Diffraction in ep – LHeC prospects

Richard Polifka

University of Toronto Charles University in Prague

25.6.2014 LHeC Workshop, Chavannes-de-Bogis

LHeC @ HL-LHC

Extending the $x-Q^2$ plane

- covering unique phase space
- newly opened low x-Q² area allows to study high density matter
 - non-linear evolution dynamics
 - saturation effects
 - study of confinement and hadronic mass generation

connected with experimental challenges...

3

the L1 detector concept

- 4π but asymmetric -> "forward" in direction of outgoing proton
- in order to reach Q² ~1 GeV² @ x ~5x10⁻⁷, precise scattered electron detection at 179° necessary

Diffraction

Experimental methods

- forward proton detection
 - AFP-like project @ ~400m
 - full reconstruction of the proton kinematics
 - scintillator spectrometers approaching the beam to 12σ (250μm)

- leading neutron calorimeter (ZDC)
 @ ~100m from IP
- Large Rapidity Gap method (LRG)
 - requirement of "empty" calorimeter in the forward region
 - typically large statistics

Experimental methods (2)

- wider range in η_{max}-x_{IP}
 coverable by the LRG
 method
- ~100% acceptance for the roman pots for 0.002 < XIP < 0.013

- both methods are complementary, overlap regions of phase space are cross calibrating each other -> very important
 - worked at HERA in accessible phase space

Inclusive diffraction -> DPDFs

H1 FPS HERA II, M_y=m_n H1 2006 DPDF Fit B, IP+IR ----- IP only extension of phase space down in 0.05 Q²=5.1 GeV X_{IP}=0.05 c_=0.0085 X_=0.016 X.,=0.025 X_{IP}=0.035 X_=0.075 x_{IP} and up in Q^2 × 8.8 GeV .05 -> important for DPDFs . . 15.3 GeV .05 X_{IP}=0.0001 X1=0.001 X_{ip}=0.01 X,_=1E-05 Q²=3GeV² Q2=3GeV2 Q2=3GeV2 Q2=3GeV2 26.5 GeV .05 2 46 GeV2 0.05 .05 Į. x_=0.0001 X₁₀=1E-05 X10=0.001 =0.01 80 GeV2 0.15 Q2=30GeV2 Q2=30 GeV2 Q2=30GeV2 -30.0 200 GeV .05 0.05 10-1 10-2 10-1 10⁻¹ 10-1 10-1 102 10-2 101 10-2 X10=0.001 XID= IE-05 X_{IP}=0.01 Diffractive Kinematics at x = 0.01 0.15 Q²=300 GeV² Q²=300 GeV² Q²=300 GeV² Q²=300GeV² low XIP ... cleanly separates Current HERA Data 10 4 CHeC E = 20 GeV diffraction LHeC E = 50 GeV LHeC E = 150 GeV 10 % low β ... non-linear X10=0.001 X_{IP}=0.01 10 dynamics? Q²=3000GeV² LHeC E_e = 20 GeV Q²=3000GeV² 10 high Q^2 ... lever arm for LHeC E = 50 GeV LHeC E = 150 GeV gluon 10 8

Large diffractive masses - jets

- large x_{IP} correlated with large M_X
- proper diffractive QCD (large E_T) with jets and charm
- new diffractive channels beauty, W/Z bosons...

Exclusive production – elastic $J/\Psi \gamma p$

- interpreted as hard two-gluonexchange coupling to a qqbar dipole
- c and cbar share energy equally, simplifying the wavefunction
- very clean experimentally l+l- at correct mass
- LHeC extends to
 - $x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 5 \times 10^{-6}$
 - Q2 ~ $(Q^2 + M_V^2)/4$ ~3 GeV2

DIFFVM simulations of untagged photoproduction in $\mu\mu$ final state (1° acceptance)

elastic J/ Ψ γp (2)

- saturated dipole models
 - "eikonalised" .. with impact parameter dependent simulation
 - "1 Pomeron" .. non-saturating
- significant non-linear effects expected at LHeC, with eA and also t-dependence, it becomes a powerful probe

precise t measurement of µ tracks
 over wide W range extends to ~2 GeV²
 and enhances sensitivity to saturation
 possible in W, t and even Q²

Deeply virtual Compton Scattering (DVCS)

- way to GPDs (generalized PDFs)
 - Iongitudinal and transverse information
- no problems with VM wavefunctions
- cross section suppressed by photon coupling
 - limited precision at HERA
 - would benefit mostly from the high luminosity LHC

- double differential in x, Q² with 1° and 10° working points for the scattered electron
- kinematical range determined by p_T^{γ} cut
 - ECAL performance important

DVCS (2)

1 fb⁻¹, $E_e = 50$ GeV, 1° acceptance, $p_T^{\gamma} > 2$ GeV 100 fb⁻¹, $E_e = 50$ GeV, 10° acceptance, $p_T^{\gamma} > 5$ GeV

- precise double differential data in low Q² region
- stat. precision deteriorates for Q²
 > 25 GeV²
- W acceptance to ~1 TeV (5x HERA)

- high lumi gives precision data to
 Q2 of several hundreds of GeV²
 - completely new region

\mathbf{F}_{2}^{D} and nuclear shadowing

 nuclear shadowing can be described (Gribov-Glauber) as multiple interactions starting from ep DPDFs

starting point for extending precision LHeC studies into eA collisions

Summary

low x physics is important – discovery potential for the strong force

- dense partonic systems correlations / interactions
- diffractions plays an important role
 - enhances / complements inclusive data in saturation search
 - parton correlations, impact parameter dependence
 - extension of phase space and DPDFs, possible to observe new final states

still lot of work ahead

- recently started work on impact of LHeC on DPDF fits with pseudodata – stay tuned
- more on <u>http://lhec.web.cern.ch</u>