �e↵ runs negative at higher scales, the Higgs potential turns over at some scale ⇤max. We

show the behavior of �e↵ in the left panel of Fig. 2, and ⇤max in the (mh,mt) plane, as well as

ellipses corresponding to the 68.27%, 95.45% and 99.73% confidence level regions for the two

parameters, in the right panel. The shape and scale of this potential determine the transition

1 Throughout this paper, we employ two-loop renormalization group equations with boundary conditions at

µ = mt as given in [7]. In addition, as in [7], we include anomalous dimension and one-loop e↵ective potential

contributions to the e↵ective quartic �
e↵

(h).
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FIG. 2. Left: �e↵(h) within the Standard Model for mh = 125.7 GeV,mt = 173.34 GeV. Right:

Contours of ⇤max (black, dashed) in the (mh,mt) plane. Also shown are ellipses corresponding to the

68.27%, 95.45% and 99.73% confidence level regions for two parameters. The measured values for the

masses are taken to be mh = 125.7 ± 0.4 GeV and mt = 173.34 ± 0.76 GeV. For the central values,

⇤max = 4.9⇥ 1010 GeV.

between the three di↵erent regimes of CdL, HM, and FP vacuum transitions shown in Fig. 1.

Our goal in this section is to explore the Higgs evolution in and elucidate the phenomenological

relevance of these regimes.

For simplicity and ease of comparison with earlier studies, we first concentrate on the Higgs

potential without any corrections from higher dimension operators; in Sec. IV, we will consider

Planck-suppressed corrections to the Higgs potential, which can be significant.

A. Various Approaches to Fluctuations Past the Potential Barrier

Tunneling through a classically impenetrable barrier is calculated using the Coleman-de

Luccia (CdL) formalism [10], which gives the nucleation rate of bubbles of true vacuum in

a region of false vacuum. An illuminating interpretation of the CdL transition in de Sitter

(dS) space is in a thermal context, as thermally-assisted tunneling [14], where the field is

thermally excited partially up the barrier and then tunnels through. The thermal contribution
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Higgs Metastability
Apparently No Cosmological Implications -- 
Universe is “Stable Enough”

in Fig. 2 shows the scale Λ at which the RGEs would create a second minimum deeper than

the electroweak vacuum (λ < 0), leading to a possible instability of the SM potential. The

width of the band is obtained by varying the top mass and the value of αS(M2
Z) by their

one-standard-deviation errors. Fig. 3 shows zooms of the low-mass region of Fig. 2: the left

plot is identical apart from the change in scale, whereas the right plot includes an estimate

of the overall uncertainty due to higher-order corrections. We estimate this uncertainty by

adding in the numerical calculation the known, but incomplete, higher-order corrections.

The largest effect comes from the two-loop QCD correction to the top-quark pole mass,

which amounts to to a shift in MH of about 1 GeV. Since this effect is much larger than the

parametric estimate of higher-order corrections, we consider it as a conservative choice for

the theoretical error.

Requiring that the SM cannot develop a minimum deeper than the electroweak vacuum

for any scale Λ < MP , we obtain the following lower bound on the Higgs mass:

MH > 128.6 GeV + 2.6 GeV

(

mt − 173.1 GeV

1.3 GeV

)

− 2.2 GeV

(

αS(M2
Z) − 0.1193

0.0028

)

± 1 GeV .

(4)

The Planck-scale stability bound (4) is also shown in Fig. 4 as a (somewhat broader) 1−CL

‘pyramid’. Equations (3) and (4) delimit between them the ‘survival’ region (represented as

the shaded [green] band in Fig. 4), within which the SM can be safely extrapolated up to

the Planck scale.

It should be noted that the ‘unstable’ region is not necessarily incompatible with our

existence, as long as the electroweak vacuum survives for a time longer than the age of the

universe, before quantum tunneling. The total quantum tunneling probability p throughout

the period of the history of the Universe during which thermal fluctuations have been neg-

ligible is given by p = maxh<Λ[VUh4 exp (−8π2/3|λ(h)|)], where VU = τ 4
U is the space-time

volume of the past light cone of the observable Universe, τU being the lifetime of the Uni-

verse. Taking τU = 13.7 ± 0.2 Gyrs from the analysis of WMAP data [ 15] and p < 1, one

finds that the electroweak vacuum has a sufficiently long lifetime as long as

MH > 108.9 GeV + 4.0 GeV

(

mt − 173.1 GeV

1.3 GeV

)

− 3.5 GeV

(

αS(M2
Z) − 0.1193

0.0028

)

± 3 GeV .

(5)

The error of 3 GeV is estimated by combining uncertainties from higher-order corrections and

from the prefactor in p. This constraint is the leftmost ‘pyramid’ in Fig. 4, and the ‘collapse’

region at lower MH is light [pink] shaded and hatched. The ‘metastability’ bound obtained

considering zero-temperature fluctuations up to a scale Λ is plotted as a dark shaded [red]

band in Figs. 2 and 3, where the theoretical error is included only in the right plot of the
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Figure 1: Vacuum structure of the SM as a function of the Higgs boson mass. Regions of
stability/metastability/instability are denoted in blue/purple/red respectively. The solid lines
indicate central values while the dotted lines indicate ±2� error bars on the experimental mea-
surement of the top quark mass.

ii) Metastable (0 > �H > �̂H). The vacuum is not the absolute minimum, but its lifetime is
longer than the age of the Universe.

iii) Unstable (�̂H > �H). The vacuum is not the absolute minimum, and it decays within the
age of the Universe.

Here the critical coupling �̂H is determined by the requirement that the tunneling rate per unit
volume is comparable to the age of the Universe. In particular, we demand that H4 = �, where
H�1 ' 3.7 Gyr and � reads,

� = max
h
R�4 exp(�16⇡2/3|�̂H |)

i ����
R�1<⇤

. (1)

Here R is the characteristic length scale of the bounce, which is bounded by the cuto↵. As
we will elaborate on later, the vacuum structure may be more complicated if the new physics
includes additional scalar particles.

It is possible that our vacuum resides in a stable or metastable regime, but the unstable
regime is of course excluded by our existence. In much of our analyses, it will be convenient to

3
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The electroweak vacuum need not be absolutely stable. For certain top-quark and Higgs-boson
masses in the minimal standard model, our vacuum is instead metastable with a lifetime exceeding
the present age of the Universe. It has been suggested that a metastable vacuum is generally ruled
out because high-energy cosmic-ray collisions would have long ago induced its decay. I argue that
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it is not.

40 613 1989 The American Physical Society

H > ⇤I

White Vacuum

Black Vacuum



Inflation & Horizons

Inflation Creates       Causally Separated 
HORIZONS

Even Starting in Stable Vacuum, 
Fluctuations Can Spawn Black Islands

Our universe

Causally 
SEPARATED 
HORIZONS

e3N

e3N



Inflation & Horizons
Eventually Causally Separated Horizons 
Re-Enter Horizon

How Does This System Evolve?

Our universe

Causally 
SEPARATED 
HORIZONS

e3N



Probability
Does the Universe Survive Inflation?  How 
Big of a Transition Prob Can One Tolerate 
and Still Evolve Into a Universe Like Ours?

Probabilities Taken with Super-Hubble 
Modes Our universe

Causally 
SEPARATED 
HORIZONS

e3N

We now consider the evolution of the fluctuations in the context of the Hartree-Fock (HF) or

Gaussian approximation, where we can write all higher-point correlators in terms of h�h2(t)i.
As we discuss in Sec. IV, this is a good approximation before fluctuations become large and

self-interactions become relevant. Using the Gaussian approximation we can linearize Eq. (4),

including the interactions, and then inserting Eq. (5) into Eq. (4) gives the mode equation

�̈hk(t) + 3H ˙�hk(t) +

(✓
k

a

◆2

+ 3�
⌦
�h2(t)

↵
)

�hk(t) = 0, (6)

where
⌦
�h2(t)

↵
=

Z k=✏aH

k=1/L

d3k

(2⇡)3
|�hk(t)|2 (7)

is the two-point correlation function for the value of the scalar field in a Hubble patch, obtained

by integrating over all superhorizon modes with k  ✏aH. ✏ is an O(1) constant chosen

to distinguish between sub- and superhorizon modes, though our results will ultimately be

independent of ✏. We will take tk to be the time that the physical wavelength of the mode

exceeds the horizon size and the mode freezes out, given by k = ✏a(tk)H.

