Updates on H->bb studies at LHeC

<u>Masahiro Tanaka</u>, Masahiro Kuze, Masaki Ishitsuka ~Tokyo Institute of Technology~ Uta Klein ~Liverpool University~

25 June 2015

LHeC Workshop 2015 @CERN and Chavannes-de-Bogis

Higgs studies at LHC

- Higgs boson was discovered by ATLAS and CMS in 2012.
- ➡Next step is measuring each decay channel more precisely to prove linearity between coupling constant and the mass of each particle.

- H->bb channel is challenging due to large number of QCD bkg.
- How about at electron proton collider LHeC ?

Higgs in LHeC

Neutral current (NC) H->bb (0.012 pb)

 CC: H->bb process is chosen as the signal because the cross section is larger than NC: H->bb process and NC rejection cut decreases large number of NC BG.

CDR results and updates

CDR results (before Higgs discovery)

• Previous analysis was performed by K.Kimura (Tokyo Tech) and

the result is on LHeC CDR.

	Higgs production	CC DIS	NC bbj	S/N	S/\sqrt{N}
cut (1)	816	123000	4630	$6.38 imes 10^{-3}$	2.28
cut (1) to (3)	178	1620	179	9.92×10^{-2}	4.21
All cuts	84.6	29.1	18.3	1.79	12.3

120 GeV Higgs was assumed.

 $E_e = 150 \text{ GeV}$ and luminosity of 10 fb⁻¹.

CC (inclusive) and NC (with 2 or more b jets) backgrounds were considered.

²⁰⁰ PGS was used for detector simulation.

Update of CDR analysis

- Higgs mass was determined to be 125 GeV by ATLAS and CMS.
- $E_e = 60 \text{ GeV}$ and luminosity of 100 fb⁻¹.
- New categorization of background MC (details later.)
- Delphes is used for detector simulation.
- Revised selection cuts.

LHeC in simulation

______ MadGraph/MadEvent

- Parton level event generation
- Calculation of cross section

Generator setup

- Beam of proton: 7 TeV, electron: 60 GeV.
- 125 GeV Higgs.

Detector setup

- Coverage:
 - Calorimeter: $|\eta| < 5$ Tracking: $|\eta| < 4.7$
- Jet reconstruction:
 - anti k_T algorithm with $\Delta R=0.9$
- HCal resolution

$$\frac{\sigma}{E} = \frac{30\%}{\sqrt{E}} + 3\% \ (|\eta| < 3) \qquad \frac{\sigma}{E} = \frac{60\%}{\sqrt{E}} + 5\% \ (3 < |\eta| < 5)$$

• ECal resolution $\frac{\sigma}{E} = \frac{35\%}{E} + \frac{7\%}{\sqrt{E}} + 0.7\% (|\eta| < 3)$

$$\frac{\sigma}{E} = \frac{20\%}{\sqrt{E}} + 2\% (3 < |\eta| < 4) \quad \frac{\sigma}{E} = \frac{40\%}{\sqrt{E}} + 10\% (4 < |\eta| < 5)$$

Pythia

- Fragmentation
- Hadronization

Delphes

• Detector simulation

H->bb event selection

Simulation sample

- Signal sample is charged current H->bb events.
- Background is categorized in detail (by Uta Klein et al. in Liverpool.)
 - Charged current background is separated to 3 types, including single top, including Z and excluding both top and Z.
 - Neutral current background is separated to two types, including Z or photo production event which γ/Z interact with proton.
- 100 fb⁻¹ is assumed.

