

A new front: boosted jets

- W, Z, and H bosons can decay to 2q final states, giving normally 2 jets
- \bullet For large enough p_T , the decay products might merge into a single jet
- These jets are special: the mass of the jet peaks at the "right" value (unlike QCD jets, for which large mass values are generated by QCD)

Jet Substructure

Jet Substructure in CMS

 N-subjettiness proposed to quantify how well the constituents of a jet can be arranged in N subjets

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min \left[\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k} \right]$$

- Possible to compute it for several N (e.g. test 1-prong vs 2-prongs hypotheses)
- Optimal S vs B discrimination when ratio $\tau_{21} = \tau_2/\tau_1$ is considered

J. Thaler and K. Van Tilburg http://arxiv.org/abs/1011.2268

Tagging efficiency vs mistag

- Tagging efficiency between 20%-40%, depending on the resonance mass and the value of τ_{21}
- Mistag probability below 10%, dropping quickly at large masses for HP tagged events

A double-tag dijet event

CMS results with 8TeV data

- Two bump hunts in HP and LP samples, like "classic" dijet search
- Combined assuming the HP/LP breakdown expected for Randall-Sundrum gravitons
- Some excess seen in LP, not confirmed in HP

CMS results with 8TeV data

- Two bump hunts in HP and LP samples, like "classic" dijet search
- Combined assuming the HP/LP breakdown expected for Randall-Sundrum gravitons
- Some excess seen in LP, not confirmed in HP

AW or a Z?

- Not possible to clearly separate Ws and Zs
 - The mass resolution is about 10 GeV ≈ W/Z mass split
 - Similar jet-substructure behavior

- Cannot distinguish ZZ/ZW/WW final states
- Analysis performed as bump hunt (like dijet search)
- Result interpreted under different signal hypotheses

Semileptonic Searches in CMS

- No striking excess seen
- Events found around1800 GeV
- Yield small compared to bkg uncertainty
- Stronger in Ilj analysis
- Very weak in lvj analysis, which is the most sensitive to a VV signal

Semileptonic Searches in CMS

- No striking excess seen
- Events fall around1800 GeV
- Yield small compared to bkg uncertainty
- Stronger in Ilj analysis
- Very weak in lvj analysis, which is the most sensitive to a VV signal

Combination

CMS boosted H→bb Tagging

Subjet CSV

- resolve two subjets of R=0.2 inside the H jet
- apply the standard b-tagging algorithm to the subjets
- similar performances (and data/MC comparison)
 than the standard b-tagging algorithm
- Strong bkg killer: 2 b-tags inside the jet

• Fat-jet CSV

- apply the standard b-tagging algorithm to the subjets
- no need to resolve subjets (less demanding for detector granularity)

X→H(bb)W(Iv) CMS search

- Same analysis strategy as V(qq)W(ln). Better S/B
 - Added b-tagging for Higgs: large suppression factor to bkg
- CMS-EXO-14-010
- Tuned the jet mass window around 125 GeV: more bkg suppression
- Observed 4 events at $M_{WH} \approx 1800$ GeV in electron channel (3σ local significance)
- Nothing in the muon
- Excess about 2σ of combined local significance

X→H(bb)W(Iv) CMS search

- Jet mass compatible with bkg-only distribution for muon sample
 - expected, since the bkg is from fake Hbb candidates
- Interestingly, the excess events translate into a signal-like bump also in the Higgs mass

Dijet

Observed/Expected

19

- Not much in ATLAS
- ≈2σ (local) in CMS
- Only place where both experiments have observed limit > expectation

Dilepton

- CMS sees excess (among many others). Not relevant per se (LEE), but interesting in the full picture
- ATLAS sees no excess
- Two statements are not in contradiction: same observed limits

Conclusions (so far)

- No claim of discovery (of course)
- Still, there are a few interesting excesses around 2 TeV
 - overall, in VV (with some confusing pattern, atlas too)
 - in WH
 - in dijet (ATLAS too), and maybe in dilepton
- For sure something to hope for
 - ... and to watch carefully in Run II

Bka estimate from bump-hunt fit

Combination of Run-1 Exotic Searches in diboson final states at the LHC

F. Dias, c S. Gadatsch, a M. Gouzevich, b C. Leonidopoulos, c S.F. Novaes, d A. Oliveira, e M. Pierini, a T. Tomei d

- Few ATLAS/CMS individuals working together to combine ATLAS+CMS results from publicly available information
- Work incomplete, still missing some signal (e.g. WZ in all channels), and jobs are still running
- Stay tuned for the paper to see the full picture

^a CERN, Geneva

^b Université Claude Bernard-Lyon I, Lyon

^c University of Edinburgh, Edinburgh

^d Universidade Estadual Paulista, Sao Paulo

^e Universita e INFN, Padova

Bkg estimate from bump-hunt fit

- Start from the published data (hep format or plots)
- Bkg estimate problematic
 - missing correlations, which often matter
 - (sometimes) bkg uncertainties not quoted