In writing Eq. (6) with the integral of Eq. (7) taken over superhorizon modes only, we have

neglected subhorizon mode correlations. These terms can be cancelled using local counterterms

in order to derive an equation describing the evolution of superhorizon modes, and as such the

dominant e↵ects of subhorizon modes can be reabsorbed into renormalization of the coupling

�—we return to this point in Sec. III. In addition, note that Eq. (7) requires an infrared (IR)

cuto↵, corresponding to the fact that we are studying fluctuations relative to a homogeneous

background value and so only consider modes that were subhorizon at the onset of inflation. We

choose a co-moving box of length L whose size is simply given by the region of space over which

the initial condition h̄(0) = 0 is a good approximation, corresponding to an IR cuto↵ k � a0H

where a0 is the scale factor as the onset of inflation.2 The IR cuto↵ corresponds to the longest

observable scale (or “resolution”) for observing mode fluctuation relative to a homogeneous

background value, which is limited to a causally-connected region at the beginning of inflation

[33].

2 The modes with k < a
0

H e↵ectively determine h̄(0) within this box.
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II. TOY MODEL: �h4 FIELD EVOLUTION IN THE GAUSSIAN APPROXIMATION

We begin by calculating the evolution of a scalar field in dS space employing a toy model

frequently used in the literature and outlined in [26]. This model illustrates many of the

important features, and serves as a check on the results, of the full SM Higgs case analyzed in

Secs. III and IV. It consists of a quartically-coupled real scalar,

V (h) =
�

4
h4 (3)

where � is taken to be constant. This simple model will turn out to be a good approximation

for the Higgs field during the early stages of inflation, provided � is chosen appropriately. In

the case of the Higgs, the value of the coupling �(µ) depends on the relevant energy scale—we

will see in the next section that an appropriate choice is µ = H, and here we implicitly consider

� < 0 such that the above potential is unstable as for the Higgs field during a period of inflation

with H > ⇤I . In addition, we assume the scalar h is minimally-coupled and that its potential

does not receive large corrections due to the inflaton energy density. Non-minimal curvature

coupling [19, 23], coupling to the inflaton [14] or higher-dimension operators [18, 32] can serve

to stabilize or destabilize the potential during inflation. Within the context of this simplified

model we show that the correlation function for the scalar field fluctuations, h�h2(t)i, diverges

in finite time, and we discuss the implications of this divergence for our Universe.

The equation of motion for a canonically-normalized scalar field h in a dS background is

given by

ḧ + 3Hḣ �
 

~r
a

!2

h + V 0(h) = 0. (4)

We decompose the scalar field in terms of a homogeneous background value h̄(t) and local

fluctuations �h(x, t). We will assume h̄(0) = 0, h̄(t) = 0 throughout inflation; taking non-zero

values will only lead to faster divergence. In this case, Eq. (4) is the equation of motion for the

fluctuations of the Higgs field, which can be decomposed into mode functions

�h(x, t) =

Z
d3k

(2⇡)3
a~k�hk(t)e

i~k·~x + h.c., (5)

where the creation and annihilation operators a~k, a~k
† satisfy the usual communtation relations.

7

Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3

✓
1 � i

k

aH

◆
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using

Z
d

dt
|�hk(t)|2 =

d

dt

✓Z
|�hk(t)|2

◆
� 4⇡k2

(2⇡)3
|�hk(tk)|2 d

dt
(✏aH) =

d

dt

⌦
�h2(t)

↵ � H3

4⇡2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt

⌦
�h2(t)

↵
= �2�

H

⌦
�h2(t)

↵2
+

H3

4⇡2
. (12)

The solution to this equation is

⌦
�h2(t)

↵
=

1p�2�

H2

2⇡
tan

✓p�2�
N
2⇡

◆
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space

⌦
�h2(t)

↵
=

H2N
4⇡2

. (14)
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~r
a

!2

h + V 0(h) = 0. (4)

We decompose the scalar field in terms of a homogeneous background value h̄(t) and local

fluctuations �h(x, t). We will assume h̄(0) = 0, h̄(t) = 0 throughout inflation; taking non-zero

values will only lead to faster divergence. In this case, Eq. (4) is the equation of motion for the

fluctuations of the Higgs field, which can be decomposed into mode functions

�h(x, t) =

Z
d3k

(2⇡)3
a~k�hk(t)e

i~k·~x + h.c., (5)

where the creation and annihilation operators a~k, a~k
† satisfy the usual communtation relations.

7

Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3

✓
1 � i

k

aH

◆
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using

Z
d

dt
|�hk(t)|2 =

d

dt

✓Z
|�hk(t)|2

◆
� 4⇡k2

(2⇡)3
|�hk(tk)|2 d

dt
(✏aH) =

d

dt

⌦
�h2(t)

↵ � H3

4⇡2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt

⌦
�h2(t)

↵
= �2�

H

⌦
�h2(t)

↵2
+

H3

4⇡2
. (12)

The solution to this equation is

⌦
�h2(t)

↵
=

1p�2�

H2

2⇡
tan

✓p�2�
N
2⇡

◆
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).
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We now consider the evolution of the fluctuations in the context of the Hartree-Fock (HF) or

Gaussian approximation, where we can write all higher-point correlators in terms of h�h2(t)i.
As we discuss in Sec. IV, this is a good approximation before fluctuations become large and

self-interactions become relevant. Using the Gaussian approximation we can linearize Eq. (4),

including the interactions, and then inserting Eq. (5) into Eq. (4) gives the mode equation

�̈hk(t) + 3H ˙�hk(t) +

(✓
k

a

◆2

+ 3�
⌦
�h2(t)

↵
)

�hk(t) = 0, (6)

where
⌦
�h2(t)

↵
=

Z k=✏aH

k=1/L

d3k

(2⇡)3
|�hk(t)|2 (7)

is the two-point correlation function for the value of the scalar field in a Hubble patch, obtained

by integrating over all superhorizon modes with k  ✏aH. ✏ is an O(1) constant chosen

to distinguish between sub- and superhorizon modes, though our results will ultimately be

independent of ✏. We will take tk to be the time that the physical wavelength of the mode

exceeds the horizon size and the mode freezes out, given by k = ✏a(tk)H.

In writing Eq. (6) with the integral of Eq. (7) taken over superhorizon modes only, we have

neglected subhorizon mode correlations. These terms can be cancelled using local counterterms

in order to derive an equation describing the evolution of superhorizon modes, and as such the

dominant e↵ects of subhorizon modes can be reabsorbed into renormalization of the coupling

�—we return to this point in Sec. III. In addition, note that Eq. (7) requires an infrared (IR)

cuto↵, corresponding to the fact that we are studying fluctuations relative to a homogeneous

background value and so only consider modes that were subhorizon at the onset of inflation. We

choose a co-moving box of length L whose size is simply given by the region of space over which

the initial condition h̄(0) = 0 is a good approximation, corresponding to an IR cuto↵ k � a0H

where a0 is the scale factor as the onset of inflation.2 The IR cuto↵ corresponds to the longest

observable scale (or “resolution”) for observing mode fluctuation relative to a homogeneous

background value, which is limited to a causally-connected region at the beginning of inflation

[33].

