Novel L'Hec Physics

Electron-proton and electron-nucleus collísíons at unprecedented energy

Options: positrons, polarization

$$\mathcal{L} = 10^{33} - 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$$

$$E_e = 60 \text{ GeV}, E_p = 7 \text{ TeV}, \sqrt{s_{ep}} > 1 \text{ TeV}$$

Chavannes-de-Bogís

LHeC Workshop June 25, 2015

LHeC Physics Highlights

LHeC options: RR and LR

EIC2014 Workshop, 17th - 21st March 2014, JLab USA

Oliver Brüning, CERN

LH

Perspective from the e-p collider frame

Perspective from the photon-proton collider frame

QCD Factorization: Interactions of Frame-Independent Light-Front Wavefunctions of photon and proton or nucleus

variable spacelike photon virtuality various primary flavors q q plane aligned with lepton scattering plane ~ cos² \$\phi\$

Perspective from the e-p collider frame

 $q \overline{q} p lane aligned with lepton scattering plane ~ cos² \phi$

Scattered lepton produces a virtual top-quark pair in lepton's scattering plane

Factorization: Product of LFWFs

Forward rapidity in final state: Intrinsic to Virtual Photon Backward in final state: Intrinsic to Proton

Scattered lepton produces a virtual top-quark pair in lepton's scattering plane

LHeC: Top Quark-Proton Collider

Electron produces a virtual top-quark pair correlated with electron's scattering plane

LHeC: Vírtual Z-Proton Collíder

Interferes with virtual photon amplitude e+ e^{-} and $q \overline{q}$ asymmetries, parity violation

 $q \bar{q} plane a ligned with lepton scattering plane ~ cos^2 \phi$

Inclusive Top Electroproduction at the LHeC

 $t - \overline{t}$ asymmetry from γ^* and Z^* or $\gamma^* \gamma^*$ interference

Dual Interpretation: Top quark in photon vs. heavy sea quark in proton

t t Plane correlated with Electron Scattering Plane

LHeC Workshop June 25, 2015

LHeC Physics Highlights

LHeC: "W-Proton Collider"

Only partially included by DGLAP in proton pdf Enhancement at threshold

Rídge ín p p collísions! Raju Venugopalan Two particle correlations: CMS results

Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 for two hadrons in the intermediate 1 < p_T, q_T < 3 GeV</p>

Possible origin of same-side CMS ridge in p p Collisions

Bjorken, Goldhaber, sjb

Bjorken, Goldhaber, sjb

Multiparticle ridge-like correlations in very high multiplicity proton-proton collisions

We suggest that this "ridge"-like correlations are a reflection of the rare events generated by the collision of aligned flux tubes connecting the valence quarks in the wave functions of the colliding protons.

The "spray" of particles resulting from the approximate line source produced in such inelastic collisions then gives rise to events with a strong correlation between particles produced over a large range of both positive and negative rapidity.

LHeC: Variable plane and photon size: enhanced sensitivity to ridge mechanism

Bjorken, Goldhaber, sjb

Scattered lepton produces flux-tube in lepton's scattering plane

Rídge axes correlated with leptonic scattering plane

$$\langle b_{\perp}^2 \rangle \sim \frac{1}{Q^2 x (1-x) + M_t^2}$$

Small size domain activated

Perspective from the e-p collider frame

t t acts as a 'drill'

t t acts as a 'drill'

rídges, nuclear dependence, etc.

t t acts as a 'drill'

LHeC: Above the tt+Higgs threshold

Lepton-Proton Scattering Facilities

Inclusive Higgs Electroproduction at the LHeC from the Charged Current

LHeC Workshop June 25, 2015 **LHeC Physics Highlights**

Inclusive Higgs Electroproduction at the LHeC from the Neutral Current

LHeC Workshop June 25, 2015 **LHeC Physics Highlights**

VBF Higgs production: e-p vs p-p

- Higgs production in ep comes uniquely from either CC or NC
 - Pile-up in e-p at 10³⁴ = 0.1
 - Clean(er) bb final state, S/B
 1