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{jj}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln(x)}}$$

- When info missing, bkg estimate using a dijet-like bump hunt
 - fit in sideband vs full region give similar results
 - Simpler function (expo) used for low-stat channels (IIJ)
- $x=m_{\rm jj}/\sqrt{s}$
- For ATLAS VV fully hadronic, simplified function used according to ATLAS prescription
- Diagonalize covariance matrix + Bkg systematic for eigenvalues

Comparison with nominal result

In general, nominal bkg (from ATLAS or CMS) within our fit+systematic

- Sometimes (e.g. ATLAS ZZ) larger deviations observed

 - We use the nominal result as a background estimate
 We rescale the systematic variations by nominal/our fit ratio
- Rescaling not always needed (e.g. CMS IvJ & IIJ)

Limit Comparison

Limit Comparison

ATLAS+CMS combo: one channel

Signal Strength: JJ only

- Combining ATLAS large excess + CMS small excess point to a cross section of about 10 fb-1
- ullet With this smaller signal value, the discrepancies across channel is mitigated (e.g. wrt $l\nu J$)
- Despite the reduction in signal strength, the significance is basically unaffected (see next slide)
 - Dut of ATLAS+CMS combination a more consistent picture emerges

Model Dependence: JJ only

- Combination confirms the signal excess (with much reduced signal strength)
- The significance of the signal depends on the signal hypothesis
- Interestingly enough, significance maximised when WW decay suppressed (consistent with picture emerging from other signals)
 - direct consequence of bkg breakdown in ATLAS 3 categories

ATLAS+CMS combo: WW hypothesis

ATLAS+CMS combo: ZZ hypothesis

ATLAS+CMS combo: WZ hypothesis

From boosted V to boosted H→bb

Subjet CSV

- resolve two subjets of R=0.2 inside the H jet
- apply the standard b-tagging algorithm to the subjets
- similar performances (and data/MC comparison)
 than the standard b-tagging algorithm
- Strong bkg killer: 2 b-tags inside the jet

Fat-jet CSV

- apply the standard b-tagging algorithm to the subjets
- no need to resolve subjets (less demanding for detector granularity)

More Higgs decays

H→WW*

- Four jets collapsing into a single jet
- \bullet Same strategy as boosted V, using τ_{42} rather than τ_{21}

CMS-EXO-14-009

- Same strategy as standard tau reconstruction
- In this case, two overlapping taus
 - for eth and mth, search for a tau overlapping with an e/m, removing isolation requirements
 - for thth, modify the tau identification algorithm to consider the case of two overlapping taus (i.e., different multiplicity requirements

X→H(bb/WW*)V(qq) search

- Same strategy as fully hadronic VV search
- Sensitive to both WH and ZH (no discrimination)
- No significant excess seen: some hint of a bump, but uncertainty on bkg shape "covers" it
- Results combined assuming Higgs SM BRs

$X \rightarrow H(\tau \tau)V(qq)$ search

- Same V tagger as other analyses
- Special reconstruction of boosted taus
- Background predicted from data sidebands
 - low jet mass window
 - ditau mass window below the Z
- No excess observed

Jets of What?

- Traditionally, jets of energy deposits in calorimeters
 - Call each deposit a massless "particle"
 - Add the 4-mom of particles to get jet 4-mom
 - Require good calorimeter resolution
- Particle Flow: use information from all detector

components

neutral

hadron

charged

hadron

photon

 reconstruct particles first (e, μ, γ, charged hadrons and neutral hadrons)

- cluster particles in jets
- Better energy resolution and much more

Precision Physics with jets

- Jet physics @LHC is precision physics
 - Multijet NLO calculations in event generators
 - Accurate simulation of detector effects
 - Solid jet definition
- Intense program of SM measurements served as precise validation
- This set the stage for an extended search for New Physics with jets

HIGH-PT MUONS

- Muon momenta are measured through the bending in the magnetic fields
- The bending is reduced at large muon momenta
- For high-pT muons, the precision deteriorates
- Unlike the case of measurements with W/Z/top/H, muon final states are not the golden channel for this physics
- Despite the resolution, high-pT muons are an excellent discovery tool

 $\sigma_{p_T}/p_T \sim p_T/(qBL)$

HIGH-PT ELECTRONS

- Electron momenta are measured in the tracker and in the calorimeter
- The resolution of the calorimeter improves with energy, giving a better S vs B discrimination above 1 TeV
- Electrons (and photons) are excellent tools to search for davy resonances and measure their masses

HIGH-PT ELECTRONS

- Electron momenta are measured in the tracker and in the calorimeter
- The resolution of the calorimeter improves with energy, giving a better S vs B discrimination above 1 TeV
- Electrons (and photons) are excellent tools to search for davy resonances and measure their masses

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

a ~ 0.027 GeV^{1/2} b < 200 MeV CMS

DILEPTON SEARCH