2 The modes with k < a
0

H e↵ectively determine h̄(0) within this box.
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Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
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where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space
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Second we observe that, for � > 0, the interaction tends to reduce the size of the fluctuations

and stabilize the scalar field—the distribution of field values approaches an equilibrium state,

as described in [26]. The more interesting case is when � < 0, as for the SM Higgs with H > ⇤I

such that �(H) < 0. In this case, we see that the superhorizon fluctuations grow even more

rapidly than for a massless field, and in fact diverge after a finite number of e-folds,

Nmax =
⇡2

p�2�
. (15)

What does this divergence mean physically? As mentioned previously, h�h2(t)i is the cor-

relation function for local superhorizon mode fluctuations (“local” meaning the field value is

averaged over a Hubble-sized patch). It is analogous to more familiar correlation functions such

as h��2(t)i, where � is the inflaton and �� represents the local quantum fluctuations around

the homogeneous background value. In the same way that the local fluctuations in the infla-

ton value give rise to local fluctuations in energy density, the fluctuations �h(x, t) give rise to

di↵erent values of the field value in di↵erent patches and hence di↵erent local energy densities.

If the field value in a particular patch fluctuates to a very large value such that |�| �h4 ⇠>
H2M2

P , the energy density in the field ⇢h ⇡ V (�h) < 0 may cancel the inflaton energy density

⇢� ⇠ H2M2
P , producing a patch in which the local energy density is small or negative. This

backreaction causes the patch to stop inflating and crunch, giving rise to a defect such as a

black hole. More precisely, solving the Friedmann equations reveals that, once the field value

in a patch exits the slow-roll regime, |�h|⇠>
q

3
��

, the field value diverges rapidly and the patch

quickly evolves to a singularity, within ⇠ 1 e-fold. In the Gaussian approximation, though, the

typical size of a field fluctuation in a patch is of order
ph�h2(t)i. Consequently, such large

fluctuations are extremely rare throughout most of inflation. Moreover, the rare occurrence

of backreacting and non-inflating patches does not disrupt inflation globally, and the resulting

defects would be diluted by inflation, minimizing observational implications.

However, when N approaches Nmax, large field value fluctuations are no longer rare; a

significant fraction of the patches that eventually evolve into the observable Universe would

develop instabilities. Consequently, the resulting Universe would exhibit large inhomogeneities

as a result of the defects produced—in the case of our Universe, large inhomogeneities would be
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FIG. 2. Left: �e↵(h) within the Standard Model for mh = 125.7 GeV,mt = 173.34 GeV. Right:

Contours of ⇤max (black, dashed) in the (mh,mt) plane. Also shown are ellipses corresponding to the

68.27%, 95.45% and 99.73% confidence level regions for two parameters. The measured values for the

masses are taken to be mh = 125.7 ± 0.4 GeV and mt = 173.34 ± 0.76 GeV. For the central values,

⇤max = 4.9⇥ 1010 GeV.

ellipses corresponding to the 68.27%, 95.45% and 99.73% confidence level regions for the two

parameters, in the right panel. The shape and scale of this potential determine the transition

between the three di↵erent regimes of CdL, HM, and FP vacuum transitions shown in Fig. 1.

Our goal in this section is to explore the Higgs evolution in and elucidate the phenomenological

relevance of these regimes.

For simplicity and ease of comparison with earlier studies, we first concentrate on the Higgs

potential without any corrections from higher dimension operators; in Sec. IV, we will consider

Planck-suppressed corrections to the Higgs potential, which can be significant. We also assume

thatH is (to a very good approximation) constant during inflation, in order to study the general

phenomenon of electroweak vacuum stability during inflation in a model-independent manner.
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Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
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In this case, modes are e↵ectively massless, yielding the usual result in dS space
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For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
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�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using
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We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt
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The solution to this equation is
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where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space
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h = ⇤c

Meanwhile, the typical quantum fluctuation is of size

�hquantum =
H

2⇡
. (11)

As such, the Higgs field will begin to roll irreversibly down the potential once �hclassical >

�hquantum. We define ⇤c to be the point at which classical motion starts to dominate,

�V 0

e↵(⇤c) =
3H3

2⇡
. (12)

Consequently, P (h⇠> ⇤c, t) rapidly flattens out as the Higgs field rolls away. Thus, a suitable

approximation to P (h, t) can be achieved, particularly in the regime of interest |h|  ⇤max, by

employing the boundary condition P (h = ⇤c, t) = 0.4

In Fig. 2 (left panel), we show �e↵(h) for mh = 125.7 GeV,mt = 173.34 GeV; the e↵ective

quartic becomes approximately constant for h > ⇤max, such that we can approximate V 0

e↵(h >

⇤max) ⇡ �e↵(h)h3. Then

⇤c ⇡
✓

3

2⇡�e↵(⇤c)

◆ 1
3

H ⇡ 3.6

✓ �0.01

�e↵(⇤c)

◆ 1
3

H. (13)

Therefore, quantum fluctuations remain larger than the classical e↵ect until h ⇠ O(few)H.

As a consistency check, we note that within this approximation the condition for slow roll

|V 00

e↵(h)| ⌧ 9H2 requires h ⇠< 17.3
p�0.01/�e↵(h)H, such that the aforementioned boundary

does indeed avoid the region where slow-roll breaks down.5 Moreover, since the total energy

density is dominated by the inflaton energy density until Ve↵(h) ⇠ �V (�) (which requires the

Higgs roll o↵ to |h| ⇠ p
HMP ), inflation proceeds unabated for |h| < ⇤c. As such the FP

equation, which models dS-to-dS transitions, remains valid in this regime.

An alternative boundary condition previously considered in the literature [12] is P (|h| =
⇤max, t) = 0. This is an appropriate boundary condition if the field rolls down to the true

minimum with unit probability once it fluctuates to the top of the barrier. However, this is

not the case for large quantum fluctuations H ⇠> (Ve↵(⇤max))
1/4 – such a boundary condition

4 While we use this boundary condition for our analytic analysis below, we have verified numerically that the

probability distribution in the region of interest does not change as the cuto↵ is increased.
5 Although we show approximate values here, in our numerical studies we determine ⇤c by solving Eq. (12).
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• CdL bubble nucleation is the dominant contribution when

H2⇠< V 00

e↵(⇤max) ⇠ �e↵(⇤max)⇤
2
max.

• A single HM instanton is the dominant contribution when

V 00

e↵(⇤max)⇠< H2⇠< (Ve↵(⇤max))
1/2 ⇠ (�e↵(⇤max))

1/2 ⇤2
max.

• FP statistical treatment is needed when the potential barrier becomes small in comparison

to the quantum fluctuations, i.e. for H⇠> (Ve↵(⇤max))
1/4.

The recent LHC and BICEP2 data suggest that |V 00

e↵(⇤max)| < 4H2 and likely H ⇠>
(Ve↵(⇤max))

1/4, such that the HM and stochastic approaches are most relevant to Higgs evolu-

tion during inflation. However, even without input from BICEP2, this regime is of far greater

interest than the CdL regime. For H su�ciently small that CdL tunneling dominates, the

transition probability is su�ciently suppressed that the likelihood of our universe existing is

exponentially close to unity regardless of the evolution of the unstable vacuum patches —

the fluctuations are simply too weak to knock the Higgs out of the electroweak vacuum. For

this reason, we will use the HM solution and the stochastic approach to study the evolution

of the Higgs field. We find that �e↵(⇤max) ⇠ 10�4, such that the FP regime corresponds

to H/⇤max ⇠> 0.1. In the next subsection, we describe the implementation of the stochastic

approach using the Fokker-Planck equation.

