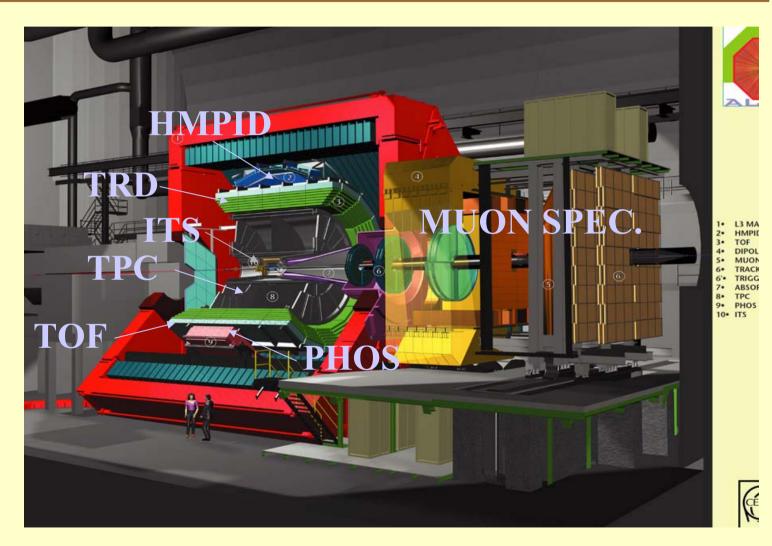


ALICE diffraction and forward physics

- ALICE detector
- Diffractive gap trigger in ALICE
- Pomeron/Odderon signatures in p-p
- Pomeron signatures in Pb-Pb
- Central diffractive production of χ_c in p-p
- Signature of gluon saturation in diffraction
- Conclusions, outlook

The ALICE experiment



Acceptance central barrel

$$-0.9 < \eta < 0.9$$

Acceptance muon spectr.

$$-2.5 < \eta < -4.$$

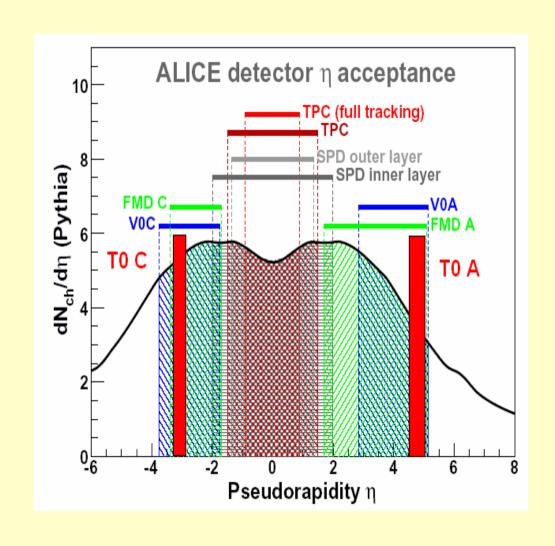
→ additional forward detectors (no particle identification)

$$1 < \eta < 5$$

 $-4 < \eta < -1$

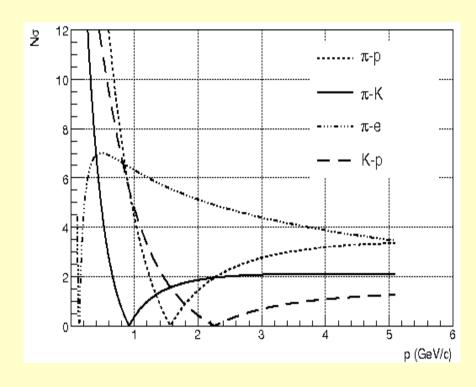
 \rightarrow definition of gaps η_+ , $\eta_$ p-p luminosity L = 5×10^{30} cm⁻²s⁻¹:

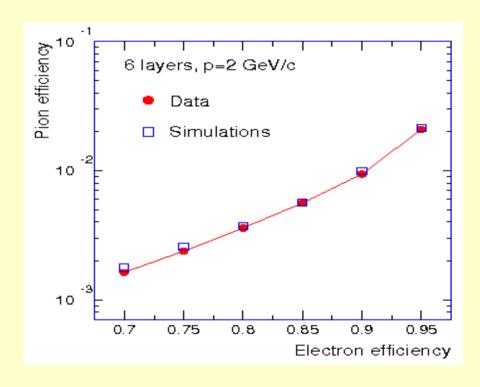
→ one interaction/ 80 bunches diffractive L0 trigger (hardware):


