ERL designs based on FFAG arcs (eRHIC, LHeC, Cornell)

Dejan Trbojevic

Abstract:

The future Electron Ion Collider (EIC) LHeC will be able to collide electrons with protons/ions. Electron acceleration is based on a concept of Energy Recovery Linacs (ERL) with maximum energies of 60 GeV and almost completely recovering the energy during deceleration to the initial energy. We present: eRHIC, an ERL for LHeC (an example with almost double reduction in size of the linac, from $2 \times 10 \mathrm{GeV}$ to $2 \times 5.345 \mathrm{GeV}$) from the present solution, using two Non-Scaling Fixed Field Alternating Gradient beam lines. This would reduce the three beam lines to two, and raise the luminosity for 34% from the electron current of 6.6 mA to 8.9 mA , for the synchrotron radiation limit of 15 MW .

Electron Ion Colliders eRHIC and LHeC

NS-FFAG: Introduction to the concept

Lattice examples of the eRHIC and ERL LHeC

SUMMARY:

Advantages come from multiple passes through the linac bring reduction in the linac size and of three beam circulating lines to two, reducing the synchrotron radiation - raising 42\% the luminosity

Layout

Linac-Ring Option - LHeC Recirculator

RECIRCULATOR COMPLEX

1. 0.5 Gev injector
2. Two SCRF linacs (10 GeV per pass)
3. Six 180° arcs, each arc 1 km radius
4. Re-accelerating stations
5. Switching stations
6. Matching optics
7. Extraction dump at 0.5 GeV

	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [$10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$]	1	1
Normalized emittance $\mathrm{V} \varepsilon_{\mathrm{x}, \mathrm{y}}[\mu \mathrm{m}]$	3.75	50
Beta Function $\beta^{*}{ }_{x, y}$ [m]	0.10	0.12
rms Beam size $\sigma^{*}{ }_{\text {ch }}[\mu \mathrm{m}]$	7	7
rms Divergence $\sigma^{\prime} \mathrm{x}, \mathrm{y}$ [$\mu \mathrm{rad}$]	70	58
Beam Current [mA]	(860) 430	6.6
Bunch Spacing [ns]	25 (50)	25 (50)
Bunch Population	$1.7{ }^{*} 10^{11}$	$\left(1^{*} 10^{9}\right) 2^{* 10}{ }^{\text {a }}$

The baseline 60 GeV ERL option proposed can give an e-p luminosity of $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (extensions to $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and beyond are being considered)

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

NS-FFAG LHeC Recirculator with 12 GeV ER

NS-FFAG LHeC Recirculator with 12 GeV ER

NS-FFAG LHeC Recirculator with ER

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

NS-FFAG LHeC Recirculator with ER

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

WHAT IS Non-Scaling FFAG?

Orbits in NS-FFAG cells

Tune dependence on momentum

Path length dependence on energy

Straight section design

By pass design
Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

The AGS NS.
match the degraded : alternating A and B the field which, acı 1 l/2 strong focuss: reverse the dispers: ly cancel it.

$$
\delta p / p=-55,25 \%
$$

NIM 179(1981) 95-103 TRIUMF Vancouver $\pi-\mu$ channel

D. Trbojevic, E.D. Courant, and A. A. Garren Fall 1999,"FFAG Lattice Without Opposite Bends", HEMC'99 Workshop, $\delta p / p=-30,50 \%$

$6.622-15.876 \mathrm{GeV}$

Option \#2 Energy 10 mA
Linac 1.322 GeV \#1 \quad. 622 GeV
\#2 7.944 GeV \#3 9.266 GeV \#4 10.588 GeV \#5 11.910 GeV \#6 13.232 GeV \#7 14.554 GeV \#8 15.876 GeV \#9 17.198 GeV \#10 18.520 GeV \#11 19.842 GeV \#12 21.164 GeV

eRHIC FFAG Rings in Perspective

© Stephen Brooks

Non-scaling FFAG for Muon Acceleration

- Extremely strong focusing with a small dispersion function
- Tunes vary
- Orbit offsets are small
- Magnets are small
- Large energy acceptance