 \rightarrow Clean, precise reconstruction and easy distinction of ZZH and WWH

 Higgs production in pp comes predominantly from gg→H

- VBF cross section about 200 fb (about as large as at the ILC).
- Pile-up in pp at 5 x 10³⁴ is 150, S/B very small for bb
- Precision needs accurate PDFs

Higgs Production via Vector-Boson Fusion

R. Godpole

LHeC Higgs	$CC(e^-p)$	NC (e^-p)	$CC(e^+p)$
Polarisation	-0.8	-0.8	0
Luminosity [ab ⁻¹]	1	1	0.1
Cross Section [fb]	196	25	58
Decay BrFraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^{H} e^{-}p$	$N_{CC}^{H} e^{+}p$
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	3 350
$H \rightarrow c\bar{c}$ 0.029	5 700	700	170
$H \rightarrow \tau^+ \tau^- = 0.063$	12 350	1 600	370
$H \rightarrow \mu \mu$ 0.00022	50	5	-
$H \rightarrow 4l$ 0.00013	30	3	-
$H \rightarrow 2l 2 \nu = 0.0106$	2 080	250	60
$H \rightarrow gg = 0.086$	16 850	2 050	500
$H \rightarrow WW = 0.215$	42 100	5 150	1 250
$H \rightarrow ZZ = 0.0264$	5 200	600	150
$H \rightarrow \gamma \gamma = 0.00228$	450	60	15
$H \rightarrow Z\gamma = 0.00154$	300	40	10

LHeC O(10 ⁵) H from VBF		
bb: S/N = 1: coupling to 1%		
Under study cc, ττ, CP with LHeC detector takes much effort+time		

Inclusive Higgs Electroproduction at the LHeC Higgs production from top

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Inclusive Higgs Electroproduction at the LHeC

Higgs production from single top

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Higgs Electroproduction at the LHeC

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Two-Higgs Electroproduction or photoproduction at the LHeC!

Diffractive Higgs Electroproduction at the LHeC

NATIONAL ACCELERATOR LABORATOR

June 25, 2015

Diffractive Higgs Electroproduction at the LHeC from Intrinsic Heavy Quarks at very high x_F

Diffractive Deep Inelastic Scattering

Diffractive DIS $ep \rightarrow epX$ where there is a large rapidity gap and the target nucleon remains intact probes the final state interaction of the scattered quark with the spectator system via gluon exchange.

Diffractive DIS on nuclei $eA \to e'AX$ and hard diffractive reactions such as $\gamma^*A \to VA$ can occur coherently leaving the nucleus intact.

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

LHeC Workshop June 25, 2015 LHeC Physics Highlights 36

de Roeck

Diffractive Structure Function F₂^D

Diffractive inclusive cross section

$$\begin{aligned} \frac{\mathrm{d}^3 \sigma_{NC}^{diff}}{\mathrm{d} x_{I\!\!P} \,\mathrm{d}\beta \,\mathrm{d}Q^2} &\propto & \frac{2\pi \alpha^2}{xQ^4} F_2^{D(3)}(x_{I\!\!P},\beta,Q) \\ F_2^D(x_{I\!\!P},\beta,Q^2) &= & f(x_{I\!\!P}) \cdot F_2^{I\!\!P}(\beta,Q^2) \end{aligned}$$

extract DPDF and xg(x) from scaling violation

Large kinematic domain $3 < Q^2 < 1600 \, {\rm GeV^2}$ Precise measurements sys 5%, stat 5–20 %

Diffractive Deep Inelastic Scattering at the LHeC

 Unique program for diffractive PDF and generalized parton distributions. DIS diffraction brought to a completely new regime with the extended kinematic range and higher luminosity

Exclusive Diffractive Processes

Unitarity Bound? Saturation?