Pixel or TOF mult (central barrel)

gap
$$\eta_+$$
: $3 < \eta < 5 \rightarrow \Delta \eta \sim 0.5$

gap
$$\eta$$
-: $-2 < \eta < -4 \rightarrow \Delta \eta \sim 0.5$


high level trigger (software):


$$-3.7 < \eta < 5$$

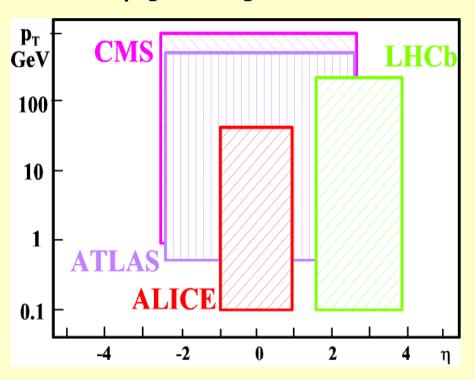
ALICE central barrel particle identification

Particle identification by dE/dx in central barrel as function of momentum

In addition time of flight information for non-relativistic momenta

Electron-pion separation in TRD as function of momentum

 \rightarrow identify vector mesons by e^+e^- decay

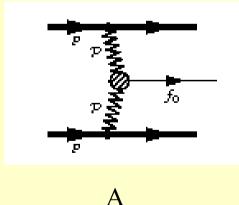

ALICE central barrel comparison to other LHC detectors

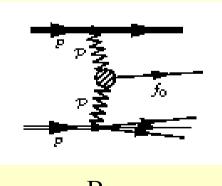
low magnetic field

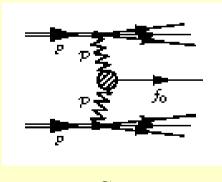
	Magn. field (T)	P _T cutoff GeV/c	Material x/x0 (%)
ALICE	0.2-0.5	0.1-0.25	7
ATLAS	2.0	0.5 (0.08)	20
CMS	4.0	0.75 (0.2)	30
LHCb	4Tm	0.1	3.2

η-pt acceptance

 $\rightarrow low p_T trigger ?$


 \rightarrow good ALICE acceptance for ϕ , J/Psi, Ψ by electron decays ($p_T > 0$ MeV/c)


ALICE forward calorimeter


- neutron calorimeter on each side
 - Placed at 116 m from interaction region
 - Measures neutral energy at 0°
- Diffractive events with and without proton breakup:
 - pp \rightarrow ppX : no energy in zero degree calorimeters
 - pp \rightarrow pN*X, N*N*X: energy in one or in both calorimeters

Identify the three topologies:

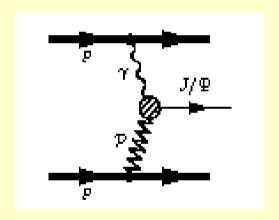
B

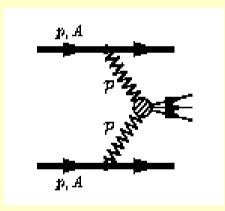
$$\frac{\sigma_{A}}{\sigma_{B}} \equiv f(x_{1}, x_{2}, ...) \frac{\sigma_{elast}}{\sigma_{SD}}$$

$$\frac{\sigma_{B}}{\sigma_{C}} \equiv g(x_{1}, x_{2}, ...) \frac{\sigma_{SD}}{\sigma_{DD}}$$

$$\sigma_{A} = \sigma_{A} = \sigma_{A}$$

 $\frac{\sigma_A}{\sigma_C} = h(x_1, x_2, ...) \frac{\sigma_{elast}}{\sigma_{DD}}$


 \rightarrow what are $f(x_i)$, $g(x_i)$, $h(x_i)$?


