Introduction	Wake Fields	PLACET2	Single-Bunch Tracking	Multi-Bunch Tracking	Conclusion
0	0000	000	00000	00000000	0

Wake field effects in LHeC ERL

LHeC workshop 2015

Dario Pellegrini (CERN, EPFL)

June 26, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction ●	Wake Fields	PLACET2 000	Single-Bunch Tracking	Multi-Bunch Tracking	Conclusions O		
Summary							

- Wake Field Physics and Modelling:
 - Short-Range Wake Fields;
 - Long-Range Wake Fields.
- The Tool: PLACET2.
- End-to-End Tracking;
- Single Bunch effects:
 - Full Optics, Short-Range Wakes, Synchrotron Radiation, Beam-Beam.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Multi-Bunch Tracking:
 - Long-Range Wakes and Beam Break Up studies.

Intro	duction	
0		

Wake Fields

0000

PLACET2

Single-Bunch Tracking

Multi-Bunch Tracking

Conclusions

Wake Fields

Short Range:

Generate energy losses along the bunch; Transverse kick to the bunch tail.

Long Range:

With big Q values the field persists; Later bunches are kicked.

Introduction	Wake Fields	PLACET2	Single-Bunch Tracking	Multi-Bunch Tracking	Conclusions
0	0000	000	00000	00000000	0

Wake Function:

- Tells the electric potential felt by a test charge following an exciting charge at a given distance;
- Depends on the cavity geometry;
- Can be computed numerically, but analytical approximations exist¹.

Introduction	Wake Fields	PLACET2	Single-Bunch Tracking	Multi-Bunch Tracking	Conclusions
0	0000	000	00000	00000000	0

Wake Function:

- Tells the electric potential felt by a test charge following an exciting charge at a given distance;
- Depends on the cavity geometry;
- Can be computed numerically, but analytical approximations exist¹.

Otal potential obtained convoluting the wake function with the actual charge distribution:

- Bunch slicing in the longitudinal direction;
- Speed up by applying the FFT;

Introduction	Wake Fields	PLACET2	Single-Bunch Tracking	Multi-Bunch Tracking	Conclusions
0	0000	000	00000	00000000	0

Wake Function:

- Tells the electric potential felt by a test charge following an exciting charge at a given distance;
- Depends on the cavity geometry;
- Can be computed numerically, but analytical approximations exist¹.

- Otal potential obtained convoluting the wake function with the actual charge distribution:
 - Bunch slicing in the longitudinal direction;
 - Speed up by applying the FFT;
- 3 Kick the particles in the bunch.

Introduction	Wake Fields	PLACET2	Single-Bunch Tracking	Multi-Bunch Tracking	Conclusions
0	0000	000	00000	00000000	0

Wake Function:

- Tells the electric potential felt by a test charge following an exciting charge at a given distance;
- Depends on the cavity geometry;
- Can be computed numerically, but analytical approximations exist¹.

- Otal potential obtained convoluting the wake function with the actual charge distribution:
 - Bunch slicing in the longitudinal direction;
 - Speed up by applying the FFT;
- 3 Kick the particles in the bunch.

Recent addition in PLACET2, some work is still in progress!

Origin of Long-Range Wake Fields

- Some modes can have big Q value and slow damping;
- Dipole modes are particularly strong and easy excited by orbit displacements;
- With many bunches, modes can build up leading to Beam Break Up.

The status of a mode is represented with a complex numbers: $z = \rho e^{i\theta}$

The status of a mode is represented with a complex numbers: $z =
ho e^{i\theta}$

• Time evolution:
$$z(t + dt) = z(t) \underbrace{\exp\left(-\frac{\omega}{2Q}dt\right)}_{\text{damping}} \underbrace{\exp\left(i\omega dt\right)}_{\text{rotation}}$$

The status of a mode is represented with a complex numbers: $z = \rho e^{i\theta}$

• Time evolution:
$$z(t + dt) = z(t) \underbrace{\exp\left(-\frac{\omega}{2Q}dt\right)}_{\text{damping}} \underbrace{\exp\left(i\omega dt\right)}_{\text{rotation}}$$

• Bunch \rightarrow mode interaction:

 $\Im(z) = \Im(z_0) + Ne A L_{cav} \delta x$

The status of a mode is represented with a complex numbers: $z =
ho e^{i\theta}$

• Time evolution:
$$z(t + dt) = z(t) \underbrace{\exp\left(-\frac{\omega}{2Q}dt\right)}_{\text{damping}} \underbrace{\exp\left(i\omega dt\right)}_{\text{rotation}}$$

• Bunch \rightarrow mode interaction:

 $\Im(z) = \Im(z_0) + Ne A L_{cav} \delta x$

• Mode \rightarrow bunch interaction (kick):

$$x' = x'_0 + \frac{e \Re(z)}{\gamma m_e c^2}$$

Iterated over all the HOMs of the cavity.