B. The Fokker-Planck Equation

The probability P = P (h, t) to find the Higgs field at value h at time t satisfies the Fokker-

Planck equation [19, 20]
@P

@t
=

@

@h


V 0(h)

3H
P +

H3

8⇡2

@P

@h

�
. (9)

The first moment of the Higgs field in a time ⌧ is determined by the equations of motion

assuming “slow roll” evolution of the Higgs field, h�hi
⌧

= � V 0

3H2 ; this approximation is valid as

long as h⇠< H
p
3/�e↵(h). The second moment is dominated by the random fluctuations of the

9
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FIG. 1. The Higgs potential illustrated with the regimes of validity for various solutions for the Higgs

vacuum evolution during inflation: Coleman-de Luccia (CdL), Hawking-Moss (HM) and Fokker-Planck

(FP). Left: For H ⇠< ⇤max, the CdL tunneling or single bounce HM instanton yields the transition

probability. Right: For H � ⇤max, the potential barrier at ⇤max is irrelevant, and a stochastic random

walk approach is necessary until classical slow roll takes over at h = ⇤c (H = 10⇤max has been chosen).

The dashed curve in the right-hand panel shows the e↵ect of Planck-suppressed stabilizing terms to

the potential, which we study in Sec. IV. To illustrate the relative scale between the two panels, the

dashed lines show the region where the left panel fits into the right panel.

in both the understanding of the domain of validity and the implementation of the solutions,

as we discuss in more detail in Sec. II.

Once the probability distribution of the Higgs expectation value has been computed, the

next important question is its implication for the evolution of the universe. The HM or FP

probabilities give the distribution of vacua across the e3Ne causally disconnected Hubble patches

at the end of inflation. In the case that H ⇠< ⇤max, most of these Hubble patches will be in

the safe electroweak vacuum while, when H ⇠> ⇤max, most of the Hubble patches are in the

unstable vacuum. The probability that we evolve into a universe that looks like ours depends

on the evolution of the unstable vacuum patches once inflation ends. These regions exhibit a

large negative vacuum energy density, so will eventually transition to an anti-de Sitter (AdS)

phase and “crunch.” However, as they are at a lower energy density than the electroweak

vacuum regions, the crunching bubbles of true vacuum can also “eat” the false electroweak

4

CdL
HM

FP

�h ⇠ H
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FIG. 1. The Higgs potential illustrated with the regimes of validity for various solutions for the Higgs

vacuum evolution during inflation: Coleman-de Luccia (CdL), Hawking-Moss (HM) and Fokker-Planck

(FP). Left: For H ⇠< ⇤max, the CdL tunneling or single bounce HM instanton yields the transition

probability. Right: For H � ⇤max, the potential barrier at ⇤max is irrelevant, and a stochastic random

walk approach is necessary until classical slow roll takes over at h = ⇤c (H = 10⇤max has been chosen).

The dashed curve in the right-hand panel shows the e↵ect of Planck-suppressed stabilizing terms to

the potential, which we study in Sec. IV. To illustrate the relative scale between the two panels, the

dashed lines show the region where the left panel fits into the right panel.

in both the understanding of the domain of validity and the implementation of the solutions,

as we discuss in more detail in Sec. II.

Once the probability distribution of the Higgs expectation value has been computed, the

next important question is its implication for the evolution of the universe. The HM or FP

probabilities give the distribution of vacua across the e3Ne causally disconnected Hubble patches

at the end of inflation. In the case that H ⇠< ⇤max, most of these Hubble patches will be in

the safe electroweak vacuum while, when H ⇠> ⇤max, most of the Hubble patches are in the

unstable vacuum. The probability that we evolve into a universe that looks like ours depends

on the evolution of the unstable vacuum patches once inflation ends. These regions exhibit a

large negative vacuum energy density, so will eventually transition to an anti-de Sitter (AdS)

phase and “crunch.” However, as they are at a lower energy density than the electroweak

vacuum regions, the crunching bubbles of true vacuum can also “eat” the false electroweak
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suppresses the tunneling process and the field is instead thermally excited all the way to the

top of the barrier, after which it classically rolls down to its true vacuum with unit probability.

The study in [17] found that, in the case of HM tunneling, the inside of the bubble does not

reach the true vacuum while the outside of the bubble is cut o↵ by the finite dS horizon before

the false vacuum is reached. As such, this transition should be interpreted as an entire Hubble-

sized region tunneling to the top of the barrier [18]. It should be kept in mind that it is only

a Hubble patch, and not the entire universe (as had been originally assumed), that makes this

transition. The HM transition probability of a Hubble patch from the false vacuum to the top

of the barrier during one Hubble time is given by p ⇠ e�BHM where [11, 13]

BHM =
8⇡2

3

�V

H4
, (8)

with�V = Ve↵(⇤max), the height of the Higgs potential barrier relative to the false (electroweak)

vacuum. Note that for H4 � �V , the exponential suppression factor essentially becomes unity

and the prefactor (as well as subleading corrections) becomes important [17].

In the |V 00

e↵(⇤max)| < 4H2 regime, where the transitions are dominated by thermal fluctua-

tions, a stochastic approach to field evolution [19, 20] is more relevant. This involves replacing

the quantum fluctuations with a random noise term and studying the ensuing Brownian mo-

tion of the field, described by the Fokker-Planck (FP) equation. The FP approach becomes

necessary because it captures dynamics that the HM instanton cannot. Recall that the HM

instanton is computed by obtaining the bounce for evolving from the bottom of potential to

the top — it computes a single transition across the barrier. When H � ⇤max, by contrast,

multiple transitions across the barrier are possible. Moreover, the dynamics of the regions

where the field value is larger than ⇤max are important in determining the final distribution of

the Higgs field values at the end of inflation; this information is contained in the FP equation

but not in HM. The stochastic approach is therefore necessary in this regime. However, for

H⇠< ⇤max, a single transition across the barrier dominates, and one can show that in this limit

the FP equation gives rise to the HM transition probability as expected [12, 21].

To summarize, the various regimes are:

8
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at the end of inflation. Patches with �h > (<) ⇤max subsequently evolve towards the true

(electroweak) vacuum and, as the horizon expands post-inflation, the di↵erent patches come

back into causal contact with one another. This gives rise to a Universe with regions of di↵erent

Higgs vev separated by domain walls, in which the lower-energy-density true vacuum regions

would percolate and come to dominate space, again precluding a Universe such as ours. Indeed,

the existence of a single true vacuum patch at the end of inflation may be su�cient to overwhelm

the electroweak patches, making our Universe unlikely even if such patches are extremely rare

as a result of the huge number of patches e3Nend present at the end of inflation [17, 18]. However,

we avoid this situation by having a su�ciently high re-heat temperature, T 2
R & h�h2(t)i. The

Higgs then becomes rapidly thermalized and settles down to the electroweak vacuum.

We have now shown how to compute the upper bound on the number of e-folds that inflation

can proceed before large local field fluctuations produce large inhomogeneities, precluding a

relatively homogeneous Universe such as ours. So far we have only done this either assuming

a Gaussian distributed field (Sec. II), or carrying out a perturbative expansion that breaks

down just as the instabilities become important (this section). In the next section, we consider

the Fokker-Planck equation that, once supplied with the correct potential, reproduces the non-

Gaussian tails of the distribution and allows us to gain more information about the rare but

important unstable patches. This will in turn allow us to better understand the Universe that

emerges.

IV. STANDARD MODEL HIGGS IN THE FOKKER-PLANCK EQUATION

The Fokker-Planck (FP) approach to studying the evolution of scalar field fluctuations in a

dS background was previously applied to the Higgs in Refs. [12, 17, 18]. Here we make use of

what we learned in Secs. II and III about Higgs potential during inflation to make contact with

previous results, notably those in [18]. We will not find significant numerical di↵erences with

Ref. [18], but we will be able to better interpret those results.

