

Single Top at LHeC

Xifeng RUAN, Sukanta Dutta, Ashok Goyal, Mukesh Kumar, Bruce Mellado University of the Witwatersrand Johannesburg, South Africa LHeC workshop arXiv: 1307.1688

Content

- Introduction
- Theoretical modelling
- MC production and detector setup
- Event selection
- Bin analysis
- Conclusion

Introduction

- Measure the anomalous W tb couplings in the single anti-top quark production through e-p collisions.
- Test the generic lowest order CP conserving Lagrangian for the W tb interaction, which allows a right-handed vector, as well as left- or right-handed tensor couplings.
- Examine the one dimensional distributions of the various kinematic observables corresponding to all anomalous couplings in both hadronic and leptonic decay modes of W-.
- Providing the constrain on the anomalous couplings on LHeC

Single top production

Figure 1. Single anti-top quark production through charge current at the e-p collider. The blobs at vertices 1 and 2 show the effective $W^-t\bar{b}$ couplings, which includes the SM contribution. Further W^- decays into hadronic mode via light quarks $(j \equiv \bar{u}, d, \bar{c}, s)$ or leptonic mode $(l^- \equiv e^-, \mu^-)$ with missing energy.

Single top production as a function of Ee, Ep=7TeV

Theoretical modelling

$$\begin{aligned} \mathscr{L}_{Wtb} &= \frac{g}{\sqrt{2}} \Big[W_{\mu} \bar{t} \gamma^{\mu} (V_{tb} f_1^L P_L + f_1^R P_R) b - \frac{1}{2 \, m_W} W_{\mu\nu} \bar{t} \sigma^{\mu\nu} (f_2^L P_L + f_2^R P_R) b \Big] + h.c. \\ &\text{where } f_1^L \equiv \bar{1} + \Delta f_1^L, W_{\mu\nu} = D_{\mu} W_{\nu} - D_{\nu} W_{\mu}, D_{\mu} = \partial_{\mu} - ieA_{\mu}, \\ &\sigma^{\mu\nu} = i/2 \, (\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu}). \\ &\text{In SM } |V_{tb}| f_1^L \approx 1 \text{ and at tree level } \Delta f_1^L, f_1^R, f_2^L \& f_2^R \text{ vanishes.} \end{aligned}$$

- CP conserving, f is real,
- CP violating, f is complex[hep-ph/0605190]
- Measure the influence of fs on xsection and kinematic shapes

Upper limits from other experiment

- ► Assuming only one anomalous coupling to be non-zero at a time $-0.13 \le |V_{tb}| f_1^L \le 0.03, -0.0007 \le f_1^R \le 0.0025, -0.0015 \le f_2^L \le 0.0004,$ $-0.15 \le f_2^R \le 0.57$ from *B* decays [Phys. Rev. D 78, 077501 (2008)]
- ▶ Single top production at DØ assuming $|V_{tb}|f_1^L = 1$, $|f_1^R| \le 0.548$, $|f_2^L| \le 0.224$, $|f_2^R| \le 0.347$ [Phys. Lett. B 713, 165 (2012)]
- ► Associated *tW* production at LHC through γp collision $|f_1^R| \le 0.55$, $|f_2^L| \le 0.22$, $|f_2^R| \le 0.35$ [Phys. Rev. D 86, 074026 (2012)]
- ▶ ATLAS: asymmetries associated through angular distribution $\text{Re}(f_1^R) \in$ [-0.44,0.48], $\text{Re}(f_2^L) \in$ [-0.24,0.21], $\text{Re}(f_2^R) \in$ [-0.49,0.15]. [ATLAS-CONF-2011-037]

MC production and detector setup

- Use Ep=7TeV, Ee=60GeV, the electron beam is 80% polarised
- Using FeynRules, MadGraph to generate signal and backgrounds.
- The PDFset is CTEQ6L1, factorization and renormalization scale μ F = μ R = mt = 172.5GeV, mb = 4.7 GeV, mW = 80.399 GeV, |Vtb| f₁ 1
- Using Delphes for detector simulation, jet |pseudorapidity| <5, lepton and b jet | pseudorapidity|<2.5, jet energy resolution =0.6/sqrt(E)
- Jet algorithm, Antikt4, Btagging, efficiency@60%, truth match@0.4, c-jet and light jet are weighted with b tagging fake rate @10% and 1%, respectively
- W decay to jets or leptons (Hadronic or Leptonic channel)