Hard Diffraction $\gamma p \to \Upsilon p$

$\begin{array}{c} \mathbf{Odderon} \\ \gamma^* p \to \pi^0 p \end{array}$

Stan Brodsky

LHeC Workshop June 25, 2015 **LHeC Physics Highlights**

LHeC: Electroproduction of huge range of excited vector mesons

Prediction from AdS/QCD: Meson LFWF

Provides Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*

Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

R. Sandapen[†]

Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada (Received 5 April 2012; published 20 August 2012)

We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ -meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.

$$\psi_M(x,k_\perp) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_\perp^2}{2\kappa^2 x(1-x)}}$$

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

Prediction from AdS/QCD

De Teramond, Dosch, sjb

$$M^{2}(n, L, S) = 4\kappa^{2}(n + L + S/2)$$

 $m_u = m_d = 0$

LHeC Workshop June 25, 2015

LHeC Physics Highlights

LHeC: Electroproduce huge range of excited vector mesons V'

Test Regge Spectroscopy, AdS/QCD

Novel nuclear effect at the LHeC

Odderon has never been observed!

Look for Charge Asymmetries from Odderon-Pomeron Interference

Merino, Rathsman, sjb

Z_c

Merino, Rathsman, sjb

Odderon-Pomeron Interference leads to K⁺ K⁻, D⁺ D⁻ and B⁺ B⁻ charge and angular asymmetries

Odderon at amplitude level

Strong enhancement at heavy-quark pair threshold from QCD Sakharov-Schwinger-Sommerfeld effect

Hoang, Kuhn, sjb

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Nuclear Shadowing in QCD

Two-Beams hit N₂: Destructive Interference

Stodolsky

Pumplin, sjb

Gribov

Shadowing requires leading-twist diffractive DIS

Nuclear Shadowing not included in nuclear LFWF!

Dynamical effect due to virtual photon interacting in nucleus

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Interior nucleons N₂ shadowed

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_B : $1/Mx_B = 2\nu/Q^2 \ge L_A.$

If the scattering on nucleon N_1 is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \overline{q} flux reaching N_2 .

Two-Beams hit N₂: Destructive Interference

 \rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

LHeC Workshop June 25, 2015

LHeC Physics Highlights

No anti-shadowing in deep inelastic neutrino scattering!

Schmidt, Lu, Yang, sjb

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_B : $1/Mx_B = 2\nu/Q^2 \ge L_A.$

KeggeIf the scattering on nucleon N_1 is via pomeronexchange, the one-step and two-step ampli-tudes are opposite in phase, thus diminishingthe \overline{q} flux reaching N_2 .Constructive in phasethus increasing the flux reaching N₂

Interior nucleons anti-shadowed

Regge Exchange in DDIS produces nuclear anti-shadowing

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Reggeon Exchange

Regge contribution:
$$\sigma_{\bar{q}N} \sim \hat{s}^{\alpha_R-1}$$
 $\alpha_R \simeq 1/2$

Phase of two-step amplitude relative to one step:

$$\frac{1}{\sqrt{2}}(1-i) \times i = \frac{1}{\sqrt{2}}(i+1)$$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ^*, Z^0, W^{\pm}

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Nuclear Distributions are not Universal !

LHeC Workshop June 25, 2015 **LHeC Physics Highlights**

58

Shadowing and Antishadowing of Nuclear Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].

LHeC Workshop June 25, 2015 **LHeC Physics Highlights**

No anti-shadowing in deep inelastic neutrino scattering!

Shadowing depends on understanding leadingtwist-diffraction in DIS

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Antishadowing (from Reggeon exchange) is not universal!

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Structure functions are not parton probabilities. By Stanley J. Brodsky, Paul Hoyer, Nils Marchal, Stephane Peigne, Francesco Sannino. Phys.Rev. D65 (2002) 114025.