A Complication: Beam Recirculation

The kicks received from a passage are fed back to the HOMs in the next passages. In single-pass, single-cavity, single-mode ERLs can estimate the *threshold current*:

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

$$I_{th} = \frac{2c^2}{eR\omega} \ \frac{1}{T_{12}\sin(\omega t)}$$

A Complication: Beam Recirculation

The kicks received from a passage are fed back to the HOMs in the next passages. In single-pass, single-cavity, single-mode ERLs can estimate the *threshold current*:

$$I_{th} = \frac{2c^2}{eR\omega} \frac{1}{T_{12}\sin(\omega t)}$$

- In the LHeC the beam is recirculated six times, 576 cavities per linac, many HOMs;
- Non fixed train structure: at every passages some bunches are dumped and replaced with fresh bunches;
- Coupling with other effects such as beam-beam.

A Complication: Beam Recirculation

The kicks received from a passage are fed back to the HOMs in the next passages. In single-pass, single-cavity, single-mode ERLs can estimate the *threshold current*:

$$I_{th} = \frac{2c^2}{eR\omega} \frac{1}{T_{12}\sin(\omega t)}$$

- In the LHeC the beam is recirculated six times, 576 cavities per linac, many HOMs;
- Non fixed train structure: at every passages some bunches are dumped and replaced with fresh bunches;
- Coupling with other effects such as beam-beam.

Need to setup a tracking simulation!

PLACET2

New version of the tracking code PLACET equipped with the *recirculation module*. Full 6D tracking code, allows to simulate the simultaneous propagation of many bunches in recirculating lattices.

- Description of multiple *beamlines* as standard sequences of elements;
- Creation of *links* between them with runtime-evaluated routing criteria;
- Introduction new elements: *injectors* and *dumps*.
- Injectors release bunches in the machine at the right time;
- Each bunch keep track of its time-of-flight, elements can read it to update themselves, a global timer allows the synchronisation.

Each beamline sees the *correct sequence of bunches* even when the train is recombined \rightarrow Can compute *multibunch effects* in a realistic operational scenario.

Flexible design: can integrate a number of physics effect in a single code and verify their interplay!

End-to-end Optics

PLACET2 extracts the optics parameters from the particles distribution. A test bunch is followed from the injector to the dump. Basic validation of the setup.

Notable: the energy loss due to synchrotron radiation in Arc 6, the different average β in the arcs, 9/24 the recovery of the mismatch generated in the linacs.

- The beam at the IP maintains a very good quality, still need to verify imperfections and stability;
- The acceleration mitigates many effects, but the deceleration amplifies them...

Longitudinal Phase Space at Dump (I) Optics only:

Introduction	Wake Fields	PLACET2	Single-Bunch Tracking	Multi-Bunch Tracking	Conclusion
0	0000	000	0000	00000000	0

Longitudinal Phase Space at Dump (II)

Short Range Wake Fields:

Second harmonic RF losses compensation (no RF curvature from it).

Longitudinal Phase Space at Dump (III)

Short Range Wake Fields + Synchrotron Radiation:

Big energy spread from quantum excitation, structures from optics and sr wakes disappeared!

Transverse Plane at Dump

Synchrotron Radiation and Beam-Beam

- Iris radius of the cavity > 50 mm;
- Short-range wakefields not included.

Wake Fields

PLACET2 000 Single-Bunch Tracking

Multi-Bunch Tracking

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Conclusions

Long-Range Wake Fields with Multi-Bunch Tracking

Long-Range Wake Fields with Multi-Bunch Tracking

- Fill the machine with perfectly centred (single particle) bunches,
- Inject a bunch with some offset (action),
- Keep injecting perfect bunches and see how they are perturbed.

Long-Range Wake Fields with Multi-Bunch Tracking

- Fill the machine with perfectly centred (single particle) bunches,
- Inject a bunch with some offset (action),
- Keep injecting perfect bunches and see how they are perturbed.
- Verify the actions of the outgoing bunches, are they reducing or increasing?
- **2** Compute the *F* parameter: the sum of all the squared normalised actions \rightarrow quantifies the total action amplification and beam jittering generated.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Long-Range Wake Fields with Multi-Bunch Tracking

- Fill the machine with perfectly centred (single particle) bunches,
- Inject a bunch with some offset (action),
- Keep injecting perfect bunches and see how they are perturbed.
- Verify the actions of the outgoing bunches, are they reducing or increasing?
- **2** Compute the F parameter: the sum of all the squared normalised actions \rightarrow quantifies the total action amplification and beam jittering generated.