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 8, 050101 (2005)

Design of a nonscaling fixed field alternating gradient accelerator
D. Trbojevic, * E. D. Courant, and M. Blaskiewicz

BNL, Upton, New York 11973, USA
Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

Defect value, following from prior study of emittance

 growth over single ring turn : ± 3 Gauss at $\mathbf{1}$ cm

DODECAPOLE DEFECT, EVOLUTION OF VERTICAL EMITTANCE

François Méot pass number

The prototype of eRHIC will be built at Cornell

 Some of the most important risk items for eRHIC:1) FFAG loops with a factor of 4 in momentum aperture.
a) Precision, reproducibility, alignment during magnet and girder production.
b) Stability of magnetic fields in a radiation environment.
c) Matching and correction of multiple simultaneous orbits.
d) Matching and correction of multiple simultaneous optics.
e) Path length control for all orbits.
2) Multi-turn ERL operation with a large number of turns.
a) HOM damping.
b) BBU limits.
c) LLRF control.
d) ERL startup from low-power beam.

76 - 286 MeV NS-FFAG Cornell Lattice

$G F=42.54 \mathrm{~T} / \mathrm{m}$ ByF $=-0.104$ T
$B F \max =-0.104+42.54 *(13.598 \mathrm{~mm})=0.4745 \mathrm{~T}$
 ByD $=0.5044 \mathrm{~T}$
BDmin $=0.504+(-27.49 * 11.9 \mathrm{~mm})=0.177 \mathrm{~T}$ BDmax $=0.504+(-27.49 *-8.98 \mathrm{~mm})=0.751$
LINAC ENERGY 70 MeV Injector 6 MeV
286 MeV
146 MeV 76 MeV
4.0 cm
32.99 cm

$$
\begin{aligned}
& \mathrm{BD}=0.504+(-27.493) \mathrm{x}=0 \\
& \mathrm{x}=+18.331 \mathrm{~mm}
\end{aligned}
$$

100 cells : Orbits and magnets in the 10.5 m diameter ${ }_{G}$

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

OPERA cell is QF-QD-drift. Axis is straight. $\mathrm{E}=76,146,216,225$ (reference) 286 MeV

FIELD

From Francois Meot and Nick Tsoupas

OPERA cell is QF-QD-drift. Axis is straight.

OPERA map QF-Displaced ${ }_{Q} D-C F M$ Cell tunes and chroma

From Francois Meot and Nick Tsoupas

OPERA cell is QF-QD-drift. Axis is straight.
MAXIMAL STABLE AMPLITUDES, H, V :

From Francois Meot and Nick Tsoupas

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

OPERA cell is QF-QD-drift. Axis is straight.
DYNAMICAL ACCEPTANCE
From Francois Meot and Nick Tsoupas $\quad \mathrm{C} \beta$ cell, $1000-\mathrm{cell}$ DA

$$
\begin{aligned}
& \text { (QF-Displaced_QD-CFM.table field map) } \\
& \operatorname{E1-5}: 76,146,216,225,286 \mathrm{MeV}
\end{aligned}
$$

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

From Oliver Bruning Layout of the LHeC-LHC-SPS

LHeC ARC- $2 \times 5.453 \mathrm{GeV}$ linacs:

Orbits in the basic cell of the High energy NS-FFAG 54.55-43.644 GeV

Betatron Functions for $\mathrm{E}_{\mathrm{c}}=50 \mathrm{GeV}, 2 \times 5.453 \mathrm{GeV}$ linacs