	σ (pb)	Nsample	N/σ(fb ⁻¹)
Signal H->bb	0.063	200K	3170
CCjjj no top	2.5	300K	120
CC single top	0.43	150K	350
CC Z	0.29	100K	345
NC Z	0.13	100K	770
PĄjįj	38	955K	25

- PAjjj
 - Photo production events.
 - Required 3 jets (PT>10 GeV) in final state.
 - All 6 flavor is contained

Event selection

Primary cut

 $N_{Jet} (p_T > 20 \text{ GeV}) \ge 3$ $N_{Bjet} (p_T > 20 \text{ GeV}) \ge 2$ $O^2 \ge 400 \text{ GeV}^2 \iff 0.0$

 $Q_h^2 > 400 \text{ GeV}^2, \ y_h < 0.9$

$$Q_h^2 = \frac{(\sum_{hadron} p_x)^2 + (\sum_{hadron} p_y)^2}{1 - y_h}$$
$$y_h = \frac{\sum_{hadron} (E - p_z)}{E_e}$$

u

Signal

 W^{\pm}

H

Number of b-tagged jets 7

For l**η**l < 4.7 b-jet identification: 60% c-jet mis-ID: 10% Other jet mis-ID: 1%

Events/100fb⁻¹

10⁵

10⁴

10³

10²

10

 ν_e

 \overline{h}

Missing ET

50

60

70

 $\begin{array}{c} 90 & 10 \\ E_T^{miss}(GeV) \end{array}$

B-tag efficiency model

NC rejection

$$E_{miss}^T > 20 \text{ GeV}$$

 $N_{electron} = 0$

$$\Delta \phi_{b,MET} > 0.3$$

Event selection

Forward jet tagging

- Minimum n jet excluding two b-tagged jets with 1st and 2nd minimum eta
- \cdot Regardless of b-tagged or not $\eta_{fwd}>2$

Single top rejection

$$M_{jjj,top} > 250 \text{ GeV}$$

 $M_{jj,W} > 130 \text{ GeV}$

Result

- Mass reconstructed with 1st and 2nd minimum η b-jets.
- Signal region is defined as [100,130] GeV. Events in signal region

- We can detect H->bb signal in good efficiency.
- Peak around 80 GeV is Z boson from CC background.
- PAjjj background has large statistical error due to small statistics.
- Electron tagging of Photo-production events could further suppress BG under peak.

Dependency on B-tagging coverage

10

• Both signal and background increase as coverage of b-tagging is expanded, so S/B is similar but S/\sqrt{B} increase.

Dependency on HCal resolution

$\frac{\sigma}{E} =$	$\frac{a}{\sqrt{E}} + b \ (\eta < 3)$
$\frac{\sigma}{E} =$	$\frac{c}{\sqrt{E}} + d \ (3 < \eta < 5)$

	a(%)	b(%)	с(%)	d(%)
1	60	6	120	10
2	45	4.5	90	7.5
3	30	3	60	5
4	22.5	2.25	45	3.75
5	15	1.5	30	2.5

110<M_{ii}<130 GeV

- Number of background decrease and S/B increase as the resolution become better.
- Improvement of hadron calorimeter leads to better result on H->bb analysis in LHeC.

Summary

- LHeC is a future project of electron proton collider.
- LHeC could have advantage on H->bb analysis because QCD background is much less than LHC.
- H->bb studies at LHeC by MC simulation was updated from CDR.
 - 125GeV Higgs, E_e =60 GeV, luminosity of 100 fb⁻¹.
 - New categorization of background MC.
 - Dependency on B-tag coverage and HCal resolution.
- As the result $S/\sqrt{B=11.5}$
- Expanding of B-tag coverage increases the number of both signal and background.
- Improvement of HCal resolution leads to better result of H->bb studies at LHeC.

Backup

The LHeC project

- Electron-proton collider
 - Proton beam of LHC is used.
 - Energy Recovery Linac for electron facility.
 - Energy of electron: 60 GeV proton : 7 TeV
 - 100 fb⁻¹/yr can be collected with LHeC high-lumi option.
- Detector
 - Detector design study is in progress.
 - Asymmetric structure w.r.t interaction point.
 - Angler coverage to very low angle (large rapidity) is planned.

Number of jet (pt>20GeV)

Momentum transfer Q²

Number of electron

У

Cut parameters

Mass of 2 jets

CCjjj no top

- CC single top
- CC Z
- NC Z

$\Delta \phi$ between MET and 2 b-jets

2 b-jets masses in HCal resolution comparison

 $\mathbf{1}$

Events/100fb⁻¹/10GeV

Events/100fb⁻¹/10GeV

2 b-jets masses in B-tag coverage comparison

18