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LHeC: Virtual Photon-Proton Collider

!
variable spacelike photon virtuality, 

various primary flavors

p

Perspective from the e-p collider frame
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LHeC: Virtual Photon-Proton Collider

!
variable spacelike photon virtuality $

various primary flavors

p, A

Perspective from the photon-proton collider frame

QCD Factorization: Interactions of  Frame-Independent                   
Light-Front Wavefunctions of photon and proton or nucleus

Virtual photon structure function

q q plane aligned with lepton scattering plane ~ cos2φ 
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LHeC: Virtual Photon-Proton Collider
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!
variable space-like photon virtuality, 

various primary flavors

!
proton or ions

p, A

q q plane aligned with lepton scattering plane ~ cos2φ 

Perspective from the e-p collider frame

ŝ = x� ⇥ xp s
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Scattered lepton produces a virtual top-quark pair in 
lepton’s scattering plane 
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Factorization:  Product of LFWFs

Forward rapidity in final state: Intrinsic to Virtual Photon
Backward in final state: Intrinsic to Proton

More useful than conventional IMF

Frame-Independent!
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Scattered lepton produces a virtual top-quark pair in 
lepton’s scattering plane 
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Born LFWFs of 
Virtual Photon
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LHeC: Top Quark-Proton Collider
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tq ! tq
hard scattering event

Analogous to Bethe-Heitler Pair Production �⇤Z ! ⌧+⌧�Z
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LHeC: “Top Quark-Proton Collider”

p

t t plane aligned with lepton scattering plane

!
proton or ions
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Not a single “aligned jet”

Enhancement at top threshold 

Only partially included by DGLAP in proton pdf
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Electron produces a virtual top-quark pair correlated  
with electron’s scattering plane 
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Born LFWFs of 
Virtual Photon
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Scattering on p, A puts process on-shell



q̄

q

p

LHeC: Virtual Z-Proton Collider
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!
variable Z* virtuality, 

various flavors
!

proton or ions

pZ*

Interferes with virtual photon amplitude 
e+ e- and q q asymmetries, parity violation

q q plane aligned with lepton scattering plane ~ cos2φ -
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Inclusive Top Electroproduction at the LHeC

t� ¯t asymmetry from �⇤ and Z⇤
or �⇤�⇤ interference

LHeC: Virtual Photon-Proton Collider

t t Plane correlated with Electron Scattering Plane -

�⇤, Z0

Dual Interpretation:  Top quark in photon vs. heavy sea quark in proton
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LHeC: “W-Proton Collider”
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proton or ions
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Enhancement at threshold 

Only partially included by DGLAP in proton pdf
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Two(parBcle(correlaBons:(CMS(results(

�Discovery� 

!  Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 
                  for two hadrons in the intermediate 1 < pT, qT < 3 GeV   

Raju VenugopalanRidge in p p collisions!
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Possible origin of same-side CMS ridge in p p Collisions

Bjorken, Goldhaber, sjbThe key point is that a multi-particle correlation should give a much more conspicuous signal

than the two-particle correlation used so far in the experimental analysis, but of course only

in that small fraction of the events where the prerequisite conditions of coincidence of narrow

strings in the projectile and target are in fact obtained. To be specific, we suggest looking at

the following vector ~V , computing its magnitude for each event. If the number of events with

large magnitude are greater than expected from chance, one would have powerful evidence

for the proposed colliding flux tube mechanism. Define

~V =
NX

i=1

[cos 2�ix̂+ sin 2�iŷ] , (1)

and obtain the distribution of ~V 2. If the particles were distributed randomly in �, then the

expectation value of ~V 2 would be N , where N is the number of particles in the event in

the given region of transverse momentum. The probability of getting a value N2 may be

estimated by introducing quadrants in the variable 2�: Assume each vector can take only

the values ±x̂ or ±ŷ, with each having a probability 1/4. Suppose the first vector is +x̂.

Then the chance that the remainder would all be in the same direction would be (1/4)N�1.

For N = 5, this would yield a probability 1/256. If, among events in which the ridge was

seen, with more than 110 particles per event, and 5 particles separated from each other by

about one unit in �⌘ in an interval of p? between 1 and 2 GeV/c, as many as 2% of the

events should show ~V 2 ⇡ 25, that could be evidence for the kind of correlation we suggest.

This exercise is equivalent to asking the probability – assuming complete randomness in � –

that all 5 particles are in either of two opposite octants of �. If they were more collimated

than that, the probability would be even smaller.

It is likely that insistence on rapidity separation of emerging particles by one unit is

unnecessary: If there were only short-range correlations, then the value of ~V 2 inevitably

would lie far below its allowed maximum. Thus counting all particles in each event in the

specified range of transverse momentum, regardless of rapidity separation, should give a

reliable measure of the correlation. Technically, ~V is just the square of the usual ellipticity

variable. An advantage of squaring is that maximal ellipticity events are easy to pick out.

