. : —LH.0
[.LHeC Accelerator Studies and Considerations

B Motivation -LHC Infrastructure
-Accelerator innovation and development

[
On behalf of the LHeC Collaboration!

With input and contributions from
many colleagues!

Bl Summary
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I.HeC: Motivation LH-O

Bl Physics: = presentations by M. D’Onofrio and G. Altarelli
Plus Test Facility applications : =» E. Jensen

=> Unique opportunity for realizing an ep and e-ion collider
In the TeV center of mass region
B Infrastructure
=>» Full exploitation of the existing LHC infrastructure
=> New installation with a potential user community
beyond HEP and LHeC

Bl Technology and Accelerator Physics

=>» Unique opportunity for realizing a revolutionary new
accelerator concept with a manifold of potential
applications beyond HEP!
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Motivation: Accelerator Technology Developniéfit”

Bl Energy Recovery Linac concept:

First proposal 50 years ago

M. Tigner: “A Possible Apparatus for Electron Clashing-Beam Experiments”,
I1 Nuovo Cimento Series 10, Vol. 37, issue 3, pp 1228-1231,1 Giugno 1965
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B First Tests: Done at SCA @ Stanford in 1986
Interesting concept for FELs and Compton photon light sources,
and high current electron cooler concepts and colliders =» SRF!!!
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CDR Options for LHeC Infrastructure:

CDR Study assumptions: I P .
Journal of Physics G
-Assume parallel operation to HL-LHC Nuclear and Particle Physics

-TeV Scale collision energy

Volume 39 Number 7 July 2012 Article 075001

=» 50-150 GeV Beam Energy

A Large Hadron Electron Collider at CERN
Report on the Physics and Design Cencepts for
Machine and Detector

LHeC Study Group

-Limit power consumption to 100 MW
=>» (beam & SR power < 70 MW)
=>» 60 GeV beam energy

-Int. Luminosity > 100 * HERA

-Peak Luminosity > 1033 cm-st

iopscience.org/jphysg

Higgs @ 125GeV=>» > 10°* cm2st JOP Publishing
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CDR Choices: LHeO

Bl Ring-Ring versus Linac-Ring:
Ring-RINQ:
-Between LEPI and LEPII

=» We know we can do it v/

-Severe interference for installation with LHC operation:

* Detector bypass (= 1.5km) X

« LHC equipment in the LHC tunnel hampers installation X
-Luminosity reach (emittance, beam-beam and SR power) X

=>» Not chosen as baseline for the post CDR LHeC studies
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CDR Choices: LHeO

Bl Ring-Ring versus Linac-Ring:
Linac-Ring:

-Installation largely decoupled from LHC operation v
-can accept larger beam-beam = larger bunch current v

-energy efficiency and luminosity reach X

=>» Recirculating Linac with Energy Recovery Mode (ERL) v

=> New accelerator concept & SRF technology (Q,, HOM damping)
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LH-O

Recirculating Iinac with Energy Recovery:

Bl 60 GeV acceleration with Recirculating Linacs:
Animation from A. Bogacz (JLab) @ ERL'15

Spreader Recombiner 38 Injector

F Compensation Linacl RF Compensa
+ Doglegs + Doglegs
+ Matching 96m + Matching 120m

Arcl,3,5. Arc2,4,6

Recombiner 38m Dump

+ Matching 20m  Spreader j Bypass

Linac2 IP Line

=>» Three accelerating passes through each of the two 10 GeV
linacs (efficient use of LINAC installation!)
=>» 60 GeV beam energy
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LH-O

Recirculating Iinac with Energy Recovery:

B Collisions with one HL-LHC Beam:
Animation from A. Bogacz (JLab) @ ERL'15

Spreader Recombiner 38 Injector

F Compensation Linacl RF Compensa
+ Doglegs + Doglegs
+ Matching 96m + Matching 120m

Arcl,3,5. Arc2,4,6

Recombiner 38m Dump

+ Matching 20m  Spreader j Bypass

Linac2 P Li%e

Arc6: As = (2n+1)*A/2

=>» Collisions with one of the LHC proton beams

=> /2 RF wave length shift on return arc following the collision

2015 LHeC Workshop: Seminar at CERN 24t June Oliver Briining, CERN 8



LH-O

Recirculating Iinac with Energy Recovery:

