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Summary

• Wake Field Physics and Modelling:
• Short-Range Wake Fields;
• Long-Range Wake Fields.

• The Tool: PLACET2.
• End-to-End Tracking;
• Single Bunch effects:

• Full Optics, Short-Range Wakes, Synchrotron Radiation, Beam-Beam.
• Multi-Bunch Tracking:

• Long-Range Wakes and Beam Break Up studies.
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Wake Fields

Short Range:
Generate energy losses along the bunch;

Transverse kick to the bunch tail.

Long Range:
With big Q values the field persists;

Later bunches are kicked.
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Modeling of Short-Range Wake Fields
1 Wake Function:

• Tells the electric potential felt by a test charge following an exciting charge at
a given distance;

• Depends on the cavity geometry;
• Can be computed numerically, but analytical approximations exist1.
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2 Total potential obtained convoluting the wake function with the actual
charge distribution:

• Bunch slicing in the longitudinal direction;
• Speed up by applying the FFT;

3 Kick the particles in the bunch.

Recent addition in PLACET2, some work is still in progress!

1K. Bane, SLAC-PUB-9663, 20034/24
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Origin of Long-Range Wake Fields
From the ERLF cavity design2
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• Some modes can have big Q value and slow damping;
• Dipole modes are particularly strong and easy excited by orbit displacements;
• With many bunches, modes can build up leading to Beam Break Up.
2R. Calaga, CERN-ACC-NOTE-2015-015, 20155/24
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Modeling of Long-Range Wake Fields

The status of a mode is represented with a complex numbers: z = ρe iθ

• Time evolution: z(t + dt) = z(t) exp
(
− ω

2Q
dt

)
︸ ︷︷ ︸

damping

exp
(
iωdt

)
︸ ︷︷ ︸

rotation

• Bunch → mode interaction:

=(z) = =(z0) + Ne ALcav δx

• Mode → bunch interaction (kick):

x ′ = x ′0 +
e <(z)
γme c2

Iterated over all the HOMs of the cavity.
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A Complication: Beam Recirculation

The kicks received from a passage are fed back to the HOMs in the next passages.
In single-pass, single-cavity, single-mode ERLs can estimate the threshold current:

Ith =
2c2

eRω

1
T12 sin(ωt)

• In the LHeC the beam is
recirculated six times, 576
cavities per linac, many
HOMs;

• Non fixed train structure:
at every passages some
bunches are dumped and
replaced with fresh bunches;

• Coupling with other effects
such as beam-beam.

Need to setup a tracking simulation!

7/24
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PLACET2
New version of the tracking code PLACET equipped with the recirculation module.
Full 6D tracking code, allows to simulate the simultaneous propagation of many
bunches in recirculating lattices.

• Description of multiple beamlines as standard sequences of elements;
• Creation of links between them with runtime-evaluated routing criteria;
• Introduction new elements: injectors and dumps.

• Injectors release bunches in the machine at the right time;
• Each bunch keep track of its time-of-flight, elements can read it to update
themselves, a global timer allows the synchronisation.

Each beamline sees the correct sequence of bunches even when the train is
recombined → Can compute multibunch effects in a realistic operational scenario.

Flexible design: can integrate a number of physics effect in a single code and
verify their interplay!
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End-to-end Optics
PLACET2 extracts the optics parameters from the particles distribution. A test
bunch is followed from the injector to the dump. Basic validation of the setup.
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Notable: the energy loss due to synchrotron radiation in Arc 6, the different average β in the arcs,
the recovery of the mismatch generated in the linacs.9/24
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Beam at the IP
Higgs Factory Parameters - L = 1034

Injection/Dump Energy 500MeV
Bunch Spacing 25 ns

Particles per bunch 4× 109 = 640 pC
Normalised RMS Emittance 50µm

IP β function 0.032 m

Longitudinal phase space at IP

initial/CDR IP
εx [µm] 50 57.4
εy [µm] 50 50.8

δ 0.0020 0.0026
RMS x [µm] 7.20 7.66
RMS y [µm] 7.20 7.21
RMS z [mm] 0.600 0.601
RMS e [MeV] - 15.4

• The beam at the IP maintains a very good quality, still need to verify
imperfections and stability;