Also, it is easier to think about such a scalar variable rather than a vector variable.

At this point let us take a step back to gain perspective on what could cause such

phenomena. Obviously projectile and target must overlap in impact parameter to some

extent. Dynamics, in the form of conservation of momentum or of attraction of outgoing

6



We suggest that this “ridge”-like correlations are a reflection 
of the rare events generated by the collision of aligned flux 
tubes connecting the valence quarks in the wave functions of 
the colliding protons. $
!
The “spray” of particles resulting from the approximate line 
source produced in such inelastic collisions then gives rise to 
events with a strong correlation between particles produced 
over a large range of both positive and negative rapidity. 

Multiparticle ridge-like correlations in very high 
multiplicity proton-proton collisions

Bjorken, Goldhaber, sjb

LHeC: Variable plane and photon size: 
enhanced sensitivity to ridge mechanism
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Scattered lepton produces flux-tube in lepton’s scattering plane 

LHeC: Colliding flux-tubes produce opposite-side ridges of hadrons !
over full range of rapidity
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  Ridge axes correlated with leptonic scattering plane 
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Small size domain activated

Bjorken, Goldhaber, sjb
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LHeC: Virtual Photon-Proton Collider

!
variable spacelike photon virtuality, 

various primary flavors

p

Perspective from the e-p collider frame
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photon and proton fragmentation vs. central regions

Collisions of  Photon and Proton Flux Tubes
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High Q2, high M2Q virtual photon at LHeC acts as a precision, small bore,  
linearly oriented, flavor-dependent probe acting on a proton or nuclear target.  
Study final-state hadron multiplicity distributions, 

ridges, nuclear dependence, etc.
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Color transparency: �(�⇤p) / ⇡↵hb2
?i

Cross section independent of photon virtuality for Q2 < M2
t

No nuclear shadowing at high Q2 or M2Q 

Mueller, sjb



LHeC

LHeC: �sep > 1 TeV

LHeC: Above the t t +Higgs threshold
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Inclusive Higgs Electroproduction at the LHeC !
from the Charged Current
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Inclusive Higgs Electroproduction at the LHeC  
from the Neutral Current
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VBF Higgs production: e-p vs p-p  

6/24/2015 Monica D'Onofrio, LHeC Workshop, CERN/Chavannes 

!  Higgs production in ep 
comes uniquely from either 
CC or NC  
!  Pile-up in e-p at 1034 = 0.1 
!  Clean(er) bb final state, S/B 

~ 1  
! Clean, precise 
reconstruction and easy 
distinction of ZZH and WWH  

!  Higgs production in pp 
comes predominantly from 
gg!H  
!  VBF cross section about 200 

fb (about as large as at the 
ILC).  

!  Pile-up in pp at 5 x 1034 is 
150, S/B very small for bb  

!  Precision needs accurate 
PDFs  

21 

VBF Higgs Production in ep (top)  

                                                           and pp (bottom) 

Uta$Klein,$Higgs$in$ep$ 6 
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Higgs Production via Vector-Boson Fusion

R. Godpole 
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Inclusive Higgs Electroproduction at the LHeC

Higgs production from top
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Inclusive Higgs Electroproduction at the LHeC

W�
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Higgs production from single top
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Two-Higgs Electroproduction or photoproduction at 
the LHeC!

H
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Diffractive Higgs Electroproduction at the LHeC
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Kopeliovich, Schmidt, sjb



e
e

H
p

��

u

g

Diffractive Higgs Electroproduction at the LHeC 
from Intrinsic Heavy Quarks at very high xF
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Di�ractive DIS ep� epX where there is a large rapidity gap and the target
nucleon remains intact probes the final state interaction of the scattered quark
with the spectator system via gluon exchange.

Di�ractive DIS on nuclei eA� e⇥AX and hard di�ractive reactions such as
��A� V A can occur coherently leaving the nucleus intact.

Diffractive Deep Inelastic Scattering
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

β

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate 
T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target



Diffractive Structure Function F2
D  

de Roeck



LHeC can explore very low values of
New domain of diffractive masses.

MX can include W/Z/beauty or any state with

•  5-10% data, depending on detector 
•  DPDFs / fac’n in much bigger range 
•  Enhanced parton satn sensitivity? 
•  Exclusive production of any 1– state 
with Mx up to ~ 250 GeV 

 ! X including W, Z, b, exotics? 