Static

 $\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$

Dynamic

 Square of Target LFWFs 	Modified by Rescattering: ISI & FSI	
 No Wilson Line 	Contains Wilson Line, Phases	
 Probability Distributions 	No Probabilistic Interpretation	
 Process-Independent 	Process-Dependent - From Collision	Hwang, Schmidt, sjb,
T-even Observables	T-Odd (Sivers, Boer-Mulders, etc.)	
 No Shadowing, Anti-Shadowing 	Shadowing, Anti-Shadowing, Saturation	Mulders, Boer
• Sum Rules: Momentum and J ^z	Sum Rules Not Proven	Qiu, Sterman
• DGLAP Evolution; mod. at large x	DGLAP Evolution	
 No Diffractive DIS 	Hard Pomeron and Odderon Diffractive DIS	Collins, Qiu
2	e- current quark iet	Pasquini, Xiao, Yuan, sjb

quark

 s_{\odot}

proton

final state interaction

spectator system

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

$$|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks s(x), c(x), b(x) at high x !

$$\overline{\bar{s}(x) \neq s(x)}$$
$$\overline{\bar{u}(x) \neq \bar{d}(x)}$$

Mueller: gluon Fock states BFKL Pomeron

Proton Self Energy from g g to gg scattering QCD predicts Intrinsic Heavy Quarks!

 $x_Q \propto (m_Q^2 + k_\perp^2)^{1/2}$

M. Polyakov, et al.

Fixed LF time

Proton 5-quark Fock State: Intrinsic Heavy Quarks

QCD predicts Intrinsic Heavy Quarks at high x

Minimal offshellness

Probability (QED) $\propto \frac{1}{M_{\star}^4}$

Probability (QCD) $\propto \frac{1}{M_{\odot}^2}$

Collins, Ellis, Gunion, Mueller, sjb **M. Polyakov**

Hoyer, Peterson, Sakai, sjb

RĒ

Intrínsic Heavy-Quark Fock States

Ρ

2-2005 8711A82

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)

LHeC Workshop June 25, 2015

LHeC Physics Highlights

67

DGLAP / Photon-Gluon Fusion: factor of 30 too small Two Components (separate evolution): $c(x,Q^2) = c(x,Q^2)_{\text{extrinsic}} + c(x,Q^2)_{\text{intrinsic}}$

• EMC data:
$$c(x,Q^2) > 30 \times DGLAP$$

 $Q^2 = 75 \text{ GeV}^2$, $x = 0.42$

• High
$$x_F \ pp \to J/\psi X$$

• High
$$x_F \ pp \rightarrow J/\psi J/\psi X$$

• High $x_F \ pp \to \Lambda_c X$

• High $x_F \ pp \to \Lambda_b X$

• High
$$x_F pp \rightarrow \Xi(ccd)X$$
 (SELEX)

Critical Measurements at threshold for JLab, PANDA Interesting spin, charge asymmetry, threshold, spectator effects Important corrections to B decays; Quarkonium decays Gardner, Karliner, sjb

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce J/ψ , Λ_c and other Charm Hadrons at High x_F

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Barger, Halzen, Keung

Evídence for charm at large x

NA3: All events at high $x_F = x_{\psi} + x_{\psi}!$

Excludes PYTHIA 'color drag' model

 $\pi A \rightarrow J/\psi J/\psi X$ R, Vogt, sjb

The probability distribution for a general *n*-particle intrinsic $c\overline{c}$ Fock state as a function of x and k_T is written as

$$\frac{dP_{ic}}{\prod_{i=1}^{n} dx_{i}d^{2}k_{T,i}} = N_{n}\alpha_{s}^{4}(M_{c\bar{c}}) \frac{\delta(\sum_{i=1}^{n} k_{T,i})\delta(1-\sum_{i=1}^{n} x_{i})}{(m_{h}^{2}-\sum_{i=1}^{n}(m_{T,i}^{2}/x_{i}))^{2}},$$

Ī

Fig. 3. The $\psi\psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J/ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^- N$ data at 150 and 280 GeV/c [1]. The $x_{\psi\psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J/ψ 's is twice the number of pairs.

.1.

