Photon beam generation at PERLE

Outline

- Introduction on Compton scattering
 - Expectations for the ERL facility
- Optical/laser system for high average laser power

Compton scattering applications

Applications of Compton scattering: $e^{-} + hv \rightarrow e^{-} + X/\gamma$

<u>~10-1MeV</u> <u>Low energy applications</u> Radiography & Radiotherapy Museology <u>~1MeV-100MeV</u> <u>Nuclear fluorescence</u> Nuclear physics Nuclear survey Nuclear waste management <u>>100MeV</u>

High energy applications Compton polarimeter γγ collider Polarised positron source

...

...

Photon beam properties

Total Scattered Photons

$$N_{\gamma} = 2.1 \cdot 10^8 \frac{U_L[J]Q[pC]f_{RF}n_{RF}}{hv[eV]\sigma_x^2[\mu m]\sqrt{1 + (c\sigma_t \phi/\sigma_x)^2}}$$

scattered – photons/sec over 4π and total spectrum

 f_{RF} = RF rep rate n_{RF} = #bunches per RF pulse

hv = laser photon energy [eV] σ_x = electron bunch spot size at collision point

 U_L = Laser pulse energy Q = electron bunch charge

> ϕ = collision angle (<<1) ϕ = 0 for head-on collision σ_t = laser pulse length

N.B. all sigma's and angles are intended as rms,

all distributions are assumed as gaussians in (phase) space and time Luca Serafini

Energy-angular Spectral distribution

$$N_{\gamma}^{bw} = 1.2 \cdot 10^{9} \frac{U_{L}[J]Q[pC]f_{RF}n_{RF}}{hv[eV]\sigma_{x}^{2}[\mu m]\sqrt{1 + (c\sigma_{t}\phi/\sigma_{x})^{2}}}\Psi^{2}$$

scattered – photons / sec within $\Psi \equiv \gamma \vartheta$ and within rms bandwidth $\Delta v_{\gamma} / v_{\gamma}$

Tomassini APB80(2005)419

Luca Serafini

RMS bandwidth, due to collection angle, laser phase space distribution and electron beam phase space distribution

Luca Serafini

Gamma beams at the ERL Facility Incident						
Incident electron b	eam E _e c		laser bea	am		
ELECTRON BEAM PAR	AMETERS		LASER BEAN	I PARAM	ETERS	
Energy 900 MeV			Wavelength	515 nm -	- 1030 nm	
Charge	320 pC		Average Power	300kW (can be	- 600 kW increased R&D)	
Bunch Spacing	25 NS		Pulse length	3 ps (<mark>ca</mark>	3 ps (can be reduced)	
Spot size	30 um		Pulse energy	7.5mJ -	15 mJ	
Norm. Trans. Emittance	5 um		Spot size	30 µm ((can be reduced)	
Energy Spread	0.1 %		Bandwidth	0.02 %		
GAMMA BE	AM PARAME	TERS (for λ:	=515nm)			
Energy		30 MeV				
Spectral density		9*10 ⁴ ph/s	9*10 ⁴ ph/s/eV			
Bandwidth		< 5%	< 5%			
Flux within FWHM bdw		7*10 ¹⁰ ph/s (total flux 9*10^12)				
ph/e ⁻ within FWHM bdw		10 ⁻⁶	10 ⁻⁶			
Peak Brilliance		3*10 ²¹ ph/s	3*10 ²¹ ph/s*mm ² *mrad ² 0.1%bdw			

Higs @ Duke Univ. World's most intense γ source

Electron Bunches

FEL2014, Basel, Switzerland, August 25 - 29, 2014

Optical systems

	LASER BEAM	PARAMETERS		
	Wavelength	515 nm - 1030 nm		
	Average Power	300kW - 600 kW		
	Pulse length	3 ps		
	Pulse energy	7.5mJ - 15 mJ		
	Spot size	30 um		
	Bandwidth	0.02 %		
	Repetition Rate	40 MHz		
	Optica	al resonator		

Pulsed laser/cavity feedback technique

Illustration of one issue : the laser cavity feedback

ERL Facility

Cavity finesse : $F^{-10^4} \times \pi$ **Optical path length : L~7.5m**

Cavity resonance frequency linewidth $\Delta v = c/(LF)^{1.3}$ kHz !

 $\Delta v/v = \lambda/(LF) = 10^{12}$ Same numbers as in metrology !!!

Typical length: 10 cm

→Free spectral range ~ 1.5 GHz

Typical finesse: 300,000

→ linewidth ~ 5 kHz

→ power enhancement ~10⁵ [applied power (CW):

intracavity power (CW

 Mirrors optically contacted to spacer

 Ultra-Low Expansion (ULE) Glass:

 Single-crystal Sapphire (cryogenic: ~4 K)

Linewidth 1.3kHz → F=10⁶...

60 µm

Besides

In metrology experiments :

Stack power in pulsed regime State of the art (Garching MPI): ~670kW, 10ps pulses, 1040nm @250MHz (F~5600) OL39(2014)2595

Issues
 → control of thermal lensing an thermoelastic effects
 → Damage threshold of mirror coatings

Highest cavity gain/finesse in pulsed regime

○Ti:sapph oscillator
 ○Picosecond pulses @ ~75MHz
 ○Stable lock ,finesse~30000
 (→BW feedback~100kHz)

Non planar 4-mirror cavity

Yb fiber oscillator
 ○100fs pulses @ ~200MHz
 ○Stable lock, finesse~30000
 (→BW feedback~10MHz)
 ○Yb fiber system amplifier

Installed /tested at ATF/KEK (Compton e+ polarized source)

Some of the ATF/KEK **4-mirror cavities**

e+ polarised R&D

(a)

LAL/CELIA/LMA/KEK

<Rey Har

Laser Undulator Compact X ray Source Group Meeting

J. Urakawa KEK

Very long monolithic cavity setup (Finesse~300) for harmonic generation

Vibration and sound isolation for external cavity

4-mirrors bow-tie cavity
(30m cavity length → 10MHz rep rate)

~17 m

28TON

Ozawa-san, University of Tokyo, Japan. UFO2013/Davos

Cavity for the ERL Facility

- 4-mirror cavity of 7.5 m round-trip length
 - 1 inch mirror diameter
 - HR coatings
- 40 MHz Yb doped oscillator and fiber amplifier

ThomX

Input laser beam: Configuration 1 'higher' finesse / 'lower' input power

Configuration for LHec ERL gamma source : ~same as ThomX project (CELIA, LAL) R&D going on at LAL and CELIA Labs.

Input laser beam: Configuration 2 'Lower' finesse / 'higher' input power

Summary

- LHeC ERL offers the opportunity to provide gamma ray facility
 - Very high flux expected (at least 2 orders of magnitude above expected upgrades of existing facilities)
 - Spectral density above existing facilities
- Fabry-Perot cavities are suitable to produce this high gamma ray flux
 - 670kW average power demonstrated (@1040nm...)
 - Technology tested on accelerators (e.g. ATF/KEK)
 - Various projects are under-way to push the technology at its limits (→1MW stacked power)
- High average power Yb doped fiber mature technology & related techniques mitigate the risks
 - Higher/lower cavity finesse % lower/higher input laser average power

e.g ELI-NP γ ray

 'reasonable' laser average power
 'Large' peak power
 → laser pulse recirculator

High frequency cw e-beam (
10MHz)

e.g. compact X ray Compton machines

Huang&Ruth PRL80(1998)977 (Lyncean Co.)

Large average power
 'reasonable' peak power
 Fabry-Perot cavity