[Forshaw, 
Marquet, 
PN] 

1o acceptance,  
2 fb-1 

10 4
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10 8
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LHeC (Ee = 20 GeV, 2 fb-1)

LHeC (Ee = 50 GeV, 2 fb-1)

LHeC (Ee = 150 GeV, 1 fb-1)

Diffractive event yield (xIP < 0.05, Q2 > 1 GeV2)

MX / GeV

Ev
en

ts

Figure 6.41: Simulated distributions in the invariant mass MX according to the RAPGAP Monte Carlo
model for samples of events obtainable with xP < 0.05 Left: one year of high acceptance LHeC running at
Ee = 50 GeV compared with HERA (full luminosity for a single experiment). Right: comparison between
three di�erent high acceptance LHeC luminosity and Ee scenarios.

towards larger Q2 increases the lever-arm for extracting the di�ractive gluon density and opens the possibility4121

of significant weak gauge boson exchange, which would allow a quark flavour decomposition for the first time.4122

Proton vertex factorisation can be tested precisely by comparing the LHeC � and Q2 dependences at4123

di�erent small xP values in their considerable regions of overlap. The production of dijets or heavy quarks as4124

components of the di�ractive system X will provide a means of testing QCD collinear factorisation. These4125

processes are driven by boson-gluon fusion (⇥�g � qq̄) and thus provide complementary sensitivity to the4126

di�ractive gluon density to be compared with that from the scaling violations of the inclusive cross section.4127

Factorisation tests of this sort have been carried out on many occasions at HERA, with NLO calculations4128

based on DPDFs predicting jet and heavy flavour cross sections which are in good agreement with data at4129

large Q2 [518, 519]. However, due to the relatively small accessible jet transverse momenta at HERA, the4130

precision is limited by scale uncertainties on the theoretical predictions. At the LHeC, much larger di�ractive4131

jet transverse momenta are measurable (pT
<⇥ MX/2), which should lead to much more precise tests [520].4132

The simulated measurement of the longitudinal proton structure function, FL described in subsec-4133

tion 4.1.5, could also be extended to extract the di�ractive analogue, FD
L . At small �, where the cross4134

section for longitudinally polarised photons is expected to be dominated by a leading twist contribution, an4135

FD
L measurement provides further complementary constraints on the role of gluons in the di�ractive PDFs.4136

As � � 1, a higher twist contribution from longitudinally polarised photons, closely related to that driving4137

vector meson electroproduction, dominates the di�ractive cross section in many models [521] and a mea-4138

surement to even modest precision would give considerable insight. A first measurement of this quantity has4139

recently been reported by the H1 Collaboration [522], though the precision is strongly limited by statistical4140

uncertainties. The LHeC provides the opportunity to explore it in much finer detail.4141

In contrast to leading proton production, the production of leading neutrons in DIS (ep� eXn) requires4142

the exchange of a net isovector system. Data from HERA have supported the view that this process is4143

driven dominantly by charged pion exchange over a wide range of neutron energies [523]. With the planned4144
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RAPGAP simulation
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 diffractive DIS 

6/24/2015 Monica D'Onofrio, LHeC Workshop, CERN/Chavannes 

!  Unique program for diffractive PDF and generalized parton 
distributions. DIS diffraction brought to a completely new regime 
with the extended kinematic range and higher luminosity 
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Diffractive kinematics

Methods for selection of diffractive events:
 Leading proton tagging, large rapidity gap selection

Diffractive Deep Inelastic Scattering at the LHeC
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BFKL hard pomeron exchange 
Color Transparency at high Q2

LHeC: Electroproduction of huge range of excited vector mesons



Prediction from AdS/QCD: Meson LFWF
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LHeC: Electroproduce huge range of excited vector mesons V’
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Odderon  has never been observed!

p
p0

�⇤(q) ⇡0, ⌘, ⌘c, ⌘b

Look for Charge Asymmetries from Odderon-Pomeron 
Interference

Merino, Rathsman, 
sjb



where s0 is a typical hadronic scale ∼ 1 GeV2 which replaces M2
X in Eq. (4). In the last

step we also make the simplifying assumption that the contribution to the denominator
from the Odderon is numerically much smaller than from the Pomeron and therefore can be
neglected. The maximally allowed Odderon coupling at t=0 is then given by,

∣

∣

∣gO
pp′

∣

∣

∣

max
=

∣

∣

∣gP
pp′

∣

∣

∣

√

∆ρmax(s)

2
cot

παO

2

(

s

s0

)αP−αO

. (13)

Strictly speaking this limit applies for the soft Odderon and Pomeron and is therefore not
directly applicable to charm photoproduction which is a harder process, i.e. with larger
energy dependence. According to recent data from HERA [24] the energy dependence,
parameterized as sδ

γp, for photoproduction of J/ψ mesons is δ = 0.39 ± 0.09 for exclusive
production and δ = 0.45±0.13 for inclusive production corresponding to a Pomeron intercept
of αP(0) ≃ 1.2. Even so we will use this limit to get an estimate of the maximal Odderon
coupling to the proton.
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FIG. 3. The amplitudes for the asymmetry using the Donnachie-Landshoff [21] model for the

Pomeron/Odderon coupling to the quark and the proton.