ALICE diffractive physics

ALICE acceptance matched to diffractive central production:

γ-pomeron, double pomeron, odderon-pomeron

Data taking:

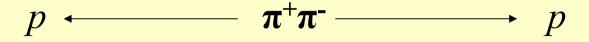
pp @ L =
$$5x10^{30}$$
 cm⁻²s⁻¹ $(\rightarrow \frac{d\sigma}{dy}\Big|_{y=0} \sim nb)$
pPb @ L = 10^{29} cm⁻²s⁻¹
PbPb @ L = 10^{27} cm⁻²s⁻¹

$$(\rightarrow \frac{d\sigma}{dy}\bigg|_{y=0} \sim nb)$$

central barrel had gap gap

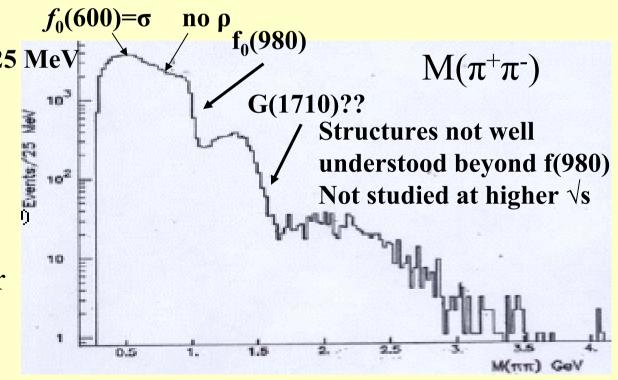
Pomeron signatures

POMERON: C = +1 part of gluon color singlet exchange amplitude


Compare pomeron-pomeron fusion events to min bias inelastic events

- 1) Enhanced production cross section of glueball states: *study resonances in central region when two rapidity gaps are required*
- 2) Slope pomeron traj. α ' $\sim 0.25 GeV^{-2}$ in DL fit, α ' $\sim 0.1 GeV^{-2}$ in vector meson production at HERA, t-slope triple pom-vertex < $1 GeV^{-2}$
 - \rightarrow mean k_t in pomeron wave function $\alpha' \sim 1/k_t^2$ probably $k_t > 1$ GeV
 - \rightarrow < p_T > secondaries in double pomeron > < p_T > secondaries min bias
- 3) $k_t > 1$ GeV implies large effective temperature
 - $\rightarrow K/\pi$, η/π , η'/π ratios enhanced

Central exclusive $\pi^+\pi^-$ production at $\sqrt{s} = 63$ GeV

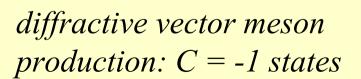

Data taken by Axial Field Spectrometer at ISR $\sqrt{s} = 63$ GeV (R807) very forward drift chambers added for proton detection

3500 events/25 MeV

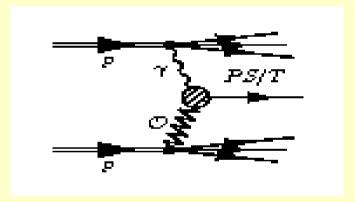
T.Akesson et al 1986:

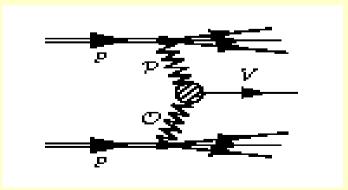
Flavour independence: equal numbers of $\pi^+\pi^-$ and K^+K^- pairs for masses larger than 1 GeV

Signature Odderon cross section



ODDERON: C = -1 part of gluon color singlet exchange amplitude


Look at exclusive processes with rapidity gaps


Examples:

diffractive pseudo scalar and tensor meson production: C = +1 states

→ measure cross sections

The hunt for the Odderon

- Production cross sections in pp at LHC energies
 - diffractive production: $\pi_0, \eta, \eta_c(J^{PC} = 0^{-+}), a_2(2^{++})$
 - → contributions from Photon-Photon, Photon-Odderon, Odderon-Odderon
 - Look for diffractive J/ Ψ production: $J^{PC} = 1^{--}$
 - → Photon-Pomeron, Odderon-Pomeron contributions
 - \rightarrow such an experimental effort is a continuation of physics programs carried out at LEP ($\gamma\gamma$) and HERA (γ -Odderon)