The FP equation,
@P

@t
=

@

@�h


V 0(�h)

3H
P +

H3

8⇡2

@P

@�h

�
, (39)
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Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3

✓
1 � i

k

aH

◆
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using

Z
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dt
|�hk(t)|2 =
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dt

✓Z
|�hk(t)|2

◆
� 4⇡k2

(2⇡)3
|�hk(tk)|2 d

dt
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d

dt

⌦
�h2(t)

↵ � H3

4⇡2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt

⌦
�h2(t)

↵
= �2�

H

⌦
�h2(t)

↵2
+

H3

4⇡2
. (12)

The solution to this equation is

⌦
�h2(t)

↵
=

1p�2�

H2

2⇡
tan

✓p�2�
N
2⇡

◆
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space

⌦
�h2(t)

↵
=

H2N
4⇡2

. (14)
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FIG. 3. Comparison of survival probability P⇤ (Eq. (14)) with Ne = 60 as given by numerically

solving the FP equation (red crosses), the approximate analytic solution in Eq. (15) (solid black curve),

and the solution with ⇤c = ⇤max from [12] (solid gray curve). As a comparison, we also show the HM

probability as explored in [13] (with unit prefactor, see Eq. (8)). Ve↵(h) in our numerical solution is

computed using the central values mh = 125.7 GeV, mt = 173.34 GeV.

asymptotically AdS vacuum regions crunch or expand to eat the good electroweak vacua —

determines the eventual fate of the universe.

Analyzing the evolution of these patches during this epoch is not a trivial task. Ref. [21]

demonstrated that, when AdS and Minkowski bubbles collide in a dS background, whether

or not the AdS bubble is expelled depends on the tension in the domain wall separating the

bubbles relative to the energy density in the AdS region. While qualitative aspects of this

picture apply to our study, Ref. [21] only considered empty bubbles and studied their evolution

in the thin wall approximation. In our case, the thin wall approximation fails because the

true minimum of the Higgs potential, if it exists, lies far below the false minimum. Moreover,

neither the AdS nor the Minkowski bubbles are empty; the negative energy of the unstable

14

HM: Kobakhidze & Spencer-Smith 1301.2846; Fairbairn & Hogan 1406.6786
FP: Espinosa et al 0712.2484

HM FP, spurious 
boundary 
conditions

H > ⇤I

Hook, Kearney, Shakya, KZ 1404.5953

artificially forces P (h, t) to vanish at a particular point h = ⇤max determined by the potential

in spite of the fact that the classical motion due to the potential is negligible in this region.

Consequently, the resulting solution underestimates the probability distribution in the regime

h  ⇤max. Analogously, in this regime, it is insu�cient to consider the transition probability

due to a single HM instanton. For H ⇠> (Ve↵(⇤max))
1/4, the HM instanton has an order one

probability, hence multiple HM-like transitions back and forth over the barrier occur over the

course of inflation. Setting P (|h| = ⇤max, t) = 0 neglects the large probability of fluctuating

back over the barrier.

As an aside, we comment that this also has interesting implications for the tuning of the

initial configuration of the Higgs field at the onset of inflation. If the Higgs field can take

on any value below MP at the start of inflation and the Higgs must start within its shallow

potential well if the electroweak vacuum is to be realized in some regions of space, this would

require a fine-tuning of the initial conditions at the level of ⇤max/MP . However, in light of

the above picture, it appears possible to start with the Higgs field value on the order of the

Hubble scale and still realize the electroweak vacuum due to quantum fluctuations into the

false vacuum, relaxing the amount of tuning required to ⇠ H/MP . Since the combination of

LHC and BICEP2 data suggests H � ⇤max, this is a significant improvement in tuning by

several orders of magnitude.

At the end of inflation, Hubble patches where the field has fluctuated to regions beyond the

top of the barrier will roll o↵ to the AdS vacuum (we assume that reheating does not modify the

Higgs potential su�ciently to push these field configurations back to the electroweak vacuum).

In the remaining Hubble patches, the Higgs field will roll back to the electroweak or Minkowski

vacuum. The probability of landing in the electroweak vacuum at the end of inflation is therefore

given by

P⇤ ⌘
Z ⇤max

�⇤max

dhP (h, te) (14)

where te denotes the end of inflation. P⇤ should be interpreted as the probability of a region

that is of Hubble size towards the end of inflation to land in the electroweak vacuum. Note

that we have not included the e↵ects of thermal fluctuations in the Higgs during the reheating

phase at the end of inflation. If the reheat temperature is high enough, these e↵ects can further
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Fock approximation of Sec. II, with variance
⌦
�h2(t)

↵
given by Eq. (13) (black, dashed).

|�h|—specifically, for

�h⇠> �hclassical ⌘
✓

3

�2⇡�

◆1/3

H (41)

—the classical force due to the potential, V 0(h) = �h3 comes to dominate over the quantum

fluctuations, causing the tails of the distribution to spread out rapidly. For comparison, we

also show a Gaussian distribution with variance h�h2(t)i given by Eq. (13); the distributions

are similar for |�h|⇠< �hclassical ⇡ 4H, but the FP distribution exhibits higher probability to find

the field at larger values |�h|⇠> �hclassical.

Note that one potential subtlety does arise in solving the FP equation for the SM Higgs

due to the presence of the additional �i bosonic degrees of freedom in the full Higgs multiplet,

discussed at the end of Sec. III—specifically, they potentially obfuscate the most appropriate

22
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Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3
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For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using

Z
d

dt
|�hk(t)|2 =

d

dt

✓Z
|�hk(t)|2

◆
� 4⇡k2

(2⇡)3
|�hk(tk)|2 d

dt
(✏aH) =

d

dt

⌦
�h2(t)

↵ � H3

4⇡2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt
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where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space

⌦
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FIG. 3. The proportion of surviving patches transitioning out of the slow-roll regime fN (Eq. (43))

at N e-folds of inflation for two choices of quartic coupling �(H) = �0.005 (red) and �0.01 (blue).

full SM Higgs multiplet as light (heavy and decoupled) throughout inflation—a limit derived

incorporating realistic decoupling of �i likely lies ⇠ 15-20% above the lower bound. Finally,

we show the number of e-folds at which a particular fN is reached for a Gaussian distribution

with variance given by Eq. (13), NHF, in order to explicitly demonstrate the claim in Sec. II

that, in the Hartree-Fock approximation, a negligible proportion of patches are forming defects

until N approaches Nmax.

As previously discussed, a legitimate assumption is that, in order to avoid large inhomo-

geneities and thus produce our Universe, inflation must end before a significant proportion of

patches are forming defects during each e-fold. In the case of the FP approach, this translates

into the requirement that fN at the end of inflation be smaller than some critical value, f crit
N ,

which constrains the duration of inflation, N  N crit. Conceptually, this is equivalent to re-

quiring N  Nmax in the Hartree-Fock approach of Sec. II—as Tab. I demonstrates, requiring

25
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Second we observe that, for � > 0, the interaction tends to reduce the size of the fluctuations

and stabilize the scalar field—the distribution of field values approaches an equilibrium state,

as described in [26]. The more interesting case is when � < 0, as for the SM Higgs with H > ⇤I

such that �(H) < 0. In this case, we see that the superhorizon fluctuations grow even more

rapidly than for a massless field, and in fact diverge after a finite number of e-folds,

Nmax =
⇡2

p�2�
. (15)

What does this divergence mean physically? As mentioned previously, h�h2(t)i is the cor-

relation function for local superhorizon mode fluctuations (“local” meaning the field value is

averaged over a Hubble-sized patch). It is analogous to more familiar correlation functions such

as h��2(t)i, where � is the inflaton and �� represents the local quantum fluctuations around

the homogeneous background value. In the same way that the local fluctuations in the infla-

ton value give rise to local fluctuations in energy density, the fluctuations �h(x, t) give rise to

di↵erent values of the field value in di↵erent patches and hence di↵erent local energy densities.