The amplitudes can be calculated using the Donnachie-Landshoff [21] model for the
Pomeron and a similar ansatz for the Odderon [12]. The coupling of the Pomeron/Odderon
to a quark is then given by κγcc̄

P/Oγρ, i.e. assuming a helicity preserving local interaction. In

the same way the Pomeron/Odderon couples to the proton with 3κP/O
pp′ F1(t)γσ if we only

include the Dirac form-factor F1(t). The amplitudes shown in Fig. 3 can then be obtained

by replacing gP/O
pp′ (t)gγcc̄

P/O(t, M2
X , zc) in Eq. (4) by,

gP/O
pp′ (t)gγcc̄

P/O(t, M2
X , zc) = 3κP/O

pp′ F1(t)ū(p − ℓ)γσu(p)

(

gρσ −
ℓρqσ + ℓσqρ

ℓq

)

κγcc̄
P/Oϵµ(q)

×ū(pc)

{

γµ ̸ ℓ− ̸ pc̄ + mc

(1 − z)M2
X

γρ − SP/Oγρ ̸ pc − ̸ ℓ + mc

zM2
X

γµ

}

v(pc̄)

where ℓ = ξp is the Pomeron/Odderon momentum and gρσ − ℓρqσ+ℓσqρ

ℓq stems from the
Pomeron/Odderon “propagator”. Note the signature which is inserted for the crossed dia-
gram to model the charge conjugation property of the Pomeron. The Pomeron amplitude

7
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Fig. 4. The asymmetry in fractional energy z of charm versus anticharm jets predicted by our model using the Donnachie-Landshoffc
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It should be emphasized that the magnitude of this estimate is quite uncertain. The Odderon coupling to the

proton which we are using is a maximal coupling for the soft Odderon in relation to the soft Pomeron. So on the

one hand the ratio may be smaller than this, and on the other hand the ratio may be larger if the hard Odderon

and Pomeron have a different ratio for the coupling to the proton. For the hard Pomeron the coupling is in
Ž w x.general different at the two vertices see e.g. 27 and this could also be true for the hard Odderon.

There is also a small irreducible asymmetry from photon-Pomeron interference. Adding the photon exchange
Žamplitude to the Odderon amplitude modifies the asymmetry as follows again only taking into account the
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Ž . soft 4 2 2 Ž .from Eq. 13 for a s1.08, ss10 GeV , s s1 GeV and Dr s s0.05. Inserting the numericalPP 0 max

values discussed above then gives

y0 .25s 2 z y1g p c2AA t,0,M , z ,0.45 , 17Ž .Ž .X c 2 22ž /M z q 1yzŽ .X c c

which for a typical value of s rM 2s100 becomes a ;15 % asymmetry for large z as illustrated in Fig. 4.g p X c

We also note that the asymmetry can be integrated over z givingc

y0 .25s1 0.5 g p2 2 2AA t,0,M s AA t,0,M , z y AA t,0,M , z ,0.3 . 18Ž .Ž . Ž . Ž .H HX X c X c 2ž /M0.5 0 X

It should be emphasized that the magnitude of this estimate is quite uncertain. The Odderon coupling to the

proton which we are using is a maximal coupling for the soft Odderon in relation to the soft Pomeron. So on the

one hand the ratio may be smaller than this, and on the other hand the ratio may be larger if the hard Odderon

and Pomeron have a different ratio for the coupling to the proton. For the hard Pomeron the coupling is in
Ž w x.general different at the two vertices see e.g. 27 and this could also be true for the hard Odderon.

There is also a small irreducible asymmetry from photon-Pomeron interference. Adding the photon exchange
Žamplitude to the Odderon amplitude modifies the asymmetry as follows again only taking into account the
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Measure charm asymmetry in 
photon fragmentation region

Odderon-Pomeron Interference!
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Odderon-Pomeron Interference leads to K+ K- 
, D+ D-  and  B+ B- !

charge and angular asymmetries
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.
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Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].
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Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF !  
!

 Dynamical effect due to virtual photon interacting in nucleus

Stodolsky 
Pumplin, sjb 

Gribov

Shadowing requires leading-twist diffractive DIS
DDIS on N1

N1

N2

N1
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Two-Beams hit N2: Destructive Interference
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

  Observed HERA DDIS produces nuclear shadowing

Interior nucleons N2 shadowed

DDIS on N1

Two-Beams hit N2: Destructive Interference



Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering!

Are Nuclear Distributions Universal?
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Regge

        constructive in phase!
thus increasing the flux reaching N2

  Regge Exchange in DDIS produces nuclear anti-shadowing

Interior nucleons anti-shadowed

Schmidt, Lu, Yang, sjb

DDIS on N1
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Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.
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Reggeon Exchange

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.
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Phase of two-step amplitude relative to one
step:

1⇧
2
(1� i)⇥ i = 1⇧

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Di�erent for couplings of �⇤, Z0, W±
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Nuclear Distributions are not Universal !
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Shadowing and Antishadowing of Nuclear Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering!

Are Nuclear Distributions Universal?
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron
Need Imaginary Phase to Generate T-

Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Shadowing depends on 
understanding leading-
twist-diffraction in DIS
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Antishadowing (from Reggeon exchange) is not universal!



• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Sum Rules Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon Diffractive DIS

Static                           Dynamic

General remarks about orbital angular mo-
mentum

�n(xi,⇥k�i, �i)

�n
i=1(xi

⇥R�+⇥b�i) = ⇥R�

xi
⇥R�+⇥b�i

�n
i
⇥b�i = ⇥0�

�n
i xi = 1

2

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Mulders, Boer

Qiu, Sterman

 Pasquini, Xiao,  
Yuan, sjb

Collins, Qiu

Hwang, Schmidt, 
sjb,

Structure functions are not parton probabilities. !
By Stanley J. Brodsky, Paul Hoyer, !
Nils Marchal, Stephane Peigne, Francesco Sannino.!
Phys.Rev. D65 (2002) 114025.

http://inspirehep.net/record/581279


General remarks about orbital angular mo-
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Light-Front Wavefunctions:  rigorous representation of composite 
systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Causal, Frame-independent.  Creation Operators on Simple Vacuum, $
Current Matrix Elements are Overlaps of LFWFS

|p, Jz >=
X
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Invariant under boosts!  Independent of P
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Eigenstate of LF Hamiltonian 
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The Light Front Fock State Wavefunctions
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are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction
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Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)
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Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden ColorMueller:  gluon Fock states     BFKL Pomeron
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Proton Self Energy from g g to gg  scattering   
QCD predicts Intrinsic Heavy Quarks!

Collins, Ellis, Gunion, Mueller, sjb 
M. Polyakov, et al. 
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Proton 5-quark Fock State : 
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb 
M. Polyakov 

 

Fixed LF time
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QCD predicts  
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Quarks at high x!

Minimal off-
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Hoyer, Peterson, Sakai, sjb

Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE 

• Color-Octet Color-Octet Fock State!  

• Probability 

• Large Effect at high x 

• Greatly increases kinematics of colliders  such as Higgs 
production (Kopeliovich, Schmidt, Soffer, sjb) 

• Severely underestimated in conventional 
parameterizations of heavy quark distributions (Pumplin, 
Tung) 
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for 
Intrinsic Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):
c(x,Q

2) = c(x, Q

2)
extrinsic

+ c(x, Q

2)
intrinsic

gluon splitting 
(DGLAP)



• EMC data: c(x, Q2) > 30�DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp⇤ J/�X

• High xF pp⇤ J/�J/�X

• High xF pp⇤ �cX

• High xF pp⇤ �bX

• High xF pp⇤ ⇥(ccd)X (SELEX)

Critical Measurements at threshold for JLab, PANDA
Interesting spin, charge asymmetry, threshold, spectator effects
Important corrections to B decays; Quarkonium decays

Gardner, Karliner, sjb
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Leading Hadron Production 
from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks
Produce J/ψ, Λc and other Charm Hadrons at High xF

PX X

Spectator counting rules 
dN

dxF
/ (1� xF )2nspect�1



Barger, Halzen, Keung

Evidence for charm at large x

intrinsic charm



X

pp� p + J/� + p

pp� p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp� p + J/� + p

pp� p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp� p + J/� + p

pp� p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp� p + J/� + p

pp� p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

X

NA3: All events at high xF = xψ +  xψ !
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Fig. 3. The fi# pair distributions are shown in (a) and (c) for the 

pion and proton projectiles. Similarly, the distributions of J/$‘s 

from the pairs are shown in (b) and (d). Our calculations are 

compared with the n-N data at 150 and 280 GeV/c [ I]. The 

x++, distributions are normalized to the number of pairs from both 

pion beams (a) and the number of pairs from the 400 GeV proton 

measurement (c) The number of single J/e’s is twice the number 

of pairs. 

x+ = ~it,/pt,~a~ in Fig. 3. The +$ pair distributions 

are shown in Fig. 3(a) and 3(c) and the associated 

the single J/I) distributions in pair events are shown 

in Fig. 3(b) and 3(d) . Both are normalized to the 

data with the single J/r/ normalization twice that of 

the pair. 

4. Other tests of the intrinsic heavy quark 

mechanism 

The intrinsic charm model provides a natural expla- 

nation of double J/e hadroproduction and thus gives 

strong phenomenological support for the presence of 

intrinsic heavy quark states in hadrons. While the gen- 

eral agreement with the intrinsic charm model is quite 

good, the excess events at medium xlfi~l suggests that 

intrinsic charm may not be the only @$ QCD produc- 

tion mechanism present or that the model parameteri- 

zation with a constant vertex function is too oversim- 

plified. The x,++,+ distributions can also be affected by 

the A dependence. Additional mechanisms, including 

an update of previous models [ 3-71, will be presented 

in a separate paper [ 81. 