Diffractive J/Y production in pp at LHC

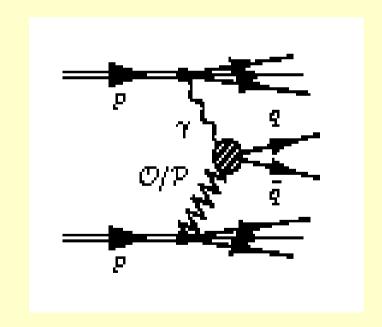
- First estimates by Schäfer, Mankiewicz, Nachtmann 1991
- pQCD estimate by Bzdak, Motyka, Szymanowski, Cudell

- Photon: t-integrated
$$\frac{d\sigma}{dy}\Big|_{y=0} \sim 15 \text{ nb} \quad (2.4 - 27 \text{ nb})$$

- Odderon: t-integrated
$$\frac{d\sigma}{dy}\Big|_{y=0} \sim 0.9 \text{ nb} \quad (0.3 - 4 \text{ nb})$$

At $L = 5x10^{30} \text{ cm}^{-2}\text{s}^{-1}$:

- \rightarrow 0.15 J/\Psi in ALICE central barrel in 1 s, 150k in 10^6 s
- \rightarrow 9000 in e^+e^- channel in 10^6 s
- \rightarrow identify Photon and Odderon contribution by analysing p_T distribution (Odderon harder p_T spectrum)


Signature Odderon interference

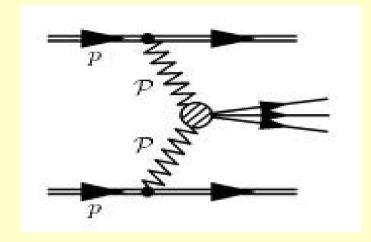
- Cross sections contain squared Odderon amplitudes
 - → Odderon-Pomeron interference!

$$d\sigma \sim |A\gamma(A_P + A_O)|^2 d^N q$$

 $\sim |A_P|^2 + 2Re(A_P A_O^*) + |A_O|^2$

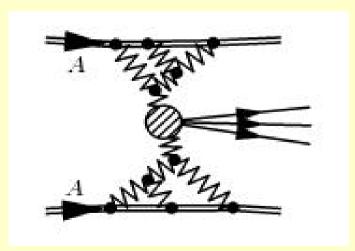
- → look at final states which can be produced by Odderon or Pomeron exchange
- → find signatures for interference of C-odd and C-even amplitude

Interference signal



- Interference effects (relative contribution C=-1)
 - Asymmetries in $\pi^+\pi^-$ and K^+K^- pairs $(C=\pm 1)$ in continuum
 - \rightarrow charge asymmetry relative to polar angle of π^+ in dipion rest frame
 - → fractional energy asymmetry in open charm diffractive photoproduction
 - → asymmetries in HERA kinematics estimated 10 % 15 %

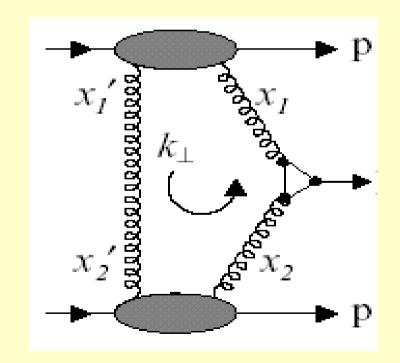
Signatures of Pomeron in lead-lead collisions



pomeron exchange in p-p

pomeron exchange in Pb-Pb: absorption, shadowing

→ A-dependence reflects effects of triple pomeron couplings


Central exclusive production

Diffractive Higgs production has small cross section with large uncertainties (gap survival factor, Sudakov factor) Same formalism can be used to predict $\gamma\gamma$, dijet and χ_c,χ_b

 → check uncertainties by measuring systems with larger cross section (smaller mass)

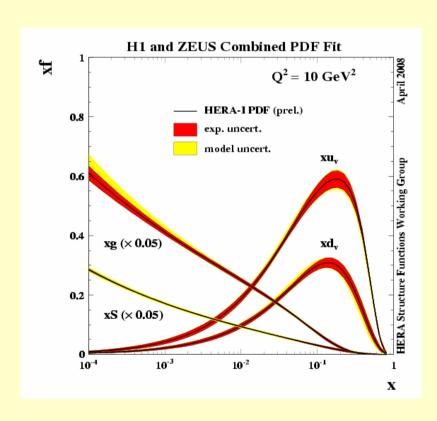
. \rightarrow measure dijets and χ_c with rapidity gap on either side