Largest background for hadronic, cc-jjj

```
Hadronic Channel:
sig: p e- > ve t~, W > j j :
                                 1.034 pb
ccjjb: p e- > ve j j b :
                                  0.073 pb
ccjjj: p e- > ve j j j :
                                 27.40 pb
ncjjb: p e- > e- j j b :
                                  2.84 pb
ncjjj: p e- > e- j j j :
                                  311.6 pb
chad : p e - > ve c -, W > j j:
                                 0.0194 pb
f1l=0.5: 2.32 pb
f1r=0.5: 1.38 pb
f2l=-0.5: 1.07 pb
f2l=0.5: 1.48 pb
f2r=0.5: 1.68 pb
Leptonic Channel:
sig: p e \rightarrow ve t \rightarrow W \rightarrow l vl:
                                  0.346 pb
                                 0.0059 pb
cclvb: p e- > ve l vl b :
cclvj: p e - > ve l vl j :
                                  0.2096 pb
nclvj: p e - > e - l vl j :
                                 0.434 pb
clep : p e- > ve c~, W > l vl: 0.0063 pb
f1l=0.5: 0.776 pb
f1r=0.5: 0.447 pb
f2l=-0.5: 0.322 pb
f2l=0.5:
          0.472 pb
f2r=0.5: 0.566 pb
```

Event selection (hadronic)

- (i) Minimum transverse momentum for jets, \bar{b} -antiquark $p_{T_{b,j}} \ge 20$ GeV, $p_{T_{j,\bar{l}}} \ge 25$ GeV and minimum missing transverse energy $\not{\!\!E}_T \ge 25$ GeV.
- (ii) The pseudo-rapidity region for leptons and \bar{b} -antiquark $|\eta_{\bar{b},l}|$ is taken to be ≤ 2.5 , however for jets $|\eta_j| \leq 5$.
- (iii) Isolation cuts for lighter, heavy quarks and lepton require $\Delta R_{ij} \ge 0.4$ where $i, j \equiv$ leptons, jets and \bar{b} anti-quark.

In addition, we impose the following cuts to reduce the background

- (iv) The difference of azimuthal angle between missing energy E_T and jets, leptons, \bar{b} antiquark should be $\Delta \phi \ge 0.4$.
- (v) To further reduce the background in the hadronic channel we reconstruct W^- from dijets assuming the jet energy resolution $\approx \frac{\sigma}{E} = \frac{0.6}{\sqrt{E}}$. In this setup the dijet invariant mass resolution around the W^- mass is approximately 7%. Thus a mass window around 28% (4 times of this resolution at 2σ level) of the W mass ≈ 22 GeV is taken into consideration and hence dijet invariant mass is allowed to satisfy $|m_{j_1 j_2} m_W| \leq 22$ GeV.

Event selection (hadronic@100fb-1)

	Event Selection	$p_{T_{j,b}} \ge 20 { m GeV}$	$\Delta\Phi_{\not\!$	$ m_{j_1j_2}-m_W \leq 22{ m GeV}$	Fiducial	
_		$ \eta_j \le 5, \eta_b \le 2.5$	$\Delta\Phi_{\not\!$		Efficiency	
Parton Level		$\Delta R_{j,b/j} \ge 0.4$				
		$\not\!$	2.2 104	2.2 . 104	00 7 07	
	SM	3.2×10^4	2.3×10^4	2.2×10^{4}	66.7 %	
	$ V_i \Delta f_i^L = 5$	7.3×10^4	5.0×10^{4}	4.0×10 5.0 × 10 ⁴	68.0 %	
	$f_1^R = .5$	4.6×10^4	3.2×10^4	3.2×10^4	69.7 %	
	$f_2^L = .5$	$4.9 imes 10^4$	$3.6 imes 10^4$	$3.6 imes10^4$	73.2 %	
	$f_{2}^{L} =5$	3.4×10^4	$2.3 imes10^4$	$2.3 imes10^4$	69.6 %	
	$f_{2}^{R} = .5$	5.7×10^{4}	4.1×10^{4}	$4.1 imes 10^4$	72.3 %	
Samples	SM	f110.5 f1r	0.5 f2	1-0.5 f210.5	f2r0.5	B

