Top Quark Physics and Anomalous Couplings

Christian Schwanenberger Deutsches Elektronensynchrotron (DESY)

LHeC Workshop CERN/Chavannes-de-Bogis 25 June 2015

- Christian Schwanenberger -

Introduction Charged Current Neutral Current Summary

Introduction Charged Current Neutral Current Summary

The Top Quark

- needed as isospin partner of bottom quark
- discovered in 1995 by CDF and DØ: m_{top} ~ gold atom
 - large coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?
 - Iarge contribution to Higgs mass
- is the top quark the particle as predicted in the SM?
- EWK interactions of top quarks
- top quark properties
- search for new physics

→ ep collider excellent to explore the top quark

DESY

Η

LHeC, Linac-Ring Collider

e[±] beam:

Energy Recovering Linac

Introduction Charged Current Neutral Current Summary

CC Single Top Quark Production

→ future ep collider is ideal to study EWK interactions of the top quark

Gluon Parton Density Function

measure gluon density at high x

Top Quark Parton Density Function

parton momentum fraction

LHeC CDR, J.Phys. G39, 075001 (2012)

→ LHeC offers new field of research for top quark PDF

CC Single Top Quark Cross Section

-> LHeC offers excellent prospects for top quark physics

DESY

Signal and Backgrounds

DESY

11

(LH₀)

Top Quark Physics

- Christian Schwanenberger -

(LH_O)

→ high precision measurement

$$= 1 \text{ in SM} \qquad \qquad L = -\frac{g}{\sqrt{2}} \overline{b} \gamma^{\mu} V_{\mu} (f_V^L P_L + f_V^R P_R) t W_{\mu}^- - \frac{g}{\sqrt{2}} \overline{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (f_T^L P_L + f_T^R P_R) t W_{\mu}^- + h.c.$$

= 1 in SM

$$L = -\frac{g}{\sqrt{2}} \overline{b} \gamma^{\mu} V_{tb} (f_V^L) (f_V^R) t W_{\mu}^{-}$$

$$-\frac{g}{\sqrt{2}} \overline{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{M_W} (f_T^L) (f_T^R) t W_{\mu}^{-} + h.c.$$

Dutta, Goyal, Kumar, Mellado, arXiv:1307.1688 update by: Xifeng Ruan

68% C.L.

property	precision
fv [∟]	0.001-0.01
f _V ^R , f _T ^L , f _T ^R	0.01-0.1

syst. error

syst. error

syst. error

(LH_e)

20

LH

Top Quark Dimension 6 Operators

DEY

Top Quark Polarisation

using simply e-beam axis: polarisation: $P_t = 96\%$

TESLA+HERAp:

 $\sqrt{s} = 1.6 \text{ TeV}$ L_{int}=20 fb⁻¹

DESY

20 fb⁻¹:
$$P_t = 0.82 \pm 0.34$$

CMS-PAS-TOP-13-001

Atag, Sahin, PRD 73, 074001 (2006)

cosθ: angle between charged lepton and spin quantisation axis in top rest frame

$$rac{1}{\Gamma_T}rac{d\Gamma}{d\cos heta} = rac{1}{2}(1+A_{\uparrow\downarrow}lpha\cos heta) \quad A_{\uparrow\downarrow} = rac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow}$$

22

(LH₀)

Introduction Charged Current Neutral Current Summary

NC Top Quark Production

Bouzas, Larios, Physical Review D 88, 094007 (2013)

top pair production

single top production

DIS

photoproduction

photoproduction

<u>e-beam 60 GeV, 100 fb⁻¹:</u>

0.023 pb	0.70 pb	0.031 pb
N _{tt} =2,300	N _{tt} =70,000	$N_t = 3,100$

DESY

- Christian Schwanenberger -

LH

Top Quark Structure Function

Boroun, Phys. Lett. B744, 142 (2015)

variable flavour number scheme for top quark

$$\widetilde{\sigma}^{t\overline{t}}(\tau_t) \rightarrow F_2^t(\tau_t)[1 - R^t(\tau_t)]$$

predicted top structure function at LHeC

Top Quark Structure Function

→ longitudinal top structure function component could be good to probe top quark density in proton at $Q^2 \simeq 4m_t^2$

26

(LH₀)

Analysis of the tty Vertex

- Christian Schwanenberger -

Top Quark Physics

Bouzas, Larios, Physical Review D 88, 094007 (2013)

property	precision
ΕDM: κ̃ / κ̃z	0.20-0.28/0.6-0.8
МDМ: к / кz	0.05-0.09/0.9-1.3

100 fb⁻¹ LHeC: 10% and 18% accuracy

Top Quark Physics

DESY

- Christian Schwanenberger -

Chavannes 2015

LH

Single Top Quark Production: FCNC

- Christian Schwanenberger -

Single Top Quark Production: NC

31

(LH_O)

95% C.L.