Bl 60 GeV deceleration with Recirculating Linacs:
Animation from A. Bogacz (JLab) @ ERL'15

Spreader Recombiner 38 Injector

F Compensation Linacl RF Compensa
+ Doglegs + Doglegs
+ Matching 96m + Matching 120m

Arcl,3,5. Arc2,4,6

Recombiner 38m Dump

+ Matching 20m  Spreader _ J SYPass

Linac2 IP Line

=>» Three decelerating passes through each of the two 10 GeV
linacs
=>» Beam dump at injection energy (e.g. 500 MeV)
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: : —LH:O
CDR Choices: Technology & Design Comparison

B RR Advantages and  Challenges:
-efficient use of beam -SR & maximum Energy reach
-source: e* and e -beam size & beam-beam
B LR Advantages and  Challenges:
-beam size and beam-beam -source requirements!
-energy reach -power consumption & cost
B ERL Advantages and  Challenges:
-efficient use of beam with -source requirements e*/e- &
CW operation Q, €=> Cryogenic system
-efficient use of LINACs -multi-turn ERL operation =»
=>» energy reach and cost high current in SRF (HOM&Z)
-beam size and beam-beam -SR In last return arc
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. . . . LH.C
LHeC: RIL with ERI. Operation as Baseline

B Super Conducting Recirculating Linac with Energy Recovery

Choose ¥ of LHC circumference =  Two 1 km long, 10 GeV
SC LINACs with

tune-up dump

et O et 3 accelerating and
1034 cm2 s Luminosity reach PROTONS ELECTRONS PROTONS ELECTRONS
0.05 0.10 0.1 0.12
1112 25 430 (860) 6.6
s s me 60
2.2%101 4%10° 1.7%1011  (1*10°) 2*10°
35 0.64 27 (0.16) 0.32
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CDR Choices: Technology and Design
B Optics:

-SRF Linac with quadrupoles between the cryo modules

-Flexible Momentum Compaction [FMC] arc optics

LH-O
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LH-O

‘Linac 1 and 2 — Multi-pass ER Optics

A. Bogacz (JLab) @ ERL2015, Stony Brook University, June 9, 2015
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LH.C

Vertical Separation of Arcs

A. Bogacz (JLab) @ ERL2015, Stony Brook University, June 9, 2015

y [em] Spreader 1, 3and 5

150
Arc 1 (10 GeV)

100 A
Arc 3 (30 GeV)

50 -
Arc 5 (50 GeV)

0 v ¢
-50
0 1000 2000 3000 4000 5000 6000 7000 8000
z[cm]
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C

Arc Optics: Emittance preserving FMC cells“H

[Flexible Momentum Compaction]

» Emittance dilution due to quantum excitations:
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A. Bogacz (JLab) @ ERL2015, Stony Brook University, June 9, 2015
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CDR Choices: Technology and Design

Bl Magnets:
-Arc magnets (both for Linac-Ring and Ring-Ring):

=» light and low cost normal conducting arc magnets

-IR design =» SC magnet magnet requirements

LH-O

2015 LHeC Workshop: Seminar at CERN 24t June Oliver Briining, CERN
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LHeC Ring-Ring dipole 400 mm long CERN - 6\6‘ LH-O

» interleaved ferromagnetic laminations

» air cooled

» two turns only, bolted bars

» 0.4 m models with different types of iron

.nasinij

R o .
. 70
g \6 o é\b\ 5.45
&\3 D7 127-763
&G g11ets 3080
0‘3 werture [mm] 40
- width [mm] 150
Number of coils 2
Number of turns/coll 1
Current [A] 1500
Conductor section [mmxmm] 92x43
Conductor material aluminum
Magnet Inductance [mH] 0.15
Magnet Resistance [mQ)] 0.2
Power per magnet [W] 450
Cooling air
\ .ure & tests of 3 models Weight [tons] 15
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‘Post CDR: Return Arc Dipoles optimization™ P

Attilio Milanese

Alternative colil arrangement

 keep the idea of recycling
Ampere-turns

« stack the apertures vertically
but offset them also
transversally

« same vertical gap, 25 mm

» simple coils / bus-bars, same
powering circuit

* as before, trim colls can be
added for two of the
apertures, to give some
tuning
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LH-O

‘ Asymmetric IR Design: example [.LHeC

Beam pipe:in CDR 6m, Be, ANSYS
calculations

Composite material R+D, prototype, support..
-> Essential for tracking, acceptance and Higgs

Have optics compatible with HL-LHC ATS optics and *=0.1m
Head-on collisions mandatory >
High synchrotron radiation load, dipole in detector

Optimize LHeC to LHC ATS optics
Specification of Q1 — NbTi prototype q ]

»

Revisit SR (direct and backscattered),
Masks+collimators
Beam-beam dynamics and 3 beam operation studies
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IR Design: Synchrotron Radiation LH.O
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CDR Choices: Technology Choices and DesignI.’H &

Bl Super Conducting RF:
-Requirements imposed by LHC beam structure (n * 40 MHz)
-Existing technologies world wide (e.g. ILC, ESS)
-Beam stability considerations
-RF Power considerations
-Synergies with other projects (e.g. FCC)
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Post CDR Studies: RF Frequency g0
Bl Review of the SC RF frequency:

-HL-LHC bunch spacing requires bunch spacing with multiples of
25ns (40.079 MHz)

Frequency choice: h * 40.079 MHz

h=18: 721 MHz or h=33:1.323GHz

SPL & ESS: 704.42 MHz; ILC & XFEL: 1.3 GHz

Existing technologies do not quite match that requirement (20MHz)!
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Post CDR Studies: ERI. Beam Dynamics ggo

[ ] Beam-Beam effects: Daniel Schulte @ LHeC Seminar 12. March 2013
100 . . .
_ 720MHz .
N=3 109 1300MHz »

Beam-beam effect included
as linear kick

Result depends on seed for
frequency spread
“‘worst” of ten seed shown

normalised offset
o
o
o
e

F
F

=1.135 for ILC cavity .
=1.002 for SPL cavity 1e-08

rms

rms

- 1e-10 ' " .
Beam is stable but very 0 10000 20000 30000 40000
small margin with 1.3GHz
cavity =» lower frequency bunch passage

=>» Optimum choice for LHeC RF frequency
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Optimum RF Frequency: Power Considerations
Results from F. Marhauser

Erk Jensen at Daresbury meeting 12 March
2013

PRF/(L*Eacc?) (W/(mM*MV/m?2) Rres (1) PRE/(L*Eace?) (W/(m*MV/m?2) Rres (02)

1.0 / | 100 1.0 | 100

p=06
p=08
p=1

Optimum frequency between 700MHz and 800MHz
(large and small grain Nb and 1.6K and 2K)

i

p=1

0.1 4 10

RN

Chose 801MHz for bucket matching in the LHC
and for
synergies with FCC

0.1

Small-grain (normal) Nb: Large-grain Nb:

Optimum frequency at 2K between Optimum frequency at 2K between
700 MHz and 1050 MHz 300 MHz and 800 MHz

Lower T shift optimum f upwards Lower T shift optimum f upwards

2015 LHeC Workshop: Seminar at CERN 24t June Oliver Briining, CERN 24



i . ) LH.C
Site Considerations:

B L HeC Interaction Region options:
-IR1 and IR5 house the LHC General Purpose detectors
and parallel operation with HL-LHC excludes IR1 and IR5

-IR4 1s excluded due to LHC RF installation

-IR3 and IR7 have no caverns and are excluded due to
the LHC collimation system

-IR6 Is excluded due to the installation of the LHC beam
dumping system

=» Leaves only IR2 and IR8 as options assuming that ALICE
or LHCb Physics program has been finished
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‘ Site Considerations: @

LHeC

Civil Engineering
‘4 Different Options
~"<’}‘ Fraction 1/3-1/4-1/5
% Pt2 and Pt8
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Site Cons1derat1ons IR2 John Osborne June 2014

CDR-like
60GeV with
IR at Point 2

LHeC
Civil Engineering
Pt 2 Option CDR
Fraction 1/3
Arc radius Tkm
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Site Considerations: IR8 John Osborne June 2014

r AR -

N8 %
AN g

X 4
y B

CDR-like
60GeV with
IR at Point 8

LHeC
Civil Engineering
Pt 8 Option
Fraction 1/3
Arc radius Tkm

June 26th 2014 John Osborne
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- : : LH-C
Beam Dynamics and ‘front-end’ Simulations:

Bl Key Studies (performed with PLACET?2 code from CLIC):

=>» Synchrotron radiation
bunch shape and acceptance for deceleration and dump

=>» Beam-beam interaction
bunch shape and beam stability

= RF Wakefields and HOM
beam stability

=> Recombination patters
beam stability (filling of the RF buckets can be controlled
by tuning the arc lengths)

=>» Cavity alignment requirements
orbit and emittance control

2015 LHeC Workshop: Seminar at CERN 24t June Oliver Briining, CERN 29



Synchrotron Radiation

Evolution of the Longitudinal Phase Space

Internal energy difference [MeV]

200

150
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-100

-150

-200

D. Pellegrini (EPFL/ICERN) @ ERL'15

I I
dump (500 MeV)
injector (500 MeV)

Z [mm]
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head <---> tail



Synchrotron Radiation and Beam-Beam

Transverse Plane at Dump D. Pellegrini (EPFL/CERN) @ ERL'15
60 : : !
0 e
20 + 5@ o |
EI = +4+ X
lEl 0 | e |
>
_20 - _
| | 5 SR + BB-HL +
: : H SR *
| | i Plain  ©
_60 | | | | | | |
20 -15 -10 -5 0 5 10 15 20

X [mm]
Aperture radius of the SPL cavity is 40 mm.



LH.0
Summary:

Bl | HeC ERL design is viable:
physics program =» talks by M. D'Onofrio & G. Altarelli later

Bl L HeC offers a further exploitation of the LHC infrastructure

Bl | HeC is a unique application for the novel ERL concept
=» Innovative accelerator concept with many applications
=> New infrastructure for CERN with applications beyond LHeC

Bl The LHeC ERL design has also been adopted as baseline for
FCC-eh and could operate as injector to FCC-ee

=» synergy with FCC studies
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Reserve Transparencies
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LH-OC

Electron-Ton Collider Project Overview
B HERA: the first and only Electron-Proton collider

Bl Future Accelerator projects for fixed target e-A experiments:
-CEBAF 12 GeV upgrade @ JLab (RCL design)
-MESA @ U Mainz, Germany (ERL operation)

Bl Electron-lon collider @ lon Accelerator Facilities:
-ENC @ FAIR, Germany
-CEIC @ HIAF, China

Bl Dedicated Electron-lon collider projects for QCD exploration:
-eRHIC @ BNL, U.S.A. [Collider, polarization]

-MEIC @ JLab, U.S.A. [Collider, polarization]
B Energy Frontier:

-LHeC @ CERN using 7 TeV protons from LHC
-FCC-eh @ CERN using 50TeV protons
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Motivation: EIC facilities as a microscope:

Bl Finest microscope with resolution
varying like V1/Q?2

Bl Parton momentum fixed by
electron kinematics:

2
0
v ek Sy
glk e sz'(k' k')2
eh > o y,, =1- Lo
xP_L&4°¢ ’ E,

P — _
{ - X s=4EE,

distance [fm]
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9 Finite p Radius
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- =
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Higgs .
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' Motivation: LHeC as a Higgs Factory

£ Eﬂ-d“f vr [ R“‘“l.‘_fd__ .
v ¢ ~ -Cross section of 200fb
oW z E bé(-* @ LHeC
8.
::w or 7 (5" » == -Clean bb final state (S/B = 1)
¢ E_____ d . : .
et — 4 = 0" =" -e-hcross calibration 9 precision
A:%{ " = u_q% 0
-Pilea- i 34 2c-1
op colide op colider Pile-up inep @ 10%*cm=stis 0.1
- i i 34 2c-1
Z e -pile-up in pp @ 5 103*cm—=sis 140
g MU — =
i d u u
W :,z
S }!f* » %
LH. L.
| S o §l
v PR AN
Ii":i__‘—-__,__d ] ;i,.-—";:-——______i-_l
—4__d A _d d ~=
N u e
hadron collider
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LH-O

Motivation: Precision for Higgs (@ I.LHC:

NNLO pp—Higgs Cross Sections at 14 TeV Experimental uncertainty
60 H cross section becomes
2 - iHixs1.3 0.25% (stat + uncertainty)
c 58 | M = 125 GeV with LHeC
L - NNPDF2.1(0.121)
= l
& 56 Leads to mass sensitivity
ﬂ | NNPDF2.1(0.119)

ﬂ -
s Needs N3LO calculations
MSTWO8 HERA1S

52 CcT10

S0 e | 75 GeV

JROSVF

0 61 02 03 04 05 06 07 08 09 1

, arXiv:1305.2090, MPLA 2013
arbitrory
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Motivation: The Fermi Scale [1985-2010]

PP

b quark
top quark
My, H?

Tevatron

ep ete-

The Standard
Model Triumph

M, , sin?@®
3 neutrinos
h.o. el.weak (t,H?)

gluon
h.o. strong
c,b distributions
high parton densities

LEP/SLC

HERA
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Motivation: The TeV Scale [2010-2035..]

PP

W,Z,top
Higgs??
New Particles??
New Symmetries?

LHC

/ ete

. . New Physics
High Precision QCD y .ttba[)?
High Density Matter ! Higgs?”

Substructure?? :' ':‘ Spectroscopy??
eg-Spectroscopy?? ‘

ILC/CLIC
LHeC
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Motivation: Electron-lon Scattering: eA 5 eX

T —
S 10°E Macear DIS - F, ,x,0)
g E Proposed facilities:
o 0P | trec
G T E | emnc
- Fixed-target data:
10° | I nwme
= E772
- | EE B39
10°s E665 e-Pb (LHeC)
- EMC (70 GeV - 2.5 TeV)
10°
- O (Au,b=0fm) A
| perturbative y———-
-~ Sl
—non-perturbative | B
10-1 §_ Ll/{'»"’;.
R ERETIT R ERTTT| B SRRl o SR T 1T AN WA UNIT| B WATT! RS R RRATI

10° 10° 10* 10° 102 10" J
Q2 = 4momentum transfer? Bjorken x: fraction of p’s
momentum

Extension of kinematic range by 3-4 orders of
magnitude into saturation region (with p and with A)

Qualitative change of
behaviour

- Bb limit of F,

- Saturation of cross sections
- amplified with A3

- Rise of diffraction to 50%7?

- partons in nuclei — widely unknown

gluonin p to lead

1.5
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: : - .. CLH.0O
Motivation: Electron-Weak Precision Physics

B Precision Measurements: Running of weak interactions
Fills in the regions that have not yet been measured

0242—————7 T T T T T T T T
- APV (Cs) E158 v-DIS
0240_ {pr 2012! |
- Moller (Jlab)
—~ 0.238F T §
._U_, . MESA(Mainz) EIC
S > 0.236+ QWEAK (Jlab) (statistical errors only) .
D : 1 SOLID (Jlab) ]
‘T 0.234f -
W ] L
0.032/ APV (Cs) ;
j ¢
0.230__ SLAC _
-3 -2 -1 0 1 2 3
=> requires high Luminosity log,,(Q [GeV])
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FCC-eh (RR and LR EIC options at FCC) e

« 8C

Inf Two Options:
ari

) 82 Ring-Ring collider using FCC-hh and FCC-ee

rel

Linac-Ring collider using LHeC and FCC-hh

° e""

pC
° p-‘
* Int

G L=103-10%%cm?s!l @ ca. 4 TeV CM

Both options offer performance reach of

~16°
~20°
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prefiminary (1) parameters for FEC-he-ERL w/o FCC-ee

species e- P
beam energy (/nucleon) [GeV] 60 50000
bunch spacing [ns] 25 25
bunch intensity (nucleon) 0.4 10
[10*9]

beam current [mA] 25.6 500
normalized rms emittance [um] 20 2.0
geometric rms emittance [nm] 0.17 0.04
IP beta function B, ,* [m] 0.10 0.4

IP rms spot size [um] 4.0 4.0
lepton D & hadron & 32 0.0002
hourglass reduction factor H,, 0.94

pinch enhancement factor H, 1.35



Recombination Pattern
D. Pellegrini (EPFL/CERN) @ ERL'15

Multi-bunch effects are enhanced by the value of g — low energy particles are

more susceptible.
The filling of the RF buckets of the LHeC can be controlled tuning the lengths of

the arcs — maximise the separation between the bunches at first and sixth turn.

