UPC results from ALICE

Christoph Mayer for the ALICE Collaboration

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (PAN) 31-342 Kraków

LHeC workshop 24-26 June 2015

Overview

- Introduction
- J/ Ψ cross-section measurements in p-Pb
- Ultra-peripheral $\gamma\gamma \rightarrow e^+e^-$ in Pb-Pb

Motivation

- There is an intense photon field around Pb ions
- This allows one to use the LHC as a γ -Pb and γ -p collider
- The accessible $W_{\gamma p}$ energy range probes part of the $W_{\gamma p}$ energy range foreseen for the LHeC

e-p vs. UPC p-Pb and Pb-Pb Collisions

Ultra-peripheral collisions (pA and AA)

- Ultra-peripheral collisions (UPC): impact parameter $b > R_1 + R_2$
 - Hadronic interactions are strongly suppressed
 - Electro-magnetic interactions dominant
- Exclusive UPC interactions:
 - Clean events which allow one to study QCD/QED processes
 - Photon-nucleus/photon-proton: charmonium production, $\rho^0 \rightarrow \pi^+\pi^-$, ...
 - Photon-photon: γγ -> lepton pairs
- Strong electro-magnetic field around ions:
 - number of photons $\approx Z^2$ in AA ($\approx Z$ in pA)
- J/Psi: photons probe the color sub-structure of nucleons
 - Allows one to study the gluon-distribution g(x; q²) in the Pb-Pb system
 - Accessible partonic momentum fractions $x \approx 10^{-3} 10^{-5}$
 - Gluon shadowing, saturation
- γγ -> lepton pairs: QED process
 - higher-order corrections are difficult to compute; but can be constrained by

6/24/2015

Ultra-peripheral collisions

- Coherent
 - Photon couples coherently to all the nucleons
 - $\langle p_T \rangle \approx 60 \text{ MeV/c}$
 - Target nucleus normally^a does not break up
- Incoherent •
 - Photon couples to a part of the nucleus
 - $\langle p_T \rangle \approx 500 \text{ MeV/c}$
 - Target nucleus normally^b does break up
- p-Pb collisions
 - Photon from the Pb ion interacts with p
 - Flux of virtual photons of Pb enhanced by
 - a factor of Z relative to pp

- a) Coherent ≈20% breakup probability
- b) Incoherent ≈80% breakup probability

The ALICE detector

UPC J/Psi measurements

ALICE Configurations for UPC J/Ψ measurements

- Forward (Pb-Pb and p-Pb)
 - Two tracks in the muon arm
 - Rapidity of J/ Ψ : 2.5 < y < 4
- Semi-forward (p-Pb)
 - One track in the muon arm, one track in the central barrel
 - Rapidity of J/ Ψ : 1.2 < y < 2.7
- Mid-rapidity (Pb-Pb and p-Pb)
 - Two tracks in the central barrel ($\mu^+\mu^-$ or e^+e^-)
 - Rapidity of J/ Ψ : |y| < 0.9

ZEUS: S. Chekanov et al., Nucl. Phys. B695 (2004) 3.

- HERA W_{vp} range extended by factor ≈ 3
- Lower energy range of the HERA experiments covered
- A part of the LHeC W_{yp} range is accessible
- Allows one to study saturation

6/24/2015

UPC Trigger in p-Pb (Proton \rightarrow muon arm)

- Two unlike-sign tracks in the muon spectrometer with $p_T > 0.5 \text{ GeV}/c$ (-4.0 < η < -2.7)
- Empty VZERO-A beam-beam trigger (2.8 < η < 5.1)

UPC Trigger in Pb-p (Pb \rightarrow muon arm)

- Two unlike-sign tracks in the muon spectrometer with $p_T > 0.5 \text{ GeV}/c$
- Empty VZERO-A beam-beam and beam-gas trigger
- At least one hit in VZERO-C at beam-beam time

 $(-3.7 < \eta < -1.7)$

Event Selection

- UPC trigger + offline VZERO timing cut + veto on ZDC (neutron, proton)
- requiring two good unlike-sign muon tracks with

 $-4.0 < \eta_{1,2} < -2.5$ (p-Pb), $-3.7 < \eta_{1,2} < -2.5$ (Pb-p)

Idi-muon rapidity: 2.6 < y < 4.0 (p-Pb), −3.6 < y < −2.6 (Pb-p)</p>

100

Phys. Rev. Lett. 113 (2014) 232504

Fit function: exponential + Crystal-Ball

p-Pb: STARLIGHT slope changed from default $b = 4.0 \text{ GeV}^{-2}$ to $b = 6.7 \text{ GeV}^{-2}$

Dimuon candidates / (100 MeV/c) ALICE p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 2.5<y<4.0 80 2.8<M___<3.3 GeV/c² 60 20 25 ALICE Pb-p $\sqrt{s_{_{NN}}}$ = 5.02 TeV -3.6<y<-2.6 20 2.8<M_...<3.3 GeV/c² 15 Sum Exclusive J/ψ Non-exclusive background $\gamma \gamma \rightarrow \mu^{+}\mu^{-}$ -----γ+Pb 3 3.5 4 Dimuon p₊ (GeV/c) ALI-PUB-89259 Templates fitted to $p_T(\mu^+\mu^-)$: excl. $J/\Psi, \gamma\gamma \rightarrow \mu^+\mu^-, \gamma + Pb$, non excl. bkgd STARLIGHT MC, $\gamma\gamma$ constr. from data from data