Merging FFAG arcs to the straight section in eRHIC

LHeC-ERL with $2 \times 5.453 \mathrm{GeV}$ linacs

Orbits in the basic cell of the Low energy NS-FFAG 10.923-32.735 GeV

Betatron Functions for $\mathrm{E}_{\mathrm{c}}=29 \mathrm{GeV}, 2 \times 5.453 \mathrm{GeV}$ linacs

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

Synchrotron Radiation in LHeC with $2 \times 5.453 \mathrm{GeV}$ linacs

 Two NS-FFAG 43.6-54.6 GeV and 10.9-32.7 GeV Maximum Collision Energy 60 GeV| $\mathbf{E (G e V)}$ | Total Power
 (MW)
 8.87035 mA | Total Power
 (MW)
 6.6 mA |
| :---: | :---: | :---: |
| 54.550 | 7.5779 | 5.6383 |
| 43.644 | 4.2080 | 3.1310 |
| 32.735 | 1.3902 | 1.0344 |
| 21.829 | 1.2881 | 0.9584 |
| 10.923 | 0.5359 | 0.3987 |
| TOTAL | 15.000 | 11.1608 |

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

NS-FFAG for the LHeC ERL-ONE 12 GeV LINAC

Synchrotron Radiation in LHeC with one 12 GeV linac Two NS-FFAG 48-60 GeV and $12-36 \mathrm{GeV}$ Maximum Collision Energy 60 GeV

E(GeV)	Total Power (MW) $6.7834 ~ m A$	Total Power (MW) 6.6 mA
54.550	6.4562	6.2816
43.644	4.6537	4.5279
32.735	2.5812	2.5115
21.829	0.8544	0.8313
10.923	0.4546	0.4423
TOTAL	15.000	14.5945

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

CONCLUSION

- A cost effective eRHIC design with 1.332 GeV linac and maximum energy of 21.2 GeV is shown.
- A proposal for replacement of the $2 \times 10 \mathrm{GeV}$ linacs and three arcs, with $2 \times 5.453 \mathrm{GeV}$ linacs and two NS-FFAG arcs, respectively.
- A cost-effective solution with lower synchrotron radiation, hence 34 \% larger luminosity for the same limit on the value of 15 MW for the total loss from synchrotron radiation.

Dejan Trbojevic, Workshop on the LHeC, June 24-26, 2015

Scaling down LHeC energies

Circumference of the LHC: $\mathrm{C}_{\text {LHC }}=26,658.88320 \mathrm{~m}$

(1) $1 / 3 C_{\text {LHс }}=8,886.29440 \mathrm{~m}[60 \mathrm{GeV}$ - Linacs $2 \times 10 \times 3] 10 \mathrm{GeV}$ Linac $\sim 2 \times 1 \mathrm{~km}+6.283+4 \times 0.151$
(2) $1 / 4 \mathrm{C}_{\mathrm{LHC}}=6,664.72080 \mathrm{~m}[45 \mathrm{GeV}$ - Linacs $2 \times 7.5 \times 3] 7.5 \mathrm{GeV}$ linac 0.75 km
(3) $1 / 5 \mathrm{C}_{\mathrm{LHC}}=5,331.77664 \mathrm{~m}$ [36 GeV -Linacs $2 \times 6 \times 3$]

FFAG solutions:

(1) $1 / 3 \mathrm{C}_{\text {LHC }}=8,886.29440 \mathrm{~m}[60 \mathrm{GeV}$ - Linacs $2 \times 5.453 \times 2]$
(1) Or [60 GeV - one linac 12 GeVx 2 FFAG lines]
(2) $1 / 4 \mathrm{C}_{\text {LHC }}=6,664.72080 \mathrm{~m}$ [45 GeV -Linacs $2 \times 4.125 \mathrm{GeV}$]
(1) Or
[45 GeV one linac 11.245 GeV[
(3) $1 / 5 \mathrm{C}_{\mathrm{LHC}}=5,331.77664 \mathrm{~m}[36 \mathrm{GeV}$-one linac 8.99 GeV$]$

