Superconducting Detectors for Super Light Dark Matter

Yonit Hochberg

YH, Yue Zhao and Kathryn Zurek 1504.07237 and 1511.sooon

YH @ GGI, Oct. 2015

Outline

- Why?
- How?
- Rates & Results

Why?

YH @ GGI, Oct. 2015

The Universe is Dark

No suitable candidate within the Standard Model (SM).

Requires at least one new stable/extremely long lived particle to exist today.

The WIMP Miracle

Correct thermal relic abundance:

$$\langle \sigma_{\rm ann} v \rangle \equiv \frac{\alpha^2}{m_{\rm DM}^2} \sim 3 \times 10^{-26} \ {\rm cm}^3/{\rm sec}$$

For weak coupling, weak scale emerges.

The dominant paradigm for ~35 years.

Been searching for WIMPs... Dominant paradigm is being challenged.

Sociology

Dominant paradigm is being challenged.

- Big puzzles
- Great if a solution gives an option for dark matter candidate
- Big ideas: SUSY, extra dimensions...

- Dark matter exists
- Explain on its own
- Perhaps decoupled from other puzzles
 - Think outside the WIMP box

theoretically & experimentally

Beyond the WIMP

Model zoo

YH @ GGI, Oct. 2015

Beyond the WIMP

YH @ GGI, Oct. 2015

- Nuclear recoils: $E_{\rm NR} = \frac{q^2}{2m_N} = \frac{(m_{\rm DM}v)^2}{2m_N} \gtrsim E_{\rm th} \sim {\rm keV}$
- For sub-GeV dark matter, scatter off electrons!

Kinetic energy available: $E_D \sim \mu_r v^2$

$$m_{\rm DM} \sim {\rm MeV} \Rightarrow E_D \sim {\rm eV}$$

electron ionization, semiconductors

[Essig, Mardon, Volansky, PRD 85, 076007 (2012)]

- Nuclear recoils: $E_{\rm NR} = \frac{q^2}{2m_N} = \frac{(m_{\rm DM}v)^2}{2m_N} \gtrsim E_{\rm th} \sim {\rm keV}$
- For sub-GeV dark matter, scatter off electrons!

Kinetic energy available: $E_D \sim \mu_r v^2$

$$m_{\rm DM} \sim {\rm MeV} \Rightarrow E_D \sim {\rm eV} \implies {\rm electron\ ionization,\ semiconductors}$$

 $m_{\rm DM} \sim {\rm keV} \Rightarrow E_D \sim {\rm meV} \implies {\rm electron\ ionization,\ semiconductors}$

- Nuclear recoils: $E_{\rm NR} = \frac{q^2}{2m_N} = \frac{(m_{\rm DM}v)^2}{2m_N} \gtrsim E_{\rm th} \sim {\rm keV}$
- For sub-GeV dark matter, scatter off electrons!

Kinetic energy available: $E_D \sim \mu_r v^2$

 $m_{\rm DM} \sim {\rm MeV} \Rightarrow E_D \sim {\rm eV}$ \implies electron ionization, semiconductors $m_{\rm DM} \sim {\rm keV} \Rightarrow E_D \sim {\rm meV}$ \implies Superconductors!

[YH, Zhao and Zurek, 1504.07237]

Superconductor Cheat Sheet

- Ground state of superconductor = Cooper pairs; Binding energy (gap) $\Delta \lesssim meV$
- <u>The idea:</u>

DM scatters with Cooper pairs, deposits enough energy, breaks Cooper pairs, creating quasiparticles \rightarrow detect

Superconductor Cheat Sheet

- For energies exceeding the gap, scatter with free electrons in a Fermi-degenerate sea ("coherence factor" → 1)
- Ram an electron, create quasiparticles which random walk until collected by e.g. a Transition Edge Sensor (TES)

Heat calorimeter

TESs used to detect microwaves and x-rays in astro applications (e.g. SPT, ACT, SuperCDMS)

Superconductor Cheat Sheet

• Current status? Not there yet

TES	$T_c [\mathrm{mK}]$	Volume $[\mu m \times \mu m \times nm]$	Power Noise $[W/\sqrt{Hz}]$	$\sigma_E^{\rm now}$ [me	eV] σ_E^{scale} [meV]
W [3]	125	$25 \times 25 \times 35$	2.72×10^{-18}	120	1.1
Ti [5]	50	6 imes 0.4 imes 56	2.97×10^{-20}	47	22
MoCu [6]	110.6	$100\times100\times200$	4.2×10^{-19}	295.4	0.3

- Need to beat noise
- Energy resolution $\sigma_E \propto \sqrt{T^3 V}$

Reduce temperature and volume for O(meV) resolution

Detector Concept

Basic device idea: Large exposure but high energy resolution = excitation concentration (E.g. SuperCDMS)

Absorber \rightarrow Collection fins \rightarrow TES

Design by Matt Pyle

Detector Concept

 Quasiparticle lifetime of order a milisecond

 With velocity 10⁻²c , plenty of time to random walk and get absorbed before recombine

Design by Matt Pyle

Detector Concept

Comments:

- Low energy deposits: gapless absorber such as a metal
- But better: metal in superconducting phase so that the gap controls the thermal noise
- Proof of concept

Design by Matt Pyle

Rates & Results

YH @ GGI, Oct. 2015

Rates

Scatter off electrons in Fermi-degenerate metal – Pauli blocking

Rates

Rates

Reach

Reach

Summary

- Proposed new class of detectors using superconductors
- Sensitive to O(meV) energy deposits \rightarrow keV dark matter
- R&D to lower noise such that O(meV) energies are detectable. (Port over everything being done now for semiconductors.)
- Other absorbers? Other calorimeters?
- Populate the models space

Prospects electron-ionization, semiconductors Superconductors! (σ_{DM-e}) Xenon10... LUX, Xenon etc. (σ_{DM-N}) E_D>eV E_D> meV keV MeV GeV

Thanks!

YH @ GGI, Oct. 2015

Scalings

$$\begin{split} \mathrm{NEP} &\propto \sqrt{T^2 G} \propto T^3 \\ G &\propto T^4 \\ \tau &\propto \frac{C}{G} \\ C &\propto VT \\ \sigma_E &\propto \mathrm{NEP} \sqrt{\tau} &\propto \sqrt{T^3 V} \end{split}$$