NA₃ Data

week ending 15 MAY 2009

of $c(x,Q^2)!$

Measurement of $\gamma + b + X$ and $\gamma + c + X$ Production Cross Sections in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

LHeC: Crucíal Test of Intrínsic Charm

Look for anomalous rate matching Tevatron anomaly

Coulomb Exchange analogous to diffractive excitation Ashery, et al Electromagnetic Tri-Jet Excitation of Proton $ep \rightarrow e$ jet jet jet

Excitation of Intrinsic Heavy Quarks in Proton

Amplitude maximal at small invariant mass, equal rapidity

Intrínsic Charm Mechanism for Inclusive Hígh-X_F Híggs Production

Higgs can have 80% of Proton Momentum at LHC! New search strategy for Higgs AFTER: Higgs production at threshold!

Diffractive Higgs Electroproduction at the LHeC from Intrinsic Heavy Quarks at very high x_F

• Kopeliovich, Schmidt, Soffer, sjb

PDF, α_{S} uncertainties and the Higgs

- With LHeC: huge improvements in PDFs and precision in $\alpha_s \rightarrow$ full exploitation of LHC data for Higgs physics
 - \blacktriangleright PDF and $\alpha_{\rm S}$ uncertainties as limiting factor for several channels at the HL-LHC
 - **HQ** treatment is crucial subject in QCD and matters at high scales!

Monica D'Onofrio, LHeC Workshop, CERN/Chavannes

LHeC: Measure Structure Function at very small x

Unitarity Bound? Saturation?

de Tèramond, Dosch, sjb

AdS/QCD Soft-Wall Model

Single scheme-independent fundamental mass scale

 κ

 $\zeta^2 = x(1-x)\mathbf{b}^2_{\perp}$

Líght-Front Holography

Unique

Confinement Potential!

Conformal Symmetry

of the action

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = \mathcal{M}^2\psi(\zeta)$$

Light-Front Schrödinger Equation $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$

Confinement scale:

 $\kappa \simeq 0.6 \ GeV$

$$1/\kappa \simeq 1/3 \ fm$$

🛑 de Alfaro, Fubini, Furlan:

 $(m_q=0)$

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Light Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Prediction from AdS/QCD

 $m_u = m_d = 0$

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Tímelíke Píon Form Factor from AdS/QCD and Líght-Front Holography

LHeC: Electroproduction of huge range of excited vector mesons

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

LF Holography

Baryon Equation

$$\left(-\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}(L_{B}+1) + \frac{4L_{B}^{2}-1}{4\zeta^{2}}\right)\psi_{J}^{+} = M^{2}\psi_{J}^{+} \quad \mathsf{G}_{22}$$

$$\left(-\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}L_{B} + \frac{4(L_{B}+1)^{2} - 1}{4\zeta^{2}} \right)\psi_{J}^{-} = M^{2}\psi_{J}^{-} \text{G}_{\text{III}}$$

$$M^{2}(n, L_{B}) = 4\kappa^{2}(n + L_{B} + 1) \text{S=I/2, P=+}$$

both chiralities

Meson Equation

$$\left(-\partial_{\zeta}^{2} + \kappa^{4}\zeta^{2} + 2\kappa^{2}(J-1) + \frac{4L_{M}^{2} - 1}{4\zeta^{2}}\right)\phi_{J} = M^{2}\phi_{J} \qquad \mathbf{G}_{I}$$

 $M^{2}(n, L_{M}) = 4\kappa^{2}(n + L_{M})$ Same κ ! **S=0, I=I Meson is superpartner of S=I/2, I=I Baryon** Meson-Baryon Degeneracy for L_M=L_B+1 Superconformal Algebra

Superconformal AdS Light-Front Holographic QCD (LFHQCD): Identical meson and baryon spectra!