The intrinsic heavy quark model can also be used to 

predict the features of heavier quarkonium hadropro- 

duction, such as YY, Y$, and (6~) (Eb) pairs. Using 

fib = 4.6 GeV, we find that the single Y and YY pair 

x distributions are similar to the equivalent I,& distri- 

butions. The average mass, (MYY), is 21.4 GeV for 

pion projectiles and 21.7 GeV for a proton, a few GeV 

above threshold, 2my = 18.9 GeV. The xy@ pair distri- 

butions are also similar to the +@ distributions but we 

note that (xy) = 0.44 and (xe) = 0.30 from a l&fcCbb) 

configuration and (xy) = 0.39 and (x$) = 0.27 from 

a luudc&) configuration. Here (MY@) = 14.9 GeV 

with a pion projectile and 15.2 GeV with a proton, 

again a few GeV above threshold, my + rn+ = 12.6 

GeV. 

It is clearly important for the double J/+ measure- 

ments to be repeated with higher statistics and also at 

higher energies. The same intrinsic Fock states will 

also lead to the production of multi-charmed baryons 

in the proton fragmentation region. It is also interesting 

to study the correlations of the heavy quarkonium pairs 

to search for possible new four-quark bound states and 

final state interactions generated by multiple gluon ex- 

change [ 71. It has been suggested that such QCD Van 

der Waals interactions could be anomalously strong at 

low relative rapidity [ 22,231. 

There are many ways in which the intrinsic heavy 

quark content of light hadrons can be tested. More 

measurements of the charm and bottom structure func- 

tions at large XF are needed to confirm the EMC data 

[ 151. Charm production in the proton fragmentation 

region in deep inelastic lepton-proton scattering is sen- 

sitive to the hidden charm in the proton wavefunction. 

The presence of intrinsic heavy quarks in the hadron 

wavefunction also enhances heavy flavor production 

in hadronic interactions near threshold. More gener- 

ally, the intrinsic heavy quark model leads to enhanced 

open and hidden heavy quark production and leading 

particle correlations at high XF in hadron collisions 

with a distinctive strongly-shadowed nuclear depen- 

dence characteristic of soft hadronic collisions. 
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[ 121. For soft interactions at momentum scale CL, the 

intrinsic heavy quark cross section is suppressed by a 

resolving factor cc &2/m; [ 131. 

There is substantial circumstantial evidence for the 

existence of intrinsic CL! states in light hadrons. For ex- 

ample, the charm structure function of the proton mea- 

sured by EMC is significantly larger than predicted by 

photon-gluon fusion at large XBj [ 151. Leading charm 

production in TN and hyperon-N collisions also re- 
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The NA3 experiment has also shown that the single 

J/$ cross section at large XF is greater than expected 

from gg and q?j production [ 171. Additionally, intrin- 

sic charm may account for the anomalous longitudi- 

nal polarization of the J/+4 at large XF [ 181 seen in 

?rN -+ J/+X interactions. 

Over a sufficiently short time, the pion can contain 

Fock states of arbitrary complexity. For example, two 

intrinsic CC pairs may appear simultaneously in the 

quantum fluctuations of the projectile wavefunction 

and then, freed in an energetic interaction, coalesce 

to form a pair of I,!J’s. We shall estimate the creation 
-- 

probability of ~~vcccc) Fock states, where nv = &I for 

7~- and nv = uud for proton projectiles, assuming that 

all of the double J/I,~ events arise from these configu- 

rations. We then examine the x+$ and invariant mass 

distributions of the $$ pairs and the x,,+ distribution 

for the single $‘s arising from these Fock states. 

2. Intrinsic charm Fock states 

The probability distribution for a general n-particle 

intrinsic CC Fock state as a function of x and kr is 

written as 

(1) 

where N,, normalizes the Fock state probability. In 

the model, the vertex function in the intrinsic charm 

wavefunction is assumed to be relatively slowly vary- 

ing; the particle distributions are then controlled by the 

light-cone energy denominator and phase space. This 

form for the higher Fock wavefunctions generalizes 

for an arbitrary number of light and heavy quark com- 

ponents. The Fock states containing charmed quarks 

can be materialized by a soft collision in the target 

which brings the state on shell. The distribution of 

produced open and hidden charm states will reflect the 

underlying shape of the Fock state wavefunction. 

The invariant mass of a c.? pair, M,, from such a 

Fock state is 

(2) 

where n = 4 and 5 is the number of partons in the 

lowest lying meson and baryon intrinsic CC Fock states. 