Top Quark Physics

- Christian Schwanenberger -

(LH₀)

Top Quark Physics

- Christian Schwanenberger -

(LH₀)

Introduction Charged Current Neutral Current Summary

Summary of Top Quark Properties

property	E _e (GeV)	L _{int} (fb ⁻¹)	SM value	precision
t: CC unpol.	60	100	2 pb	N _t =200,000
t: CC 80% pol.	60	100	3 pb	N _t =300,000
t: NC photoprod.	60	100	0.031 pb	N _t =3,100
tt: NC DIS	60	100	0.023 pb	N _{tt} =2,300
tt: NC photoprod.	60	100	0.70 pb	N _{tt} =70,000
top PDF	60	10		measurable
V _{tb}	60	100	1	0.005
fvL	60	100	1	0.001-0.01
f_V^R , f_T^L , f_T^R	60	100	0	0.01-0.1
C ₁	60	100	0	0.50-0.85
C ₂ ^r , C ₃ ^r , C ₄ ^r	60	100	0	1.4-5.0
polarisation P _t	√s=1.6 TeV	20	0.96	O(10%)
\mathbf{f}_{T}^{L} , \mathbf{f}_{T}^{R} from pol.	√s=1.6 TeV	20	0	0.01-0.09
EDM: κ̃ / κ̃z	60	100	0 / 0	0.20-0.28/0.6-0.8
МDM: к / к z	60	100	0 / 0	0.05-0.09/0.9-1.3
FCNC: $\kappa_u = \kappa_c$	70 (үр)	1000	0	0.0014

Conclusions

- future ep collider has a rich analysis programme for top quarks
- study top at ep collider for the first time
- high precision measurements top quark couplings to EWK gauge bosons (mainly $|V_{tb}|$, tty, ttZ)
- analyse top quark properties: polarisation, charge, PDFs of tops, ...
- many stringent searches for new physics: anomalous couplings, EDM, MDM, FCNC, ...,
- → important studies to test if top quark is as predicted in the SM or if it is connected to new physics

Backup

CC Single Top Quark Cross Section

CC Single Top Quark Cross Section

-> LHeC offers excellent prospects for top quark physics

DESY

Backgrounds: Hadronic Channel

No.	Backgro	ound	$p_{T_{j,b}} \geq$	20 GeV	$\Delta \Phi_{\overline{\mu},j} \ge 0.4$	$ m_{j_1j_2} - m_{j_1j_2} = m_{j_1j_2} - m_{j_1j_2}$	$ m_W \le 22 \mathrm{GeV}$	$\sigma_{ m eff.}$
	Proce	ess	$ \eta_j \leq 5$	$ \eta_b \le 2.5$	$\Delta \Phi_{\vec{p},b} \ge 0.4$			
			$\Delta R_{j,b}$	$_{i} \ge 0.4$				
			E_T	≥ 25				
1	$e^-p \rightarrow \nu_c$	$_{e}W^{-}\overline{b}$	7.5 >	$< 10^{-3}$	$6.8 imes 10^{-3}$	4.5	5×10^{-3}	$2.7 imes 10^{-3}$
	without ant	i-top line						
2	$e^-p \rightarrow r$	$\nu_e j j j$	4.2	$\times 10^{0}$	$3.6 imes 10^0$	2.	4×10^{0}	$7.2 imes 10^{-2}$
3	$e^-p \rightarrow r$	$\nu_e c j j$	1.5	$\times 10^{0}$	$1.2 imes 10^0$	8.6	5×10^{-1}	$8.6 imes10^{-2}$
	& $e^-p \rightarrow$	$ u_e \bar{c} j j$						
4	$e^-p \rightarrow r$	$\nu_e c \overline{c} j$	5.8>	$< 10^{-2}$	$5.0 imes 10^{-2}$	3.2	2×10^{-2}	$6.7 imes10^{-3}$
5	$e^-p \rightarrow r$	$\nu_e b \overline{b} j$	2.5 >	$< 10^{-2}$	$2.2 imes 10^{-2}$	5.6	5×10^{-3}	$1.3 imes 10^{-3}$
6	$e^-p \rightarrow$	$\bar{c}\nu_e$	2.5 >	$< 10^{-2}$	$2.2 imes 10^{-2}$	1.5	5×10^{-2}	$1.5 imes 10^{-4}$
	$(\bar{c} \rightarrow W$	$\sqrt{-\overline{s}})$						
Even	t Selection	$p_{T_{j,b}} \ge 20$	GeV	$\Delta \Phi_{\not\!$	4 $ m_{j_1j_2} -$	$ m_W \le 22\mathrm{G}$	eV Fiducial	$S/\sqrt{S+B}$
		$ \eta_j \le 5, \eta_b $	≤ 2.5	$\Delta \Phi_{\not\!$	4		Efficiency	
		$\Delta R_{j,b/j} \ge$	0.4					
		$\not\!$	5					
	SM	3.2×1	0^{4}	$2.3 imes10^4$	2	2.2×10^4	66.7~%	_
SM	$+\sum_i \operatorname{Bkg}_i$	6.5×10^{-10}	0^{4}	$5.0 imes10^4$	4	$.0 imes 10^4$	$61.5 \ \%$	
$ V_{tb} $	$\Delta f_1^L = .5$	7.3×10^{-10}	0^{4}	$5.0 imes10^4$	5	$0.0 imes 10^4$	68.0 %	1.92
j	$f_1^R = .5$	4.6×1	0^{4}	$3.2 imes 10^4$	3	$3.2 imes10^4$	$69.7 \ \%$	1.43
j	$f_{2}^{L} = .5$	4.9×1	0^{4}	$3.6 imes10^4$	3	$3.6 imes 10^4$	73.2~%	1.55
f_2	$L_{2}^{L} =5$	3.4×1	0^{4}	$2.3 imes10^4$	2	$2.3 imes 10^4$	69.6 %	1.40
f	$f_{2}^{R} = .5$	5.7 imes 1	0^{4}	$4.1 imes 10^4$	4	$.1 imes 10^4$	72.3~%	1.69