Used 26 transverse dipole modes of the SPL cavity, scaled to 802 MHz.

ション ふゆ アメリア メリア しょうくの

Beam Stability with the Higgs Factory Params

Note the amplification due to the beam-beam kick!

Long-Range Wakes investigations

- Cavity Detuning;
- Bunch Recombination Pattern;
- Phase Advance in the IP line.

Long-Range Wakes investigations

- Cavity Detuning;
- Bunch Recombination Pattern;
- Phase Advance in the IP line.

Sudies done with an injection/dump energy of 300 MeV and 2e9 electrons per bunch.

lds PL

Single-Bunch Tracking

Multi-Bunch Tracking

Conclusions O

Detuning of the cavities

- Small imperfection in the manufacturing of the cavities leads to slightly different frequencies for the HOMs;
- The same modes in different cavities decohere and their effect can be mitigated;
- The frequencies of the HOMs of the cavities are picked from a Gaussian distribution with: $\sigma = \delta f/f = \det$.

Impact of Detuning

- 351 machines with a detuning factor of 1 ‰ have been simulated.
- The distribution of the slopes of the amplitudes is shown:

Multi-bunch effects are enhanced by the value of:

 $\int_{\text{linacs}} \frac{\beta}{E} ds \rightarrow \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

Multi-bunch effects are enhanced by the value of:

 $\int_{\text{linacs}} \frac{\beta}{E} ds \rightarrow \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

Multi-bunch effects are enhanced by the value of:

 $\int_{\text{linacs}} \frac{\beta}{E} ds \rightarrow \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

Multi-bunch effects are enhanced by the value of:

 $\int_{\text{linacs}} \frac{\beta}{E} ds \rightarrow \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

• Pattern 162435 is bad!

Multi-bunch effects are enhanced by the value of:

 $\int_{\text{linacs}} \frac{\beta}{E} ds \rightarrow \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

• Pattern 162435 is bad!

Multi-bunch effects are enhanced by the value of:

 $\int_{\text{linacs}} \frac{\beta}{E} ds \rightarrow \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

- Pattern 162435 is bad!
- Pattern 152634 is better!

Pattern and Long Range Wakefields

The pattern has an influence on the threshold current

Bad Pattern (no detuning)

Phase Advance in the IP line (I)

Transport of the beam from the end of Linac 2 to the IP is done with the matrix:

$$\begin{pmatrix} \sqrt{\frac{\beta_{IP}}{\beta_L}} (\cos \psi + \alpha_L \sin \psi) & \sqrt{\beta_{IP}\beta_L} \sin \psi \\ \frac{\alpha_L - \alpha_I P}{\sqrt{\beta_{IP}\beta_L}} \cos \psi - \frac{1 + \alpha_{IP}\alpha_L}{\sqrt{\beta_{IP}\beta_L}} \sin \psi & \sqrt{\frac{\beta_L}{\beta_{IP}}} (\cos \psi - \alpha_{IP} \sin \psi) \end{pmatrix}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

And similar to go back into Arc 6.

- $\bullet\,$ The phase advance ψ does not affect the shape of the beam
- ...but it determines how the centroid offset and angle mix together.
- A scan of this parameter has been done.

Phase Advance in the IP line (II)

23/24

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

troduction Wa

s PLACET2

Single-Bunch Tracking

Multi-Bunch Tracking

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Conclusions

Conclusions

- Introduction:
 - Brief review of Short and Long-Range Wake Fields physics and modelling;
 - PLACET2: simultaneous multi-bunch tracking in recirculating lattices, integration of many physics effects.
- Single-Bunch tracking in the LHeC lattice:
 - Good beam quality at IP;
 - Longitudinal phase space affected mostly by synchrotron radiation, other effects are masked;
 - Transverse phase space suffers also from the beam-beam (more details in the Edward's talk);
 - Can transport the beam to the dump and possibly reduce the injection/dump energy.
- Multi-Bunch tracking in the LHeC lattice:
 - The LHeC Higgs Factory parameters look *safe for BBU* even with the beam-beam amplification;
 - Further control can come from: Cavities Detuning, Beam Recombination Pattern, Betatron Tune.
- Possible future works:
 - Complete the investigation of Short-Range Wakes;
 - Iterate the BBU studies with the new cavity designs, possibly adding longitudinal modes;
 - Study the Ion-Cloud and its coupling with Wake Fields.

A special thank to Andrea Latina, Daniel Schulte, among the whole LHeC collaboration

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

A special thank to Andrea Latina, Daniel Schulte, among the whole LHeC collaboration

...and to You For Your Attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …の�?