The probability to produce a J/(/I from an intrinsic 

CT state is proportional to the fraction of intrinsic ci? 

production below the Or, threshold. The fraction of 

CC pairs with 2m, < MC? < 2rno is 

The ratio fc~jr is approximately 15% larger than fc~iP 

for 1.2 < m, < 1.8 GeV. However, not all c?‘s pro- 

duced below the DB threshold will produce a final- 

state J/S. We include two suppression factors to es- 

timate J/q5 production, one reflecting the number of 

quarkonium channels available with McT < 2rno and 

one for the c and C to coalesce with each other rather 

than combine with valence quarks to produce open 

charm states. The “channel” suppression factor, s, z 

0.3, is estimated from direct and indirect J/$ produc- 

tion, including x1 and xz radiative and +’ hadronic 

decays. The combinatoric “flavor” suppression factor, 

of, is l/2 for a IEdcC) state and l/4 for a IuudcC) 

state. In Fig. 1 we show the predicted fraction of $‘s 

produced from intrinsic CC pairs, 

f@lh = s,sf.fE/h ) (4) 

as a function of m,. We take m, = I .5 GeV, suggesting 

f ur  M 0.03 and f e j p M 0.014. 

NA3 Data

πA! J/ψJ/ψX

µ2
R = CQ2

⌅(Q2) = C0 + C1�s(µR) + C2�2
s(µR) + · · ·

⇧ = 1
2x�P+

⇥p⌅ µ+µ�p

Oberwölz

All events have xF
⌃⌃ > 0.4 !

⇧(pp⌅ cX) ⇤ 1µb

Excludes PYTHIA 
‘color drag’ model

R, Vogt, sjb 
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LHeC: Crucial Test of Intrinsic Charm
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Look for anomalous rate matching Tevatron anomaly
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Electromagnetic Tri-Jet Excitation of Proton

d

u

e�
e�

u

Coulomb Exchange analogous to diffractive excitation  

�
�k�

�p
n=3(xi,⇧k�i, �i)

Measure light-front 
wavefunction of 

proton

ep� e jet jet jet

��

Need Forward 
Small Angle 

Detection

Ashery, et al
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Excitation of  Intrinsic Heavy Quarks in Proton

d
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e�
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u
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Need Forward Small Angle Detection

Amplitude maximal at small invariant mass, equal rapidity

b

b̄

xi �
m�i�n
j m�j

xb � 0.4

xb̄ � 0.4

Produce forward, high xF

⇥(bb̄),�b(bud), B+(b̄u), B0(b̄d)

In principle: high xF tt̄



Goldhaber, Soffer, 
Kopeliovich, Schmidt, sjb

Intrinsic Charm Mechanism for Inclusive  
High-XF Higgs Production

H

Higgs can have 80% of Proton Momentum at LHC!

Also: intrinsic bottom, top

pp� HXp

p

c
c̄

g

New search strategy for Higgs
AFTER: Higgs production at threshold!



Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably

12

⌅ = t + z/c

d⇤
dxF

(pp ⇥ HX)[fb]

fb

⇥q ⇥ ��q

��

⇥

p
Goldhaber, Kopeliovich, 

Schmidt, Soffer, sjb

LHC :
�

s = 14TeV

Tevatron :
�

s = 2TeV

Need High xF Acceptance
Most practical: Higgs to  2 or 4 muons 
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Diffractive Higgs Electroproduction at the LHeC 
from Intrinsic Heavy Quarks at very high xF

u

d

t

u

p’
xH

F > 0.9 u

d
u

• Kopeliovich, Schmidt, Soffer, sjb



PDF, αS uncertainties and the Higgs 

6/24/2015 Monica D'Onofrio, LHeC Workshop, CERN/Chavannes 

!  With LHeC: huge improvements in PDFs and precision in αS ! full 
exploitation of LHC data for Higgs physics  
!  PDF and αS uncertainties as limiting factor for several channels at the HL-LHC 

!  HQ treatment is crucial subject in QCD and matters at high scales! 

19 

CTEQ Belyayev et 
al. JHEP 
0601:069,2006  

LHeC  F2
bb  (RAPGAP MC, 7 TeV x 100 GeV, 10 fb-1, εb=0.5)

x

F 2bb
 x
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H1 vtx DATA
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Figure 3.24: F bb
2 projections for LHeC compared to HERA data [151] from H1, shown

as a function of x for various Q2 values. The expected LHeC results obtained with the
RAPGAP MC simulation are shown as points with error bars representing the statistical
uncertainties. The dashed lines are interpolating curves between the points. For the open
points the detector acceptance is assumed to cover the whole polar angle range. For the
grey shaded and black points events are only accepted if at least one beauty quark is found
with polar angles �b > 20 and �b > 100, respectively. For further details of the LHeC
simulation see the main text. The HERA results from H1 are shown as triangles with error
bars representing their total uncertainty.

data are presented as points with error bars which (where visible) indicate the estimated
statistical uncertainties. For the open points the detector acceptance is assumed to cover
the whole polar angle range. For the grey shaded and black points events are only accepted
if at least one charm quark is found with polar angles �c > 20 and �c > 100, respectively.

75

At LHeC: flavor decomposition (charm/
beauty) ! 20 times better precision for 
charm and bottom mass 
 
E.g. relevant for MSSM Higgs production 
with A produced predominantly via bbbar 
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Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique $
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM !
without affecting conformal invariance of action!