Top Quark Physics

- Christian Schwanenberger -

Backgrounds: Leptonic Channel

No.	Background	$p_{T_{j,b,l}} \ge 20 \text{ GeV}, \ \Delta R_{j,b/j} \ge 0.4, \not\!$	$\Delta \Phi_{\not\!\!\! E,j} \ge 0.4$	$\sigma_{ m eff.}$
	Process	$ \eta_j \geq 5, \eta_{b,l} \geq 2.5$	$\Delta\Phi_{\!E\!\!\!/,b}\geq 0.4$	
			$\Delta\Phi_{{ ot\!$	
1	$e^-p ightarrow l^- ar{ u}_l u_e j$	$1.5 imes 10^{-1}$	1.4×10^{-1}	$1.4 imes 10^{-3}$
2	$e^- p \rightarrow l^- \bar{\nu}_l \nu_e c$	$6.6 imes10^{-3}$	$6.1 imes 10^{-3}$	$6.1 imes 10^{-4}$
	& $e^-p ightarrow l^- ar{ u}_l u_e ar{c}$			
3	$e^-p ightarrow l^- ar{ u}_l u_e b$	$3.6 imes10^{-3}$	$3.2 imes10^{-3}$	$1.9 imes 10^{-3}$
	& $e^-p ightarrow l^- ar{ u}_l u_e ar{b}$			
	Without top line			
4	$e^-p ightarrow e^- l^- ar u_l c$	$1.5 imes10^{-2}$	$6.9 imes10^{-3}$	$6.9 imes10^{-4}$
5	$e^-p ightarrow e^- l^- ar{ u}_l j$	$1.2 imes 10^{-1}$	5.5×10^{-2}	$5.5 imes10^{-4}$
	1			

Event Selection	$p_{T_{j,b}} \ge 20 \text{ GeV}$	$\Delta\Phi_{\not\!$	Fiducial	$S/\sqrt{S+B}$	
	$ \eta_j \leq 5, \eta_b \leq 2.5$	$\Delta\Phi_{\not\!$	Efficiency		
	$\Delta R_{j,b/j} \ge 0.4$	$\Delta\Phi_{\!ec \!$			
	$\not\!$				
SM	$1.2 imes 10^4$	1.1×10^4	92.0 %	_	
$\mathrm{SM}+\sum_i\mathrm{Bkg}_i$	$1.3 imes 10^4$	$1.2 imes 10^4$	92.0 %	-	
$\left V_{tb} ight \Delta f_{1}^{L}=.5$	$4.5 imes 10^4$	$2.5 imes 10^4$	92.6 %	1.55	
$f_{1}^{R} = .5$	$2.8 imes10^4$	$1.6 imes 10^4$	$94.1 \ \%$	1.23	
$f_{2}^{L} = .5$	$3.1 imes 10^4$	$1.7 imes 10^4$	89.5 %	1.27	
$f_{2}^{L} =5$	$1.8 imes 10^4$	$1.0 imes 10^4$	90.9 %	0.95	
$f_{2}^{R} = .5$	$3.6 imes10^4$	$2.0 imes 10^4$	90.9 %	1.38	

47

(LH_O)

Top Quark Physics

DESY

LH

NC Top Quark Production

Bouzas, Larios, Physical Review D 88, 094007 (2013)

top pair production

single top production

DIS

photoproduction

photoproduction

<u>e-beam 140 GeV, 100 fb⁻¹:</u>

0.12 pb	3.2 pb	0.143 pb
$N_{t\bar{t}} = 12,000$	N _{tī} =320,000	$N_t = 14,300$

DESY

- Christian Schwanenberger -

49

(LH₀)

high precision measurement

Search for FCNC in Top Quark Decays

Search for FCNC in Top Quark Decays