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Predictions from Ads Holographic QCD

- Zero-Mass pion for zero quark mass
- Dosch, Deur, de Teramond, sjb
- Regge Spectroscopy $M^2_{\pi}(n,L) = 4\kappa^2(n+L)$
- Same slope in n, L
- LFWFs, Distribution Amplitudes
- Form Factors, Structure Functions, GPDs
- Non-perturbative running coupling
- Meson-Baryon Supersymmetry for L_M= L_{B+1}

LHeC Physics Highlights

 $\phi_{\pi}(x) \propto f_{\pi} \sqrt{x(1-x)}$

 $\alpha_s(Q^2) \propto e^{-\frac{Q^2}{4\kappa^2}}$

Running Coupling from Light-Front Holography and AdS/QCD

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for Q < 1 GeV

$$e^{\varphi} = e^{+\kappa^2 z^2}$$

Deur, de Teramond, sjb

Jet Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce confined quarks via Light-Front Wavefunctions

LHeC Workshop June 25, 2015

LHeC Physics Highlights

LHeC QCD Physics Highlights

- Diffractive Deep Inelastic Scattering
- Electroproduction of vector mesons test confinement
- Non-Universal Anti-Shadowing
- The Odderon
- Deeply Virtual Meson Production and Color Transparency
- Heavy Quark Interactions at Threshold
- Heavy Quark Distributions at High x
- Higgs Production at high x_F

LHeC Workshop June 25, 2015 LHeC Physics Highlights 98

Remarkable Features of Hadron Structure

- Valence quark helicity represents less than half of the proton's spin and momentum
- Non-zero quark orbital angular momentum!
- Asymmetric sea: $\overline{u}(x) \neq \overline{d}(x)$ relation to meson cloud
- Non-symmetric strange and antistrange sea $\overline{s}(x) \neq s(x)$
- Intrinsic charm and bottom at high x
 - Hidden-Color Fock states of the Deuteron

LHeC Workshop June 25, 2015

LHeC Physics Highlights

Stan Brodsky

 $\Delta s(x) \neq \Delta \bar{s}(x)$

New Physics at the LHeC

- Leptoquark, squark Production and Decay
- ZZ, WZ, WW elastic and inelastic collisions
- Technicolor
- Novel Higgs Production Mechanisms
- Composite quarks, electrons
- Lepton-Flavor Violation
- QCD at High Density in ep and eA collisions
- Odderon
- Exotic Hadrons, QCD SUSY Relations

LHeC Workshop June 25, 2015 LHeC Physics Highlights

Theory Advances

- PMC/BLM: Eliminate Renormalization Scale Ambiguity
- AdS/QCD: Unique form of confinement potential; light-front Schrödinger Equation; spectroscopy, dynamics, running coupling; hadronization at amplitude level
- Superconformal algebra relates mesons, baryons
- Multi-parton and direct processes
- Hidden Color in Nuclei
- Non-Universal Antishadowing

LHeC Workshop June 25, 2015 **LHeC Physics Highlights**

Challenging PQCD Conventional Wisdom

- Renormalization scale is not arbitrary; multiple scales, unambiguous at given order
- Heavy quark distributions do not derive exclusively from DGLAP or gluon splitting -- component intrinsic to hadron wavefunction
- Initial and final-state interactions are not always power suppressed in a hard QCD reaction; factorization breaking — Sivers, Boer-Mulders
- LFWFS are universal, but measured nuclear parton distributions are not universal -- antishadowing is flavor dependent
- Hadroproduction at large transverse momentum does not derive exclusively from 2 to 2 scattering subprocesses

LHeC Workshop June 25, 2015

LHeC Physics Highlights

LHeC: Vírtual Photon-Proton Collíder

Novel L'Hec Physics

Electron-proton and electron-nucleus collísíons at unprecedented energy

Options: positrons, polarization

$$\mathcal{L} = 10^{33} - 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$$

$$E_e = 60 \text{ GeV}, E_p = 7 \text{ TeV}, \sqrt{s_{ep}} > 1 \text{ TeV}$$

Chavannes-de-Bogís

LHeC Workshop June 25, 2015

LHeC Physics Highlights

I04