If the field value in a particular patch fluctuates to a very large value such that |�| �h4 ⇠>
H2M2

P , the energy density in the field ⇢h ⇡ V (�h) < 0 may cancel the inflaton energy density

⇢� ⇠ H2M2
P , producing a patch in which the local energy density is small or negative. This

backreaction causes the patch to stop inflating and crunch, giving rise to a defect such as a

black hole. More precisely, solving the Friedmann equations reveals that, once the field value

in a patch exits the slow-roll regime, |�h|⇠>
q

3
��

, the field value diverges rapidly and the patch

quickly evolves to a singularity, within ⇠ 1 e-fold. In the Gaussian approximation, though, the

typical size of a field fluctuation in a patch is of order
ph�h2(t)i. Consequently, such large

fluctuations are extremely rare throughout most of inflation. Moreover, the rare occurrence

of backreacting and non-inflating patches does not disrupt inflation globally, and the resulting

defects would be diluted by inflation, minimizing observational implications.

However, when N approaches Nmax, large field value fluctuations are no longer rare; a

significant fraction of the patches that eventually evolve into the observable Universe would

develop instabilities. Consequently, the resulting Universe would exhibit large inhomogeneities

as a result of the defects produced—in the case of our Universe, large inhomogeneities would be
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Scale of Quartic?
         is not a gauge invariant quantity

Compute Two-Point Correlation in In-In 
Formalism

where the IR cut-o↵ is taken to be ⇤IR = a0H, as in Sec. II. There are two types of terms

present in Eq. (24).5 First, there are the IR logarithms of the form log(a/a0) = N , due to

the superhorizon modes, that give rise to the divergence of the correlator h�h2i as observed

in the previous section. Second, there are terms due to UV physics, including quadratic and

logarithmic divergences. These terms are identical to terms that would be present in Minkowski

space, as the high-energy subhorizon modes only see the local spacetime (which appears flat)

and not the expansion. As such, these terms can be cancelled by local counterterms �m2, �⇠,

�m2 = �3�(µ)
⇤2

8⇡2
, 12�⇠ = �3�(µ)

4⇡2
log

✓
⇤2

µ2

◆
. (25)

As in Minkowski space, the UV divergences are accompanied by logarithms of the renormaliza-

tion scale and the energy scale H, log(µ2/H2). We have chosen a renormalization condition for

the mass-squared and non-minimal coupling such that the renormalized m2(µ) and ⇠(µ) vanish

at µ = H.

Putting the pieces together, the correction to the two-point correlation function goes as

3�F (z, z) + �m2 + �⇠R =
3�(µ)H2

8⇡2

✓
2N + ln

µ2

H2

◆
. (26)

The choice of renormalization scale resums the logarithms and ensures the theory remains

perturbatively under control in the UV—specifically, the logarithms vanish for the choice µ =

H, and the coupling is the RG-improved tree-level coupling �(µ = H). We note that the e↵ects

of the IR logarithms from higher-order corrections are also minimized by choosing µ = H. In

the remainder of the calculation, we will be focused on extracting the leading IR logarithms,

which determine the rate at which the two-point correlation diverges. First, though, we note

that this simple analysis suggests how contributions from additional Standard Model particles

are to be included. The contributions from loops of SM particles in the UV are shown as the

“subleading IR logs” diagrams in Fig. 1. Loops of transverse gauge bosons and fermions actively

renormalize the coupling �(µ) from the UV cut-o↵ of the theory ⇤ down to µ = H. At scales

below µ = H, however, the propagators of these fields do not have logarithmic divergences

5 We have dropped exponentially suppressed terms that go as ⇤
IR

/aH.
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FIG. 1. Sample Feynman diagrams included in our calculation of the Higgs two-point correlation

function. The first two graphs (labeled “Leading IR logs”) contribute to the late-time divergence

of the Higgs two point correlation
⌦
�h2(t)

↵
. The last three graphs do not directly contribute to the

leading divergence, but serve to renormalize the Higgs self-coupling �. The points x, y are assumed

to be separated by less than one Hubble length during inflation and the gauge boson propagators, for

reasons we explain in the text, include only the transverse degrees of freedom.

theory. We will find that computing these first two graphs reproduces the leading behavior that

we observed in the previous section. We will also argue that the other graphs do not contribute

to the leading divergence of the Higgs two-point correlation function. This observation will

allow us to connect our toy model to the SM.

To be explicit, we compute the two-point correlation function utilizing the “in-in” formal-

ism. (For a review of the “in-in” formalism and its applications to cosmology, see [41].) The

expectation value of an operator hOi to a given order n in perturbation theory is

hO(t)i =
X

n

(�i)n
Z t

�1
dt1 · · ·

Z tn�1

�1
dtn

⌦⇥⇥OI(t), HI(tn)
⇤
, · · · HI(t1)

⇤↵
, (16)

where the superscript I denotes that the operators are in the interaction picture, and HI is the

interaction Hamiltonian density,

HI =
1

4
�

�
hI(z)

�4
+

1

2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)

�
hI(z)

�2
. (17)

13

�e↵(h)

In this Hamiltonian we have included counterterms for the mass and curvature coupling, �m2

and �⇠, both of which are induced through RG e↵ects (see, for example, [19]). Our renormal-

ization conditions will fix these quantities at µ = H.

At next-to-leading order (i.e., including n = 0, 1 contributions), we thus have

hh(t, ~x)h(t, ~y)i =
⌦
hI(t, ~x)hI(t, ~y)

↵

+ (�i)

Z t

�1
dtz

p
�g(tz)

Z
d3~z

⌦⇥
hI(t, ~x)hI(t, ~y),

1

4
�
�
hI(z)

�4
+

1

2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)

�
hI(z)

�2
��

, (18)

where R is the Ricci scalar,

R = 12H2, (19)

in dS spacetime. The n = 0 contribution corresponds to the first graph in Fig. 1 and the n = 1

contribution corresponds to the second graph in Fig. 1.

Defining

⇢(x, y) = i
⌦⇥

hI(x), hI(y)
⇤↵

, F (x, y) =
1

2

⌦�
hI(x), hI(y)

 ↵
, (20)

we have

hh(t, ~x)h(t, ~y)i = F (x, y) �
Z t

d4z a3(tz) [F (x, z)⇢(y, z) + ⇢(x, z)F (y, z)]
�
3�F (z, z) + �m2 + �⇠R(z)

�
,

(21)

with

F (x, y) =
1

2

Z
d3k

(2⇡)3
hk(tx)h

⇤
k(ty)e

i~k·(~x�~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3�F (z, z) = 3�

Z a⇤

⇤IR

d3k

(2⇡)3
|hk(tz)|2 (23)

= 3�

"
⇤2

8⇡2
+

H2

8⇡2
ln

"✓
a⇤

⇤IR

◆2
##

, (24)
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at late time and hence do not contribute to the divergent part of h�h2i—we elaborate on this

point further below.

The leading term in Eq. (21) is

F (t, ~x; t, ~y) =
H2

4⇡2

✓
ln

1

⇤IRr
+ 1 � �

◆
+

1

2⇡2

1

a2r2
, (27)

⇡ H2

4⇡2
N (28)

with r = |~x � ~y| evaluated at r ⇡ (aH)�1, keeping the leading IR logarithm. The leading IR

logarithm due to second term of Eq. (21) is

� 3�

Z t

d4z a3(tz)
H2

8⇡2
H (tz � t0) [F (x, z)⇢(y, z) + ⇢(x, z)F (y, z)]

= (�i) 3�

Z

tz ,k

a3(tz)
H2

8⇡2
H (tz � t0)

h
u2
k(t)u

⇤2
k (tz)e

�i~k·(~x�~y) � h.c.
i

⇡ � �

24⇡2
H2N 3. (29)

We can compare this with the result of Eq. (13), expanded in the limit of
p��N ⌧ 1,

⌦
�h2(t)

↵
HF

⇡ H2

4⇡2
N � �H2

24⇡4
N 3. (30)

The two results agree, consistent with the claim that the HF approach resums the leading IR

logarithms that arise in perturbation theory.6

We see that perturbation theory breaks down (signaled by the subleading term exceeding

the tree-level term) after a critical number of e-folds

N > ⇡

s
6

|�| ⌘ Nc⇠> Nmax. (31)