(mq=0)

Single scheme-independent 
fundamental mass scale 
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Light Front Holography: Unique mapping derived from equality of LF and 
AdS  formula for EM and gravitational current matrix elements
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de Teramond, sjb
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Timelike Pion Form Factor from AdS/QCD  
          and Light-Front Holography
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BFKL hard pomeron exchange 
Color Transparency at high Q2

LHeC: Electroproduction of huge range of excited vector mesons



J. R. Forshaw,  
R. Sandapen
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Prediction from  
Light-Front Holography
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Baryon Equation

Meson Equation
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M2(n,LM ) = 42(n + LM ) Same κ!

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

G22

G11

G11

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic QCD (LFHQCD): !
Identical meson and baryon spectra!

Meson-Baryon !
Mass Degeneracy !

for LM=LB+1

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon
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Predictions from AdS Holographic QCD

• Zero-Mass pion for zero quark mass$

• Regge Spectroscopy$

• Same slope in n, L$

• LFWFs, Distribution Amplitudes$

• Form Factors, Structure Functions, GPDs$

• Non-perturbative running coupling$

• Meson-Baryon Supersymmetry for LM= LB+1

94
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42
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p
x(1� x)

M2
⇡(n,L) = 42(n + L)

Dosch, Deur, de Teramond, 
sjb
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Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb
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Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV
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Perturbative QCD

Holographic QCD

(asymptotic freedom)
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All-Scale QCD Coupling
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Deur, de Tèramond, sjbm⇢ =
p

2

mp = 2

� ⌘ 2

⇤MS = 0.341± 0.024 GeV

⇤MS = 0.339± 0.016 GeV

Expt:



LHeC Workshop 
June 25, 2015

 Stan BrodskyLHeC Physics Highlights
97

Jet Hadronization at the Amplitude Level
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e+

e�

�⇥

g

q̄

q

pp ⇤ p + J/⇥ + pConstruct helicity amplitude using Light-Front Perturbation theory;   
coalesce confined quarks via Light-Front Wavefunctions

Event amplitude 
generator

⇤ = t + z/c
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LHeC QCD Physics Highlights

• Diffractive Deep Inelastic Scattering 

• Electroproduction of  vector mesons - test confinement 

• Non-Universal Anti-Shadowing 

• The Odderon 

• Deeply Virtual Meson Production and Color 
Transparency 

• Heavy Quark Interactions at Threshold 

• Heavy Quark Distributions at High x 

• Higgs Production at high xF
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Remarkable Features of 
Hadron Structure

• Valence quark helicity represents less than half of the 
proton’s spin and momentum$

• Non-zero quark orbital angular momentum!$

• Asymmetric sea:                        relation to meson 
cloud$

• Non-symmetric strange and antistrange sea$

• Intrinsic charm and bottom at high x$

• Hidden-Color Fock states of the Deuteron

99
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New Physics at the LHeC 
• Leptoquark, squark Production and Decay               

• ZZ, WZ, WW elastic and inelastic collisions 

• Technicolor 

• Novel Higgs Production Mechanisms 

• Composite quarks, electrons 

• Lepton-Flavor Violation 

• QCD at High Density in ep and eA collisions 

• Odderon 

• Exotic Hadrons, QCD SUSY Relations
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Theory Advances
• PMC/BLM: Eliminate Renormalization Scale 

Ambiguity 

• AdS/QCD: Unique form of confinement 
potential; light-front Schrödinger Equation; 
spectroscopy, dynamics, running coupling; 
hadronization at amplitude level 

• Superconformal algebra relates mesons, baryons 

• Multi-parton and direct processes 

• Hidden Color in Nuclei 

• Non-Universal Antishadowing
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Challenging PQCD Conventional Wisdom
• Renormalization scale is not arbitrary;  multiple 

scales, unambiguous at given order 

• Heavy quark distributions do not derive exclusively 
from DGLAP or gluon splitting -- component 
intrinsic to hadron wavefunction 

• Initial and final-state interactions are not always 
power suppressed in a hard QCD reaction; 
factorization breaking — Sivers, Boer-Mulders 

• LFWFS are universal, but measured nuclear parton 
distributions are not universal -- antishadowing  is 
flavor dependent 

• Hadroproduction at large transverse momentum 
does not derive exclusively from 2 to 2 scattering 
subprocesses 
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q̄

q

p

LHeC: Virtual Photon-Proton Collider
!

variable spacelike photon virtuality, 
various primary flavors

p�⇤(q2)

e
e’

Saturation, nuclear shadowing, antishadowing
Ee = 60 GeV, Ep = 7 TeV,

p
sep > 1 TeV
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 Novel LHeC Physics

P, A
e±
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e±p e±A

Chavannes-de-Bogis

e�/e+
polarization

L = 1033 � 1034 cm�2sec�1

Ee = 60 GeV, Ep = 7 TeV,
p

sep > 1 TeV

e-

Electron-proton and  
electron-nucleus collisions  
at unprecedented energy

Options: positrons, polarization