Samples	SM	f110.5	f1r0.5	f21-0.5	f210.5	f2r0.5	Background
INIT	$1.03e+06 \pm 5.17e+03$	$2.32e+06 \pm 1.16e+04$	$1.38e+06 \pm 6.9e+03$	$1.07e+06 \pm 5.35e+03$	$1.48e+06 \pm 7.4e+03$	$1.68e+06 \pm 8.4e+03$	$3.42e{+}08 \pm 9.03e{+}05$
1bjet	$4.29e+05 \pm 2.9e+03$	$9.56e+05 \pm 6.47e+03$	$5.9e+05 \pm 3.93e+03$	$4.35e+05 \pm 2.96e+03$	$5.9e+05 \pm 4.06e+03$	$7.44e+05 \pm 4.89e+03$	$5.63e{+}06 \pm 2.31e{+}04$
1bjet, two b jet	$2.07e+05 \pm 2.07e+03$	$4.57e+05 \pm 4.61e+03$	$2.87e+05 \pm 2.82e+03$	$2.01e+05 \pm 2.08e+03$	$3.16e+05 \pm 3.06e+03$	$3.42e+05 \pm 3.4e+03$	$1.21e{+}06 \pm 1.25e{+}04$
EtMiss	$1.61e+05 \pm 1.82e+03$	$3.55e+05 \pm 4.06e+03$	$2.25e+05 \pm 2.5e+03$	$1.59e+05 \pm 1.84e+03$	$2.64e+05 \pm 2.8e+03$	$2.87e+05 \pm 3.11e+03$	$5.89e+05 \pm 9.83e+03$
dphiMET	$1.26e+05 \pm 1.61e+03$	$2.8e+05 \pm 3.6e+03$	$1.81e+05 \pm 2.24e+03$	$1.28e+05 \pm 1.66e+03$	$2.14e+05 \pm 2.52e+03$	$2.32e+05 \pm 2.8e+03$	$4.75e+05 \pm 8.87e+03$
invMass	$9.88e+04 \pm 1.43e+03$	$2.24e+05 \pm 3.23e+03$	$1.42e+05 \pm 1.99e+03$	$1e+05 \pm 1.47e+03$	$1.68e+05 \pm 2.24e+03$	$1.81e+05 \pm 2.48e+03$	$1.76e+05 \pm 5.45e+03$

Preliminary result at detector level @1000fb-1 (on going)

In the detector level, the signal efficiency is down to half due to requiring two additional jets. The background efficiency remains. need to reoptimizing the selection

Event selection(leptonic)

:	Event Selection	$p_{T_{j,b}} \ge 20 \text{ GeV}$	$\Delta\Phi_{\!$	Fiducial
Parton Level		$ \eta_j \leq 5, \eta_b \leq 2.5$	$\Delta\Phi_{\!\not\!$	Efficiency
		$\Delta R_{j,b/j} \geq 0.4$	$\Delta \Phi_{\! \! E \! \! \! E, l} \geq 0.4$	
		$ ot\!$		
	SM	$1.2 imes 10^4$	1.1×10^4	92.0 %
	$\mathrm{SM}+\sum_i\mathrm{Bkg}_i$	$1.3 imes10^4$	$1.2 imes 10^4$	92.0 %
	$ V_{tb} \Delta f_1^L = .5$	$4.5 imes 10^4$	$2.5 imes 10^4$	92.6~%
	$f_{1}^{R} = .5$	$2.8 imes10^4$	$1.6 imes 10^4$	94.1 %
	$f_{2}^{L} = .5$	$3.1 imes10^4$	$1.7 imes 10^4$	89.5 %
	$f_{2}^{L} =5$	$1.8 imes 10^4$	$1.0 imes 10^4$	90.9 %
	$f_{2}^{R} = .5$	$3.6 imes10^4$	$2.0 imes10^4$	90.9 %

Preliminary result at detector Level @1000 fb-1 (on going)

Samples	SM	f110.5	f1r0.5	f2l-0.5	f210.5	f2r0.5	Background
NIT	$3.46e+05 \pm 1.73e+03$	$7.76e+05 \pm 3.88e+03$	$4.47e+05 \pm 2.24e+03$	$3.22e+05 \pm 1.61e+03$	$4.72e+05 \pm 2.36e+03$	$5.66e+05 \pm 2.83e+03$	$6.56e+05 \pm 1.39e+03$
1bjet	$2.16e+05 \pm 1.24e+03$	$4.82e+05 \pm 2.77e+03$	$2.82e+05 \pm 1.61e+03$	$2e+05 \pm 1.15e+03$	$2.84e+05 \pm 1.66e+03$	$3.62e+05 \pm 2.05e+03$	$7.37e+03 \pm 18.2$
1bjet, 1lep	$1.78e+05 \pm 1.13e+03$	$3.98e+05 \pm 2.52e+03$	$2.32e+05 \pm 1.46e+03$	$1.59e+05 \pm 1.03e+03$	$2.36e+05 \pm 1.51e+03$	$3.01e+05 \pm 1.87e+03$	$5.97e+03 \pm 16.2$
EtMiss	$1.57e+05 \pm 1.05e+03$	$3.5e+05 \pm 2.36e+03$	$2.02e+05 \pm 1.36e+03$	$1.39e+05 \pm 960$	$2.05e+05 \pm 1.41e+03$	$2.63e+05 \pm 1.75e+03$	$5.08e+03 \pm 14.8$
dphiMET	$1.48e+05 \pm 1.02e+03$	$3.31e+05 \pm 2.3e+03$	$1.9e+05 \pm 1.32e+03$	$1.31e+05 \pm 933$	$1.93e+05 \pm 1.37e+03$	$2.44e+05 \pm 1.68e+03$	$4.51e+03 \pm 13.9$

In the detector level, the signal efficiency is almost same, background is suppressed further more. Though background here is a small fraction.

Detector level figures

Angular asymmetry analysis (leptonic)

Parton level

i, j means leptons, jets, b jets and EtMiss

$$\begin{split} A_{\theta_{ij}} &= \frac{N_{+}^{A}(\cos\theta_{ij}>0) - N_{-}^{A}(\cos\theta_{ij}<0)}{N_{+}^{A}(\cos\theta_{ij}>0) + N_{-}^{A}(\cos\theta_{ij}<0)} \\ A_{\Delta\eta_{ij}} &= \frac{N_{+}^{A}(\Delta\eta_{ij}>0) - N_{-}^{A}(\Delta\eta_{ij}<0)}{N_{+}^{A}(\Delta\eta_{ij}>0) + N_{-}^{A}(\Delta\eta_{ij}<0)} \\ A_{\Delta\Phi_{ij}} &= \frac{N_{+}^{A}(\Delta\phi_{ij}>\frac{\pi}{2}) - N_{-}^{A}(\Delta\phi_{ij}<\frac{\pi}{2})}{N_{+}^{A}(\Delta\phi_{ij}>\frac{\pi}{2}) + N_{-}^{A}(\Delta\phi_{ij}<\frac{\pi}{2})} \end{split}$$

	$A_{\Delta\Phi_{E_Tl_1}}$	$A_{\Delta\Phi_{{\cal E}_Tar b}}$	$A_{\theta_{\overline{b}l_1}}$	$A_{\Delta \eta_{\overline{b}l_1}}$
$\mathrm{SM} + \sum_i \mathrm{Bkg}_i$	$.384 \pm .004$	$.710 \pm .003$	$.551 \pm .006$	$765 \pm .007$
$f_1^R = +.5$	$.484 \pm .004$	$.702 \pm .003$	$.332 \pm .006$	$821 \pm .003$
$f_{2}^{L} =5$	$.526 \pm .004$	$.620 \pm .003$	$.410 \pm .006$	$831 \pm .002$
$f_{2}^{L} = +.5$	$.353 \pm .005$	$.812 \pm .003$	$.392 \pm .007$	$850 \pm .003$
$f_{2}^{R} = +.5$	$.424\pm.004$	$.684 \pm .003$	$.507 \pm .005$	$809 \pm .003$

Chi2 analysis using bin information

$$\chi^{2}(f_{i}, f_{j}) = \sum_{k=1}^{N} \left(\frac{\mathcal{N}_{k}^{\exp} - \mathcal{N}_{k}^{\mathrm{th}}(f_{i}, f_{j})}{\delta \mathcal{N}_{k}^{\exp}} \right)^{2}$$

where
$$\delta \mathcal{N}_{k}^{\mathrm{SM}+\sum_{i} \mathrm{Bkg}_{i}} = \sqrt{\mathcal{N}_{k}^{\mathrm{SM}+\sum_{i} \mathrm{Bkg}_{i}} \left(1 + \delta_{sys}^{2} \mathcal{N}_{k}^{\mathrm{SM}+\sum_{i} \mathrm{Bkg}_{i}}\right)}.$$