Although we have only calculated the breakdown of perturbation theory at leading order, we

can see that the result is consistent with Nmax derived from Eq. (13). In addition, for � < 0,

the subleading term gives a positive contribution to h�h2(t)i, further supporting the claim that

the correlator diverges in finite time.7

6 A similar analysis has been done in Refs. [39, 40] using the stochastic approach.
7 The perturbative calculation also breaks down in finite time for � > 0. This corresponds to the fluctuations

approaching a stabilized, equilibrium solution [26]—this solution is also apparent in the late-time limit of

Eq. (13) with � > 0.
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Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3

✓
1 � i

k

aH

◆
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using

Z
d

dt
|�hk(t)|2 =

d

dt

✓Z
|�hk(t)|2

◆
� 4⇡k2

(2⇡)3
|�hk(tk)|2 d

dt
(✏aH) =

d

dt

⌦
�h2(t)

↵ � H3

4⇡2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt

⌦
�h2(t)

↵
= �2�

H

⌦
�h2(t)

↵2
+

H3

4⇡2
. (12)

The solution to this equation is

⌦
�h2(t)

↵
=

1p�2�

H2

2⇡
tan

✓p�2�
N
2⇡

◆
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space

⌦
�h2(t)

↵
=

H2N
4⇡2

. (14)
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END INFLATION

ASSUME INFLATION ENDS BEFORE BLACK 
VACUA DOMINATE

Re-Heating Starts As Usual

THEN WHAT?



RE-HEATING

IF HIGH ENOUGH RE-HEAT TEMP, FINITE 
TEMP EFFECTS FORCE HIGGS BACK TO EW 
VACUUM

Finite Temperature Effects:

Require:

Easily Satisfied because 

inconsistent with the small curvature perturbations �2
R ⇡ 2 ⇥ 10�9 observed by, e.g., WMAP

[34] and Planck [35]. In addition, if the proportion of non-inflating patches becomes O(1), the

analysis of [36] suggests that the inflating regions could not percolate and undergo the necessary

amount of inflation (inflating regions would fracture or “crack”). The inflating space as a whole

becomes unstable, and inflation ends. Thus if Nmax ⇠< No, where No ⇡ 50 � 60 is the number

of e-folds needed to satisfy observational bounds on flatness and homogeneity, then a relatively

homogeneous Universe such as ours would not be consistent with the existence of a scalar field

such as h exhibiting an instability in its potential. We will return to this point in Sec. IV.

Consequently, having No  Nmax is necessary, but not su�cient, to guarantee the existence

of our Universe. After inflation ends, rapid reheating must occur to stabilize the potential and

prevent collapse of the entire spacetime. Finite temperature e↵ects generate a positive mass-

squared for h, m2
eff ⇠ T 2

R, where TR is the re-heat temperature. As long as m2
eff & �h�hi2, the

field is rapidly thermalized and driven to h�h2i = 0. This is easily satisfied, since the maximum

re-heat temperature is Tmax
R ⇠ p

HMP , while h�h2i is typically of size H2N
(2⇡)2

.

In deriving these results, we have employed several approximations. First, we have assumed

|�| h�h2(t)i ⌧ H2, such that the fluctuations are e↵ectively massless and the evolution of the

superhorizon modes can be considered in the slow-roll approximation. If � < 0, modes become

tachyonic once |�| hh2(t)i⇠> H2, leading to their rapid growth. This coupled with the rapid (i.e.,

not slow-roll) evolution of superhorizon modes in this regime accelerates the divergence of field

fluctuations, making the above estimate of Nmax an upper bound. However, the accelerated

growth of h�h2(t)i near Nmax means that this assumption is not violated significantly before

h�h2(t)i diverges, such that Nmax is a reasonable limit on the number of e-folds of inflation

within the Gaussian approximation. For the same reason, a bound derived by requiring that

a non-negligible but smaller than O(1) fraction of patches are forming defects will not be

significantly more constraining than Nmax.3

Second, as mentioned, we are working in the Hartree-Fock approximation, such that h�h4i =

3 h�h2i2. This holds if the operator h is a Gaussian stochastic quantity, but breaks down

3 Likewise, while the divergence is assumedly unphysical and would be regulated if we cut o↵ �h by, e.g.,

throwing away backreacting patches, such a procedure would not a↵ect these results until the fraction of

backreacting patches became non-negligible at N ⇠< N
max

.
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POST INFLATION

But, Some Black Vacua Were Created During 
Inflation.  What Happens to Them Post 
Inflation?

HERE, MOST TRICKY. CALCULATE 
EVOLUTION OF BUBBLES IN RADIATION 
DOMINATED, MINKOWSKI BACKGROUND

BLACK VACUA CRUNCH? -- CREATE DEFECTS

OR, THEY EXPAND



IF THEY EXPAND

THEN A SINGLE BLACK 
VACUA IS ENOUGH TO 
DESTROY UNIVERSE

SO 

SO, MUST STABILIZE 
POTENTIAL if

p < e�3N
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FIG. 5. BHM and PnoAdS as a function of H/⇤max for the central values mh = 125.7 GeV, mt =

173.34 GeV (left) and as a function of mt for mh = 125.7 GeV and HBICEP2 ⇡ 1014 GeV (right).

The survival of our universe either requires H/⇤max ⇠< 0.065 or, if the BICEP2 result holds, mt ⇠<
171.47 GeV, ⇠ 2.5� below the central value.

Achieving a non-negligible survival probability PnoAdS ⇠> e�1 requires BHM ⇠> 3No or, from

Eq. (19),

H

⇤max
⇠<

✓
2⇡2�e↵(⇤max)

9No

◆1/4

⇠ O(0.1). (22)

The exact limit on H/⇤max depends on �e↵(⇤max), which is determined by the boundary values

for the couplings at µ = mt (and hence by, e.g., mh,mt). However, as the limit goes as the

fourth root of �e↵(⇤max), it does not vary significantly throughout the preferred parameter

space. In Fig. 5, we show BHM and PnoAdS as a function of H/⇤max for the central values mh =

125.7 GeV, mt = 173.34 GeV, and as a function ofmt with H fixed to the approximate BICEP2

value HBICEP2 ⇡ 1014 GeV. As expected, the survival probability becomes negligible almost

instantaneously once BHM⇠< 200, corresponding to H/⇤max⇠> 0.065 (for mt = 173.34 GeV) or

mt ⇠> 171.47 GeV (for H = 1014 GeV). In Fig. 6, we show contours of 2⇡2�e↵(⇤max)
3

, which can

be used to determine the limit on H/⇤max for a particular choice of (mh,mt), and delineate

the region of parameter space exhibiting a significant survival probability for H = HBICEP2 and

Ne = 60.

Given the approximate form of Eq. (8) and the large powers involved in Eq. (20), we would

like to stress that the results here should be taken as estimates of where the survival of the
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an interesting line of inquiry that merits further study.