Phys. Rev. Lett. 113 (2014) 232504

6/24/2015

11 STARLIGHT MC; S.R. Klein, J. Nystrand, Phys. Rev. C 60 (1999) 014903

$\gamma\gamma \rightarrow \mu^+\mu^-$ in p-Pb

Comparison with STARLIGHT as a cross check

• $1.5 < M_{\mu^+\mu^-} < 2.5$

STARLIGHTMC

• Templates fitted to $p_T(\mu^+\mu^-)$: excl. $\gamma\gamma \to \mu^+\mu^-$, non excl. bkgd

from data

measured cross section

 $\sigma(\gamma\gamma \to \mu^+\mu^-) = 1.76 \pm 0.12 (\text{stat.}) \, {}^{+0.16}_{-0.15} (\text{syst.}) \, \mu \text{b}$

• STARLIGHT prediction: 1.8 μ b

Phys. Rev. Lett. 113 (2014) 232504

The cross section predicted by STARLIGHT agrees with our measurement within statistical errors

6/24/2015

Phys. Rev. Lett. 113 (2014) 232504

the error is propagated to $\sigma(\gamma + \mathbf{p})$ as an additional theoretical error 6/24/2015

UPC γγ -> e+e- in Pb-Pb

Two-photon production of electron pairs in Pb-Pb –

ALICE 2011 data

Topology cut in trigger: $M_{e^+/24} = 2.2 \text{ GeV}/c^2$

ALICE Collaboration, EPJC 73 (2013) 2617 (Central Barrel).

Two-photon production of electron pairs in Pb-Pb – ALICE 2010 data

With 2010 data this range can be extended down to 0.6 GeV/ c^2 :

And the results can be combined to cover the range $M_{e^+e^-} \in [0.6, 10] \text{ GeV}/c^2$:

Two-photon production of electron pairs in Pb-Pb

ALICE 2010 data

ALI-PREL-69133

- The transverse-momentum distribution is well -described by the STARLIGHT Monte-Carlo simulation for $0.6 \le M_{e^+e^-} < 10.0 \text{ GeV}/c^2$.
 - ► Left: 2010 Pb-Pb data
 - Right: 2011 Pb-Pb data (EPJC paper)

6/24 O_1 Broadening of pair- p_T with increasing $M_{e^+e^-}$

ALICE EPJC 73 (2013) 2617

Further ALICE UPC Results

- UPC J/Ψ -> μ⁺μ⁻ in Pb-Pb (forward rapidity)
 Physics Lett. B 718, (2013) 1273
- UPC J/Ψ and γγ -> e⁺e⁻ in Pb-Pb (mid-rapidity)
 J Eur. Phys. J. C 73 (2013) 2617
- Coherent $\rho^0 \rightarrow \pi^+\pi^-$ in Pb-Pb (mid-rapidity) <u>http://arxiv.org/abs/1503.09177</u>
- Psi(2s) -> J/Ψ π⁺π⁻, e⁺e⁻, μ⁺μ⁻ in Pb-Pb (mid-rapidity) to be published

Work in progress:

- UPC $f_2 \rightarrow \pi^+\pi^-$ ($\gamma\gamma$ -process) in Pb-Pb (mid-rapidity)
- UPC ρ^0 and ρ' -production on p-Pb

LHC Run2 Outlook

Pb-Pb in LHC Run 2 ($\mathcal{L}^{\text{int.}} \approx 1 \text{nb}^{-1}$):

- We expect $\times 20 \times 50$ more UPC events than in Run 1
- High precision measurements of J/Ψ , $\Psi(2S)$ photo-production
- Detailed p_T and rapidity distributions
- Exploratory studies of Υ photo-production possible
- Two-photon production of η_c appears feasible
- Extended γp energy range

New forward detector ADD

- Two layers of scintillators on each side of the interaction point
- Extension of the veto outside central rapidity
- Reduction of non-exclusive background

ALICE Diffractive Detector (ADD)

(approx. η range) $-7.5 < \eta < -5.5$ 5.5 < $\eta < 7.5$

VZERO

A-side

 $-3.7 < \eta < -1.7$ 2.8 $< \eta < 5.1$

C-side

Summary and Conclusions

- ALICE has measured J/ Ψ cross-sections in UPC p-Pb collisions
 - Can be related to γp cross sections using the known photon-flux
 - Different combination of ALICE detectors allow to probe a wide range in γp energies, probing part of the range accessible by the LHeC
 - No evidence for saturation found
- UPC $\gamma\gamma \rightarrow e^+e^-$ in Pb-Pb
 - Differential cross section measured from $0.6 10 \text{ GeV/c}^2$
 - Sets limits for higher-order correction from perturbative QED
- Outlook on LHC RUN2
 - Increased statistics will allow to measure J/ Ψ p_T and rapidity dependence
 - The new AD detector is already taking pp data -> extends the rapidity gap
 - Expected new results include:

UPC phi production, $\gamma\gamma \rightarrow f_2 \rightarrow \pi^+\pi^-$, UPC Upsilon production, ...