ERL designs based on FFAG arcs (eRHIC, LHeC, Cornell)

Dejan Trbojevic

Abstract.

The future Electron Ion Collider (EIC) LHeC will be able to collide electrons with protons/ions. Electron acceleration is based on a concept of Energy Recovery Linacs (ERL) with maximum energies of 60 GeV and almost completely recovering the energy during deceleration to the initial energy. We present: eRHIC, an ERL for LHeC (an example with almost double reduction in size of the linac, from 2 x 10 GeV to 2 x 5.345 GeV) from the present solution, using two Non-Scaling Fixed Field Alternating Gradient beam lines. This would reduce the three beam lines to two, and raise the luminosity for 34% from the electron current of 6.6 mA to 8.9 mA, for the synchrotron radiation limit of 15 MW.

Electron Ion Colliders eRHIC and LHeC

NS-FFAG: Introduction to the concept

Lattice examples of the eRHIC and ERL LHeC

SUMMARY:

Advantages come from multiple passes through the linac bring reduction in the linac size and of three beam circulating lines to two, reducing the synchrotron radiation – raising 42% the luminosity

OUTLINE

Distance from IP (mm)

Linac-Ring Option – LHeC Recirculator

RECIRCULATOR COMPLEX

- 1. 0.5 Gev injector
- 2. Two SCRF linacs (10 GeV per pass)
- 3. Six 180° arcs, each arc 1 km radius
- 4. Re-accelerating stations
- 5. Switching stations
- Matching optics

ATIONAL LABORATORY

7. Extraction dump at 0.5 GeV

	PROTONS	ELECTRONS	
Beam Energy [GeV]	7000	60)
Luminosity [10 ³³ cm ⁻² s ⁻¹]	1	1	
Normalized emittance γε _{x,y} [μm]	3.75	50	
Beta Function $\beta^*_{x,y}$ [m]	0.10	0.12	
rms Beam size σ* _{x,y} [μm]	7	7	
rms Divergence σ΄ _{x,y} [μrad]	70	58	
Beam Current [mA]	(860) 430	6.6	>
Bunch Spacing [ns]	25 (50)	25 (50)	
Bunch Population	1.7*1011	(1*10 ⁹) 2*10 ⁹	

The baseline 60 GeV ERL option proposed can give an e-p luminosity of 10³³ cm⁻²s⁻¹

(extensions to 10³⁴ cm⁻²s⁻¹ and beyond are being considered)

NS-FFAG LHeC Recirculator with 12 GeV ER

NS-FFAG LHeC Recirculator with 12 GeV ER

BROOKHAVEN

BROOKHAVEN ATIONAL LABORATORY

nature physics physics

POLARITONS A quantum pendulum

SPACE WEATHER Disappearing act revealed

CORRELATED FERMIONS Transport out of equilibrium

Acceleration without scaling

BROOKHAVEN NATIONAL LABORATORY

eRHIC FFAG Rings in Perspective

Non-scaling FFAG for Muon Acceleration

- Extremely strong focusing with a small dispersion function
- <u>Tunes vary</u>
- Orbit offsets are small
- Magnets are small
- Large energy acceptance

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 8, 050101 (2005)

Design of a nonscaling fixed field alternating gradient accelerator

D. Trbojevic,* E. D. Courant, and M. Blaskiewicz BNL, Upton, New York 11973, USA

BROOKHAVEN

Defect value, following from prior study of emittance

The prototype of eRHIC will be built at Cornell

Some of the most important risk items for eRHIC:

1) FFAG loops with a factor of 4 in momentum aperture.

- a) Precision, reproducibility, alignment during magnet and girder production.
- b) Stability of magnetic fields in a radiation environment.
- c) Matching and correction of multiple simultaneous orbits.
- d) Matching and correction of multiple simultaneous optics.
- e) Path length control for all orbits.

2) Multi-turn ERL operation with a large number of turns.

- a) HOM damping.
- b) BBU limits.
- c) LLRF control.
- d) ERL startup from low-power beam.