B. AdS Regions Dominate

We next consider the opposite limit, a pessimistic scenario in which a single AdS patch in

our past light cone is su�cient to destroy the asymptotically Minkowski regions and hence our

universe. Since our past light cone must contain at least e3No Hubble patches, for our universe

to have a non-negligible survival probability the transition probability for a single Hubble patch

must be exponentially close to unity, requiring H ⌧ ⇤max. In addition, as �e↵(⇤max) is small,

the potential barrier tends to be broad and su�ciently high in comparison to H that we can

compute the transition probability using a HM calculation. We find �e↵(⇤max) ⇠ 10�4 and

|V 00(⇤max)| ⇠ 10�3⇤2
max, such that |V 00(⇤max)| < 4H2 for

H

⇤max
⇠> 10�2. (18)

As mentioned previously in Eq. (8), the HM probability for a single Hubble patch to fluctuate

out of the false vacuum during one Hubble time is p, where p ⇠ e�BHM and

BHM =
8⇡2�V

3H4
=

2⇡2�e↵(⇤max)

3

✓
⇤max

H

◆4

(19)

For p ⌧ 1, one can approximate the survival probability during a single Hubble time as

1 � p ⇡ e�p. Thus, the probability of no Hubble patches transitioning during inflation to the

destructive AdS regime in our past light cone is

PnoAdS ⇠
N

oY

N
e

=1

(e�p)e
3N

e

=
N

oY

N
e

=1

e�e3Ni

�BHM (20)

and

� logPnoAdS ⇠
N

oX

N
e

=1

e3Ne

�BHM = e�BHM
e3(e3No � 1)

e3 � 1
' e3No

�BHM , (21)

where the last approximate equality indicates that the probability is dominated by the final

e-fold of inflation, as one would expect from exponential growth.
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STABILIZE POTENTIAL
PLANCK SUPPRESSED CORRECTIONS ARE 
SUFFICIENT

electroweak vacuum stability for two reasons. First, large h values may counter some of the

MP suppression, leading to non-negligible contributions to the potential as h rolls away. Con-

sequently, these corrections may stabilize the runaway direction. Second, the large inflationary

vacuum energy density due to the inflaton, VI(�) ⇠ M2
PH

2, can make higher dimension oper-

ators important during inflation. Specifically, as gravity couples to energy, the Higgs-graviton

couplings may generate a sizable e↵ective mass for the Higgs via a “gravitational Higgs mech-

anism,” which significantly alters the shape of the Higgs potential.

Consider the following dimension six Planck-suppressed corrections to the Higgs potential,

�V =
↵

M2
P

VI(�)h
2 +

↵2

M2
P

h6. (23)

As VI(�) ⇠ H2M2
P , the first term generates a mass for the Higgs field set by H that, if ↵ > 0,

serves to stabilize the Higgs potential to scales h ⇠ H.9 Since the transition from a highly

probable to an improbable universe (with the requirement that there be no unstable Hubble

patches in the past light cone) happens when H ⇠ ⇤max, this term is crucially important for

the evolution of the Higgs during inflation. The second term stabilizes the runaway direction

of the Higgs potential for ↵2 > 0, leading to a true minimum at h ⇠< MP . This a↵ects the

energy density in the true vacuum patches — h settles down to the minimum of the potential,

as opposed to continuously rolling to larger field values — and so could ultimately influence

the evolution of these patches, determining which of the scenarios discussed in Sec. III (true

vacuum patches crunch or dominate) is realized.10

To examine the e↵ects of the first operator, we parameterize the Higgs potential as

V (h) =
c

2
H2h2 +

�e↵(h)

4
h4 (24)

and investigate the implications for electroweak vacuum stability, focusing on the stabilizing

choice c > 0. Neglecting the running of �e↵(h) (which is small for large h, see Fig. 2), the

9 For quadratic inflation, this is analogous to the stabilizing term considered in, e.g., [24].
10 One might have thought that the dimension eight operator ↵3

M4
P
VI(�)h4 could potentially counter the negative

Higgs quartic coupling and prevent the Higgs potential from turning over at all for H⇠< MP . However, even

for the large H favored by BICEP2, VI(�)/M4

P ⇠ H2/M2

P ⇠ 10�10. The coe�cient of the quartic term in the

Higgs potential is |�
e↵

/4| ⇠ 10�3 at large energies, so this correction is irrelevant for reasonable values of ↵
3

.
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FIG. 7. Contours of BHM as a function of c and H for the central values mh = 125.7 GeV,

mt = 173.34 GeV (left) or mt for mh = 125.7 GeV and HBICEP2 ⇡ 1014 GeV (right). The gray shaded

region denotes BHM < 180, in which case the survival probability of our universe becomes negligible

when a single AdS volume in our past light cone would destroy our universe. In the right plot, we

also show the 2� regions for mt. Over much of the parameter space, a modest c⇠< O(1) is su�cient to

stabilize the potential and thus increase the likelihood of our universe surviving inflation.

V. CONCLUSIONS AND OPEN QUESTIONS

We have studied the evolution of the Higgs field during inflation in the presence of a poten-

tially catastrophic true minimum. Our goal was to understand how improbable our universe is

given the conditions for inflation that likely existed in the early universe. This has become es-

pecially relevant in light of the BICEP2 results, which favor a scale of inflation H ' 1014 GeV,

likely several orders of magnitude larger than the scale at which the Higgs potential is maxi-

mized, ⇤max (see Fig. 2).

We focused on elucidating and delineating the appropriate calculation in three di↵erent

regimes of validity: where Coleman-de Luccia (CdL), Hawking-Moss (HM) or Fokker-Planck

(FP) evolution should be applied. In particular, we presented numerical and analytical solutions
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SO WHAT?

If we can Always Stabilize Potential 
Sufficiently with Planck Slop, Why Study 
This?

SM Higgs + Inflation Both Appear to Be 
Real; Worth Understanding the Dynamics

One Tantalizing Fact:



During Inflation
Higgs is Stable Enough to Allow Us to 
Inflate Long Enough to Give Rise to A 
Universe Like Ours .....

But Not Much Longer

High Scale Quartic Needed to Be Small for 
that to Happen

50 . N
max

. 90

Second we observe that, for � > 0, the interaction tends to reduce the size of the fluctuations

and stabilize the scalar field—the distribution of field values approaches an equilibrium state,

as described in [26]. The more interesting case is when � < 0, as for the SM Higgs with H > ⇤I

such that �(H) < 0. In this case, we see that the superhorizon fluctuations grow even more

rapidly than for a massless field, and in fact diverge after a finite number of e-folds,

Nmax =
⇡2

p�2�
. (15)

What does this divergence mean physically? As mentioned previously, h�h2(t)i is the cor-

relation function for local superhorizon mode fluctuations (“local” meaning the field value is

averaged over a Hubble-sized patch). It is analogous to more familiar correlation functions such

as h��2(t)i, where � is the inflaton and �� represents the local quantum fluctuations around

the homogeneous background value. In the same way that the local fluctuations in the infla-

ton value give rise to local fluctuations in energy density, the fluctuations �h(x, t) give rise to

di↵erent values of the field value in di↵erent patches and hence di↵erent local energy densities.

If the field value in a particular patch fluctuates to a very large value such that |�| �h4 ⇠>
H2M2

P , the energy density in the field ⇢h ⇡ V (�h) < 0 may cancel the inflaton energy density

⇢� ⇠ H2M2
P , producing a patch in which the local energy density is small or negative. This

backreaction causes the patch to stop inflating and crunch, giving rise to a defect such as a

black hole. More precisely, solving the Friedmann equations reveals that, once the field value

in a patch exits the slow-roll regime, |�h|⇠>
q

3
��

, the field value diverges rapidly and the patch

quickly evolves to a singularity, within ⇠ 1 e-fold. In the Gaussian approximation, though, the

typical size of a field fluctuation in a patch is of order
ph�h2(t)i. Consequently, such large

fluctuations are extremely rare throughout most of inflation. Moreover, the rare occurrence

of backreacting and non-inflating patches does not disrupt inflation globally, and the resulting

defects would be diluted by inflation, minimizing observational implications.

However, when N approaches Nmax, large field value fluctuations are no longer rare; a

significant fraction of the patches that eventually evolve into the observable Universe would

develop instabilities. Consequently, the resulting Universe would exhibit large inhomogeneities

as a result of the defects produced—in the case of our Universe, large inhomogeneities would be

10



Summary
Following Higgs Evolution During Inflation 
Requires Application of Correct Probability 
Evolution

Post-Inflation Evolution Depends on How 
AdS Bubbles Evolve -- if They Expand, 
Require None in Past Lightcone

Can Stabilize Potential Sufficiently with 
Planck Suppressed Corrections

Higgs Instability: Tantalizing Hint or 
Coincidence?