® @ ®

AAAAAAAAAAAAANAN NN,
AVRTRTRTRVAVAVRVRVRVAVATRY TRVAVAVAVA

® ®

» Pattern 162435 is bad!
» Pattern 152634 is better!




Pattern and Long Range Wakefields

The pattern has an influence on the threshold current

Bad Pattern (no detuning)

10000 frveeroresorsesesesoee e o

100

0.01

Amplitude

0.0001

162435
152634

1806 [ . . e — . -

1 ) - L e

1e-10
0 0.5 1

D. Pellegrini (EPFL/CERN) @ ERL'15 time [ms]




Cavity misalignments

100 uncorrected orbits obtained for 300 xm misalignments and 300 prad tilts.

Horizontal orbits without synchrotron radiation

10 | |
£ 5t | |-
+ L Vi i -i,!; e "x,, z 4 70 4 "!!, o g 11 |
g 5 \ | |

-10 | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50
s [km]
Horizontal orbits with synchrotron radiation
10 |

orbit [mm]

D. Pellegrini (EPFL/ICERN) @ ERL'15



CDR Choices: Linac-Ring LH-C

Bl Colliding with one of the LHC beams:
-Requires the same bunch pattern as the LHC =» 25ns spacing
-Continuous collisions with all LHC bunches requires CW operation
for the LINAC
-For a recirculating LINAC it requires that the
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L HC Infrastructure: 7 TeV Proton beams “

CM ep collision energy: E%c\ = 4 E.* E, , = 50 to 150GeV provides TeV scale collisions

Integrated e*p : O(100) fb- = 100 * L(HERA) = synchronous ep and pp operation
Luminosity O (1023) cm2s-1 with 100 MW power consumption = Beam Power < 70 MW

5 5 Luminosity LHeC Energy Recovery Linac-Ring
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Without using the survey For the CDR the
gallery the ATLAS bypass bypass concepts
would need to be 100m away were decided to be
from the IP or on the inside of confined to

the tunnel! ATLAS and CMS

ong bypass

(o Fy 170m ong ispgrson free arga o RF




‘ CDR Choices: LHeC: Ring-Ring Option  LH.0

Bl Challenge 3:

nstallation with LHC circumference:
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‘ CDR Choices: LHeC: Ring-Ring Option  LH.0

B Challenge 2: Integration in the LHC tunnel
\"E" @A [

RF Installation in IR4
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CDR Choices: various LR options LH.O

F. ZIimmermann

‘“,ast expensive”
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‘ 10 GeV Linac Optics - Focusing Profile LH:C

E —_ 05 o 105 GeV A. Bogaz (JLab) @ ERL2015, Stony Brook University, June 9, 2015

quad gradient scaled with momentum

SR

—

19 FODO cells (19 x 2 x 16 = 608 RF cavities)
E L E min
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CDR Choices: ERI Footprint LH.0

-944 cavities
-59 cryo modules per linac

-801 MHz, 21 MV/m CW

-Similar to SPL, ESS, XFEL, ILC,
eRHIC, Jlab

-24 - 39 MW RF power

-29 MW Cryo for 37W/m heat load
-4500 Magnets in the 2 * 3 arcs:

Linac (racetrack)

inside the LHC for 600 - 4m long dipoles per arc
access at CERN 240 - 1.2m long quadrupoles per arc
N Territory

U=U(LHC)/3=9km
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I.HeC: Motivation LH.O

Bl Physics:
Detalls In presentations and by M. D’Onofrio and G. Altarelli
_HeC: -Most powerful microscope

-Electro-Weak High precision measurements

-Higgs production with e-p collisions

-Structure functions for precision physics with HL-LHC

-Exploring the unknown @ the TeV scale

-Unique possibility of an EIC @ the TeV scale

Plus Test Facility applications : =» E. Jensen

- electron and photon physics with high precision
(electromagnetic, weak, nuclear, BSM subjects)

-SRF, SC magnets, Beam Instrumentation etc.
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I.LHeC Motivation: @

Bl Physics:  -Most powerful microscope
-El ak high precisi

Importance for energy efficient accelerators (ERL facility)
and energy frontier (e.g. FCC eh) physics and new
technical developments
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