

Alex Bogacz – Jefferson Lab Dario Pellegrini – EPF Lausanne/CERN Andrea Latina and Daniel Schulte – CERN

Electron-proton and electron-ion collisions at the LHC

Son Lab _____ 24 June 2015 CERN 25-26 June 2015 Chavannes-de-Bogis, Switzerland

Operated by JSA for the U.S. Department of Energy

Jeffer

60 GeV ERL Recirculator Complex

RECIRCULATOR COMPLEX

0.5 Gev injector Two SCRF linacs (20 GeV per pass) Six 180° arcs, each arc 1 km radius Re-accelerating stations Switching stations Matching optics Extraction dump at 0.5 GeV

TOTAL CIRCUMFERENCE ~ 8.9 km

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	2.5	20
Beta Function $\beta^*_{x,y}$ [m]	0.05	0.10
rms Beam size $\sigma^{*}_{x,y}$ [µm]	4	4
rms Beam divergence $\sigma'_{x,y}$ [µrad]	80	40
Average Beam Current [mA]	1112	25 delivered
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

60 GeV ERL Recirculator Complex

RECIRCULATOR COMPLEX

0.5 Gev injector Two SCRF linacs (20 GeV per pass) Six 180° arcs, each arc 1 km radius Re-accelerating stations Switching stations Matching optics Extraction dump at 0.5 GeV

TOTAL CIRCUMFERENCE ~ 8.9 km

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	2.5	20
Beta Function $\beta_{x,y}^{*}$ [m]	0.05	0.10
rms Beam size $\sigma^*_{x,y}$ [µm]	4	4
rms Beam divergence $\sigma'_{x,y}$ [µrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

60 GeV ERL Recirculator Complex

RECIRCULATOR COMPLEX

0.5 Gev injector Two SCRF linacs (20 GeV per pass) Six 180° arcs, each arc 1 km radius Re-accelerating stations Switching stations Matching optics Extraction dump at 0.5 GeV

TOTAL CIRCUMFERENCE ~ 8.9 km

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS	
Beam Energy [GeV]	7000	60	
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16	
Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	2.5	20	
Beta Function $\beta_{x,y}^{*}$ [m]	0.05	0.10	
rms Beam size $\sigma^{*}_{x,y}$ [µm]	4	4	
rms Beam divergence $\sigma'_{x,y}$ [µrad]	80	40	
Average Beam Current [mA]	1112	25 delivered	
Bunch Spacing [ns]	25	25	
Bunch Population	2.2*10 ¹¹	4*10 ⁹	
Bunch charge [nC]	35	0.64	

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Cryo Unit Layout/Optics – Half-Cell 130⁰ FODO

10 GeV Linac Optics - Focusing Profile

E = 0.5 – 10.5 GeV

19 FODO cells (19 \times 2 \times 16 = 608 RF cavities)

$$\left\langle \frac{\beta}{E} \right\rangle = \left(\frac{1}{L} \int \frac{\beta}{E} \, ds \right)_{\min}$$

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

-LH_eO-

Linac 1 – Multi-pass ER Optics

Linac 1 and 2 – Multi-pass ER Optics

Operated by JSA for the U.S. Department of Energy

Vertical Separation of Arcs

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Vertical Separation of Arcs

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Vertical Spreaders (20 GeV) – Optics

Operated by JSA for the U.S. Department of Energy

Arc Optics – Beam Dynamics Issues

Natural momentum spread due to quantum excitations:

$$\frac{DS_E^2}{E^2} = \frac{55a}{24\sqrt{3}} \overset{\text{@}}{\in} \frac{\hbar c}{mc^2} \overset{\text{"""}}{=} \overset{\text{"""}}{g} g^5 I_3$$

Emittance dilution due to quantum excitations:

$$De^{N} = \frac{55 r_{0}}{48\sqrt{3}} \frac{\hbar c}{mc^{2}} g^{6} I_{5}$$

$$I_{5} = \overset{L}{0} \frac{H}{|r|^{3}} ds = \frac{q\langle H \rangle}{r^{2}},$$

 $H = gD^2 + 2aDD' + bD'^2$

Momentum Compaction – synchronous acceleration in the linacs:

Arc Optics – Emittance preserving FMC cell

Emittance dilution due to quantum excitations:

$$De^{N} = \frac{55 r_{0}}{48\sqrt{3}} \frac{\hbar c}{mc^{2}} g^{6} I_{5}$$

Operated by JSA for the U.S. Department of Energy

Arc 1 Optics (10 GeV)

Arc 3 Optics (30 GeV)

Arc 4 (with bypass) Optics (40 GeV)

Vertical Stack – Combined Aperture Arc Dipole

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

SR Energy Loss and RF Compensation

turn no	E [GeV]	$\Delta E [MeV]$	Cryomodules		
1	10.4	0.7	0		
2	20.3	9.9	0	Frequency	1604 MHz
3	30.3	48.5	1	Gradient	30 MV/m
4	40.2	151	1	Design	9 cells
5	50.1	365	3	Cells length	$841 \mathrm{mm}$
6	60.0	751	6	Structure length	<1 m
7	50.1	365	3	Cavity per cryomodule	6
8	40.2	151	1	Cryomodule length	$\sim 6 \mathrm{m}$
9	30.3	48.5	1	Cryomodule voltage	150 MV
10	20.3	9.9	0		
11	10.4	0.7	0		
dump	0.5	0.0		Spreader 38m Reco	ombiner 38m Inject
802	2 MHz RF	16	604 MHz RF	RF Compensation Linac110 + Doglegs + Matching 96m	008m RF Compensate + Doglegs + Matching 120
		/ /	Λ Λ ,	Arc1,3,5 3142m	Arc2,4,6 3142
/ \			$\vee \vee \vee$	Recombiner 38m + Matching 20m Spreade	Dump er 38m Bypass
				Linac2 1008m	IP Line 196m
Jeffers	on Lab -	Th	omas Jefferson Nat	ional Accelerator Facility	-LHO
ed by JSA for the	U.S. Department o	f Energy	LHeC Workshop	, Chavennes-de-Bogis, June 26, 2015	

SR Energy Loss and RF Compensation

turn no	E [GeV]	$\Delta E [MeV]$	Cryomodules
1	10.4	0.7	0
2	20.3	9.9	0
3	30.3	48.5	1
4	40.2	151	1
5	50.1	365	3
6	60.0	751	6
7	50.1	365	3
8	40.2	151	1
9	30.3	48.5	1
10	20.3	9.9	0
11	10.4	0.7	0
dump	0.5	0.0	

Frequency	1604 MHz
Gradient	30 MV/m
Design	9 cells
Cells length	$841 \mathrm{~mm}$
Structure length	$<1 \mathrm{m}$
Cavity per cryomodule	6
Cryomodule length	$\sim 6 {\rm m}$
Cryomodule voltage	$150 \ \mathrm{MV}$

Thomas Jefferson National Accelerator Facility

1604 MHz RF

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

802 MHz RF

End-to-End ERL Optics

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Evolution of the Longitudinal Phase Space

Summary

- Multi-pass linac Optics in ER mode
 - Choice of linac Optics (130^o FODO): 3-pass 'up' + 3-pass 'down'
- Arc Optics Choice Emittance preserving lattices
 - Flexible Momentum Compaction Optics
 - Balanced emittance dilution & quasi-isochronicity
- Complete Racetrack Lattice Architecture
 - Vertical switchyard
 - Matching sections & path-length correcting 'doglegs'
 - Bypasses around the IR
 - SR Compensation with second harmonics RF
- Impact of Synchrotron Radiation End-to-end simulation
- