ERL FACILITY CAVITIES

R. Calaga, CERN, Jun 25, 2015

A quantum jump from zero to 60 GeV ERL is unlikely

Basic unit: 5-cell cavity into 4-cavity module

Design Considerations

- Initial design (2013) is already optimized
- Main aim: High Q, moderate-high gradient, strong cell-tocell coupling, minimize input & HOM power
- No single cavity design optimum, choose a conservative & simple design

5-Cell RF Parameters

Parameter	Ver 1 (Scaled)	Ver 2
Frequency [MHz]	801.58	801.58
Number of cells	5	5
Active cavity length [mm]	935	935
Voltage [MV]	18.7	18.7
$E_p [MV/m]$	45.1	48.0
$B_p [mT]$	95.4	98.3
R/Q [Ω]	430	393
Cell-cell coupling (mid-cell)	4.47%	5.75%
Stored Energy [J]	154	141
Geometry Factor [Ω]	276	283
Field Flatness	97%	96%

For example, at 18.7 MV/cavity :

Cavity dynamic losses (assume Rs = 7-10 n Ω): ~22-31 W

Gradient reach limited by heat load & extraction ($\sim 1W/cm^2$ for piping)

Lots to be gained from high Q than small improvements in cavity geometry

High Q0

E_{acc} (MV/m)

Aperture Scans, Peak Fields

Aperture Scans, Frequencies

Aperture Scans, Coupling

Five-Cell Cavity

Field flatness \rightarrow Efficiency of acceleration

Large aperture \rightarrow Strong cell-to-cell coupling (also for HOMs)

Longitudinal Loss Factor

HOMs, Longitudinal

$$I_{_{
m b}}=77$$
 mA (3 passes + deceleration), Q = 0.32 nC

Total Average
$$P_{HOM} = k_{\parallel} Q.I_{beam} (\sigma_z = 2mm)$$

 $k_{\parallel} = 2.64 \text{ V/pC} \rightarrow 65 \text{ W per cavity}$
(1.3GHz 9-cell is ~ factor 3 larger HOM power)

Resonant excitation (R/Q=10 Ω , Q_{ext}=10⁴⁻⁵) P_{HOM} \rightarrow 0.6 - 6 kW!!

Energy Spread:
$$\frac{\delta E}{E} = \frac{k_L Q_b}{E_{gain}}$$

End of final turn: $\sim 5 \times 10^{-4}$ (4 cavities/turn, 3 passes)

Impedance Spectrum

HOM Damping & Extraction

Ferrite Absorbers \rightarrow Broadband room temp Waveguides \rightarrow higher frequencies more suitable Notch Filters \rightarrow Narrow-band & targeted damping

Multi-cavity cryomodule require broadband SC dampers! But with a strong thermal bridge

HOM Couplers

Use LHC-like dual concept

LHC crab cavity-like concept

Or a hybrid concept like the one being developed for LHC crab cavities

Studied ongoing to determine a simple configuration

ERL, RF Power

Recall: static detuning w/o ER \sim 50 Hz, highest R/Q not essentially best

SPS 800 MHz IOTs

Chain of 8 IOTs installed powering two cavities in the SPS

800 MHz IOTs (~60 kW) for the SPS 3^{rd} harmonic system

Next Steps

Cavity(ies) designs mature and ready for prototyping The collaboration with Jlab & SPL experience is HOM damping requires further studies, but solutions available

Recent high Q0 focus & results greatly boosts the ERL case However, performance might be limited by accelerator environment LCLSII & ERL facility experience will important input

Good experience from SPS 800 MHz IOTs ERL facility, important step to validate stable high Q₁ operation

Higher Order Modes, R/Q's

