

High Intensity ERL Developments

Christopher Mayes – June 25, 2015

- Outline
- History
- Prototype ERL Injector
- SRF cavity design & testing
- Prototype ERL Cryomodule
- Cornell-BNL ERL-FFAG Test Accelerator

Cornell ERL	Timeline	interaction regions	beam path
A Possible Apparatus for Laboratory of Nuclear Stu	Electron Clashing-Beam Experiments (*). M. TIGNER dies, Cornell University - Ithaca, N. Y.	electron gun beam out R F power magnets	A
(ricevut	o il 2 Febbraio 1965)	source	nagnets
		Fig. 3.	

- 1999: Tigner suggests a coherent hard x-ray ERL light source is feasible.
- 2000: First x-ray Science Workshop for an ERL at Cornell NSF encourages proposal
- 2001: Cornell & JLab ERL `white' paper. Phase 1a proposed.
- 2005: NSF funds Phase1a: 5-yr R&D on injector, linac modules, machine issues.
- 2006: Six x-ray Science Workshops for an Energy Recovery Linac at Cornell
- 2006: Conceptual engineering studies for Phase II (NY State + CU support)
- 2008: NSF Light Source Panel recommends that the NSF should build & steward a coherent light source.
- 2010: **NSF funds Phase 1b**: 4 year continued R&D). ERL civil construction design study completed.
- 2011: XDL-2011 Workshops completed. ERL technical design report (PDDR) completed, reviewed. ERL draft Environmental Impact Statement ready for submission.
- 2012: Critical ERL Phase 1b milestones achieved

Cornell ERL Timeline

2013: Record 75 mA, 65 mA sustained from DC gun Achieved emittance goals for the Cornell ERL Started collaboration with SLAC for LCLS2: SRF cavities, injector emittance measurements, beam dynamics
2014: Main Linac Cryomodule (MLC) prototype completed Achieved emittance specifications for LCLS2 Started collaboration with BNL for an ERL-FFAG test accelerator High bunch charge (2 nC) studies (DOE)
2015: DC Gun and MLC moved to L0E hall Intense electron beams workshop

Prototype Injector

Cornell ERL prototype injector

Cornell ERL prototype injector

LCLS-II specifications achieved (at 9.5 MeV)

- Wired quad correction on solenoid
- Emittance asymmetry is gone
- Met spec at all charges
- Same SRF settings for all charges

С (р) C)	I _{peak} Target (A)	I _{peak} (A)	ε _n Target (95%) (mm-mrad)	ε _n (95%) (mm-mrad)
20	0	5	5	0.25	H: 0.18, V: 0.19
10)0	10	11.5	0.40	H: 0.32, V: 0.30
30)0	30	32	0.60	H: 0.62, V: 0.60
					Christopher Mayes – June 25, 2015

High Charges

- Below 300 pC, emittance scales roughly as \sqrt{q}
- Above 300 pC, emittance scales roughly as
- Best emittance requires careful control of transverse laser profile
- Need diagnostics to detect unexpected stray fields, and ability to counter them

SRF Cavity Design & Testing

Add HOM Absorbers

Example HOM at 1612.4604 Hz Q without absorber: Q = 5.49×10^{6} Q with absorber: 5.38×10^{3}

Other methods: HOM antennas (BNL, KEK)

SiC absorber ring brazed to metal ring

Cornell Horizontal Test Cryomodule (HTC)

- HTC-1: Follow vertical assembly procedure as closely as possible
- HTC-2: Include side mounted, High-power input coupler
- HTC-3: Full cryomodule assembly-high power RF input coupler and HOM absorbers

Current, bunch length	ΔT (beam pipe behind Abs.) coated/uncoated	ΔT (80K gas temp) coated/uncoated	ΔT (80K absorber temp) coated/uncoated	ΔT (5K flange next to cavity) coated	ΔT , beam pipe to cavity <u>coated</u> /uncoated
25 mA, 3.0 ps	0.075/0.075	1.14/0.82	1.02/0.975	0.007	0.076/005
40 mA, 3.4 ps	0.2475/0.335	2.95/2.16	2.72/2.53	0.021	0.179/0.009
40 mA, 2.7 ps	0.2975/0.425	3.00/2.22	2.772/2.63	0.027	0.203/0.014

- No charge-up of the HOM ceramics observed
- HOM heating was less than expected

Prototype Main Linac Cryomodule

Main Linac Cryomodule (MLC) Prototype

Main Linac Cryomodule (MLC) Prototype

Cornell-BNL ERL-FFAG Test Accelerator

Cβ White Paper

Cβ: Cornell-BNL ERL-FFAG Test Accelerator

Will be the first accelerator with:

- 4-pass SRF ERL
- ERL using FFAG recirculating arcs
- FFAG with momentum range of 4x
- Adiabatic transition from curved to straight FFAG
- Permanent magnets (PMs) in an FFAG
- PMs in ERL return arc

It will utilize existing components at Cornell:

- DC electron gun
- low-emittance and high-current injector linac
- ERL-merger
- 10 m long CW SRF cryomodule
- 600 kW beam stop

Cβ: Cornell-BNL ERL-FFAG Test Accelerator

Multi-turn ERL risk items:

- BBU limits
- HOM damping
- LLRF controls
- ERL startup from a low-power beam
- Precision, reproducibility, alignment of FFAG magnets
- Stability in a radiation environment of permanent magnets
- Matching and correction of simultaneous orbits
- Matching and correction of simultaneous optics
- Path length control for all orbits
- Emittance control
- Longitudinal phase space control

Important eRHIC-ERL prototyping results can be available before 2018/

Summary

Cornell has been funded for ERL R&D since 2005, and has designed and built: Prototype high-power ERL injector & beam stop

- Record current peak 75 mA, and 65 mA sustained for 8 hours
- Emittance through merger meets Cornell ERL specifications
- Emittance straight meets LCLS-II specifications

Horizontal Test Cryomodule (HTC)

- First ERL cavity achieved Q_0 of $6x10^{10}$ @ 16 MV/m, 1.8K
- (with couplers and HOM absorbers) (3 times spec.)
- Tested with 40 mA in the injector

Prototype Main Linac Cryomodule (MLC)

- 6 cavities completely built and tested (vertical) in-house
- Assembly completed in November 2014 •
- Cooldown and testing begins in July

Cornell-BNL FFAG-ERL Test Accelerator (Cβ)

- Currently designing in collaboration with BNL
- Uses injector, MLC, and beam stop in Cornell's LOE hall
- Injector and MLC recently moved to LOE Christopher Mayes June 25, 2015

Splitters S1-4

- Accept large beams from Linac
- Steer onto FFAG closed orbits
- Match to FFAG optics
- r_{56} adjustment
- Path length adjustment via vertical chicanes
- Total path lengths close to ideal for ERL operation

Full ERL bunch tracking

- Real fieldmaps (FFAG magnets, cavities, ...)
- Wakefields (CSR, resistive wall, ...)
- Injector + Linac space charge optimization
- Touschek scattering
- Dark current tracking & collimation
- BBU
- Ion trapping
- Orbit and optics correction
- Tolerance & stability analysis

FFAG orbit correction simulation

500 um rms x offset errors

SVD correction given BPM readings for separate beams and correction coils on every other dipole

Example errors, correction, and bunch tracking

Variety of errors

SVD correction given BPM readings for separate beams and correction coils on every other FFAG dipole and all quadrupoles