ALICE measurement of χ_c

• Khoze, Martin, Ryskin, Stirling 2004:

$$\chi_c$$
 at LHC $\sqrt{s} = 14$ TeV: $\frac{d\sigma_{excl}}{dy} \Big|_{y=0} = 340 \text{ nb} \rightarrow 3.5 \cdot 10^6 \chi_c \text{ in } 10^6 \text{ s}$

decay mode	BR	signal	backgnd
$\chi_c ightarrow \ \pi\pi$	$7 \cdot 10^{-3}$	$2.4 \cdot 10^4$??
$\chi_c \rightarrow K^+ K^-$	6.10^{-3}	$2.1 \cdot 10^4$??
$\chi_c \rightarrow J/\psi \gamma$	$1 \cdot 10^{-2}$	$3.5 \cdot 10^4$??
$\chi_c \rightarrow pp$	$2 \cdot 10^{-4}$	700	??

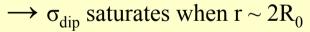

 χ_c measurement seems feasible

feasibility study $\chi_c \rightarrow J/\psi \gamma$, BR $J/\psi \rightarrow e^+e^-$, acceptance γ , reconstruction eff, signal ~35

Gluon saturation

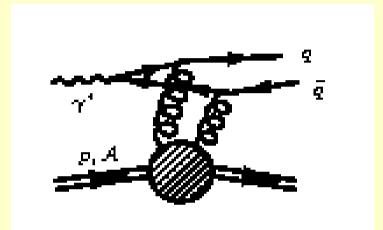
• Fits of parton densities xu_v, xd_v, xg, xS to HERA data

- How does gluon density behave at low x?
- Where does gluon saturation set in?
- Are there observables which are sensitive to gluon saturation?


Heavy quark photoproduction in pp @ LHC

- Photoproduction of $Q\overline{Q}$
 - photon fluctuates into QQ,
 - Interacts as color dipole

$$\sigma_{dip}(x, r^2) = \sigma_0 \{1 - \exp(-\frac{r^2}{4R_0^2(x)})\}$$
 Golec-Biernat, Wuesthoff 1999


$$R_0(x) = \frac{1}{GeV} \left(\frac{x}{x_0}\right)^{\lambda/2} \quad \sigma_0, \ \lambda \ from \ fits \ of \ F_2 \ with \ x < 0.01$$

$$\sigma(pp \to Q\overline{Q}pp) = 2\int \frac{dn_{\gamma}^{p}(\omega)}{d\omega} \sigma_{p \to QQ(W_{\gamma h})} d\omega$$

$Q\overline{Q}$ (LHC)	Collinear pQCD	CGC model
cc	16 μb	5 μb
$b \overline{b}$	230 nb	110 nb

Goncalves, Machado Phys. Rev. D71 (2005)

Diffractive Photoproduction of heavy quarks

- Advantage of diffractive photoproduction
 - Clear final state defined by two rapidity gaps

Goncalves, Machado Phys. Rev. D75 (2007)

	pp	pPb	PbPb
\overline{c}	92 nb	54 μb	59 mb
$b \overline{b}$	0.2 nb	0.09 μb	0.01 mb

pPb mode: $L = 10^{29} \text{ cm}^{-2}\text{s}^{-1} \rightarrow R(\bar{c}c) \sim 5 \text{ Hz}$ Acceptance $\sim 10 \%$, Efficiency $\sim 50 \% \rightarrow R(\bar{c}c) \sim 20 \text{k per day}$

Heavy quarks can also be produced by central exclusive diffraction, ie two pomeron fusion \rightarrow harder spectrum of quarks, hence could be disentangled in p_T spectrum

Conclusions, outlook

- ALICE has unique opportunity to do soft diffractive physics @LHC
- Diffractive trigger defined by two rapidity gaps
- Neutral energy measurement at 0^0
- Phenomenology of Pomeron/Odderon
- Multipomeron couplings in comparison pp AA data
- Measurement of diffractive χ_c feasible
- Gluon saturation in heavy-quark photoproduction
- Photon-Photon physics