-2

-1.5

-1

-0.5

 $|V_{tb}| \Delta f_1^L \times 10^2$

0.5

1

1.5

0

68% contour

-3.5

-3 -2.5 -2 -1.5 -1 -0.5 0

 $|V_{tb}| \Delta f_1^L \times 10^2$

0.5

1 1.5 2

Correlation and error

Errors and Correlation matrix:

Proof and Correlation matrix:
 Combining two channels

$$\chi^2(f_i, f_j) = \chi^2_{\min} + \sum_{i,j} (f_i - \bar{f}_i) [V^{-1}]_{ij} (f_j - \bar{f}_j)$$
, where

 $f_i - \bar{f}_i = \pm \Delta f_i = \pm \sqrt{V_{ii}}, \rho_{ij} = V_{ij} / \sqrt{V_{ii} V_{jj}}$.

 $\chi^2_{\text{comb.}}(f_i, f_j) = \sum_{k=1}^n \chi^2_{\min k} + \sum_{k=1}^n \sum_{i,j} (f_i - \bar{f}_i) [V^{-1}]_{ij} (f_j - \bar{f}_j)$
 $|V_{tb}| \Delta f_1^L = \pm 3.2 \times 10^{-4}$
 $f_1^R = \pm 4.6 \times 10^{-4}$

 $\begin{array}{cccc} f_2^L = \pm 4.2 \times 10^{-4} & \left(\begin{array}{ccc} -.04 & -.06 & 1 \\ -.02 & .03 & -.04 & 1 \end{array} \right) \\ f_2^R = \pm 2.6 \times 10^{-4} & \left(\begin{array}{cccc} -.04 & -.06 & 1 \\ -.02 & .03 & -.04 & 1 \end{array} \right)$

Luminosity Error: $L \equiv \beta \overline{L}, \beta = 1 \pm \Delta \beta; \chi^2_{\text{comb.}}(f_i, f_j) \rightarrow \chi^2_{\text{comb.}}(f_i, f_j, \beta)$

$$\chi^{2}_{\text{comb.}}(f_{i},f_{j},\beta) = \sum_{k=1}^{n} \chi^{2}_{\text{mink}} + \sum_{k=1}^{n} \sum_{i,j} (f_{i} - \bar{f}_{i}) \left[V^{-1} \right]_{ij} (f_{j} - \bar{f}_{j}) + \left(\frac{\beta_{k} - 1}{\Delta \beta_{k}} \right)^{2} \\ |V_{tb}| \Delta f_{1}^{L} = \pm 5.0 \times 10^{-2} \\ f_{1}^{R} = \pm 4.6 \times 10^{-4} \\ f_{2}^{L} = \pm 4.2 \times 10^{-4} \\ f_{2}^{R} = \pm 2.6 \times 10^{-4} \\ 0 & .032 & -.041 & 1 \\ \end{pmatrix} \text{ with } \Delta \beta = 10\%.$$

Prospects

The sensitivity of $|V_{tb}| \Delta f_1^L$ at 95% C.L. is found to be of the order of $\sim 10^{-3} - 10^{-2}$ with the corresponding variation of 1% - 10% in the systematic error (which includes the luminosity error). The order of the sensitivity for other anomalous couplings varies between $\sim 10^{-2} - 10^{-1}$ at 95 % C.L.

- Rough estimation, with higher luminosity, eg 1ab-1, the limit on |Vtb| f₁^L will be reduced to 1/3 (sqrt(10)) of its current limit (stat only). In that case the systematics is critical.
- LHeC can provide stronger constraint on the anomalous couplings, when statistics increasing.
- Both hadronic and leptonic channel providing sensitivity to measure the anomalous couplings, the leptonic channel has higher signal purity
- Detector level study is ongoing, the hadronic channel suffers stronger background but the leptonic channel has good performance.

Conclusion

- We observe high yields of single anti-top quark production with fiducial efficiency of ~ 70% and ~ 90% in the hadronic and leptonic decay of W-, respectively after imposing selection cuts.
- Asymmetries of different kinematic variable, bin analysis help to improve the sensitivity of anomalous couplings to the order of 10^{-3} - 10^{-2} for |Vtb| Δf_{1}^{L} with the variation of 1%-10% systematic error and others are of order 10^{-2} - 10^{-1} at 95%.
- Luminosity error affect $|Vtb| \Delta f_{1}^{L}$.
- Overall comparison with different data shows that Wtb anomalous couplings can be probed at LHeC with very high accuracy.