• The acceleration mitigates many effects, but the deceleration amplifies
them...10/24
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Longitudinal Phase Space at Dump (I)
Optics only:

Non perfect isochronicity together with the RF curvature.
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Longitudinal Phase Space at Dump (II)
Short Range Wake Fields:

Second harmonic RF losses compensation (no RF curvature from it).
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Longitudinal Phase Space at Dump (III)
Short Range Wake Fields + Synchrotron Radiation:

Big energy spread from quantum excitation, structures from optics and sr wakes
disappeared!
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Transverse Plane at Dump
Synchrotron Radiation and Beam-Beam

• Iris radius of the cavity > 50 mm;
• Short-range wakefields not included.

14/24



Introduction Wake Fields PLACET2 Single-Bunch Tracking Multi-Bunch Tracking Conclusions

Long-Range Wake Fields
with Multi-Bunch Tracking

• Fill the machine with perfectly centred (single particle) bunches,
• Inject a bunch with some offset (action),
• Keep injecting perfect bunches and see how they are perturbed.

1 Verify the actions of the outgoing bunches, are they reducing or increasing?

2 Compute the F parameter: the sum of all the squared normalised actions →
quantifies the total action amplification and beam jittering generated.

Used 26 transverse dipole modes of the SPL cavity, scaled to 802MHz.
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Beam Stability with the Higgs Factory Params

bunch charge: 4e9 - 640 pC

Note the amplification due to the beam-beam kick!
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Long-Range Wakes investigations

• Cavity Detuning;
• Bunch Recombination Pattern;
• Phase Advance in the IP line.

Sudies done with an injection/dump energy of 300MeV and 2e9 electrons per
bunch.
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Detuning of the cavities
• Small imperfection in the manufacturing of the cavities leads to slightly
different frequencies for the HOMs;

• The same modes in different cavities decohere and their effect can be
mitigated;

• The frequencies of the HOMs of the cavities are picked from a Gaussian
distribution with: σ = δf /f = det.
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Impact of Detuning
• 351 machines with a detuning factor of 1 ‰ have been simulated.
• The distribution of the slopes of the amplitudes is shown:
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Recombination Pattern

Multi-bunch effects are enhanced by the value of:∫
linacs

β
E
ds → low energy particles are more susceptible.

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of
the arcs → maximise the separation between the bunches at first and sixth turn.

t

1 1
20 λ ≈ 25 ns

12
7 λ

3
6 λ 7 λ

4 5 645 6

• Pattern 162435 is bad!
• Pattern 152634 is better!
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Pattern and Long Range Wakefields
The pattern has an influence on the threshold current
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Phase Advance in the IP line (I)

Transport of the beam from the end of Linac 2 to the IP is done with the matrix:
√

βIP
βL

(cosψ + αL sinψ)
√
βIPβL sinψ

αL−αIP√
βIPβL

cosψ − 1+αIPαL√
βIPβL

sinψ
√

βL
βIP

(cosψ − αIP sinψ)


And similar to go back into Arc 6.

• The phase advance ψ does not affect the shape of the beam
• ...but it determines how the centroid offset and angle mix together.
• A scan of this parameter has been done.
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Phase Advance in the IP line (II)
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Phase Advance in the IP line (II)
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Conclusions
• Introduction:

• Brief review of Short and Long-Range Wake Fields physics and modelling;
• PLACET2: simultaneous multi-bunch tracking in recirculating lattices,

integration of many physics effects.
• Single-Bunch tracking in the LHeC lattice:

• Good beam quality at IP;
• Longitudinal phase space affected mostly by synchrotron radiation, other

effects are masked;
• Transverse phase space suffers also from the beam-beam (more details in the

Edward’s talk);
• Can transport the beam to the dump and possibly reduce the injection/dump

energy.
• Multi-Bunch tracking in the LHeC lattice:

• The LHeC Higgs Factory parameters look safe for BBU even with the
beam-beam amplification;

• Further control can come from: Cavities Detuning, Beam Recombination
Pattern, Betatron Tune.

• Possible future works:
• Complete the investigation of Short-Range Wakes;
• Iterate the BBU studies with the new cavity designs, possibly adding

longitudinal modes;
• Study the Ion-Cloud and its coupling with Wake Fields.
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