BRUU

K H/4//ER

NATIONAL LABORATORY

From Francois Meot and Nick Tsoupas

TRAJECTORIES

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

OPERA cell is QF-QD-drift. Axis is straight.

OPERA cell is QF-QD-drift. Axis is straight.

MAXIMAL STABLE AMPLITUDES, H, V :

From Francois Meot and Nick Tsoupas

ATIONAL LABORATORY

OPERA cell is QF-QD-drift. Axis is straight.

DYNAMICAL ACCEPTANCE

From Francois Meot

ATIONAL LABORATOR

From Oliver Brüning Layout of the LHeC-LHC-SPS

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

NATIONAL LABORATORY

BROOKHAVEN

LHeC ARC– 2 x 5.453 GeV linacs:

Orbits in the basic cell of the High energy NS-FFAG 54.55 - 43.644 GeV

Betatron Functions for $E_c=50$ GeV, 2 x 5.453 GeV linacs

Merging FFAG arcs to the straight section in eRHIC

LHeC-ERL with 2 x 5.453 GeV linacs

Orbits in the basic cell of the Low energy NS-FFAG 10.923 - 32.735 GeV

Betatron Functions for $E_c=29$ GeV, 2 x 5.453 GeV linacs

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

Synchrotron Radiation in LHeC with 2 x 5.453 GeV linacs Two NS-FFAG 43.6-54.6 GeV and 10.9-32.7 GeV Maximum Collision Energy 60 GeV

E(GeV)	Total Power (MW) 8.87035 mA	Total Power (MW) 6.6 mA
54.550	7.5779	5.6383
43.644	4.2080	3.1310
32.735	1.3902	1.0344
21.829	1.2881	0.9584
10.923	0.5359	0.3987
TOTAL	15.000	11.1608

NS-FFAG for the LHeC ERL-ONE 12 GeV LINAC

Synchrotron Radiation in LHeC with one 12 GeV linac Two NS-FFAG 48-60 GeV and 12-36 GeV Maximum Collision Energy 60 GeV

E(GeV)	Total Power (MW) 6.7834 mA	Total Power (MW) 6.6 mA
54.550	6.4562	6.2816
43.644	4.6537	4.5279
32.735	2.5812	2.5115
21.829	0.8544	0.8313
10.923	0.4546	0.4423
TOTAL	15.000	14.5945

CONCLUSION

- A cost effective eRHIC design with 1.332 GeV linac and maximum energy of 21.2 GeV is shown.
- A proposal for replacement of the 2 x 10 GeV linacs and three arcs, with 2 x 5.453 GeV linacs and two NS-FFAG arcs, respectively.
- A cost-effective solution with lower synchrotron radiation, hence 34 % larger luminosity for the same limit on the value of 15 MW for the total loss from synchrotron radiation.

Scaling down LHeC energies

Circumference of the LHC: C_{LHC} = 26,658.88320 m

- 1/3 C_{LHC} = 8,886.29440 m [60 GeV Linacs 2x10x3] 10 GeV Linac ~2x 1 km+6.283+4x0.151
- 2 1/4 C_{LHC} = 6,664.72080 m [45 GeV Linacs 2x7.5x3]7.5 GeV linac 0.75 km
- (3) 1/5 C_{LHC} = 5,331.77664 m [36 GeV –Linacs 2x6x3]

FFAG solutions:

- (1) $1/3 C_{LHC} = 8,886.29440 \text{ m} [60 \text{ GeV} \text{Linacs } 2x5.453x2]$ (1) Or [60 GeV - one linac 12 GeVx2 FFAG lines] (2) $1/4 C_{LHC} = 6,664.72080 \text{ m} [45 \text{ GeV} - \text{Linacs } 2x4.125 \text{ GeV}]$
 - ① Or [45 GeV one linac 11.245 GeV[
- ③ 1/5 C_{LHC} = 5,331.77664 m [36 GeV –one linac 8.99 GeV]

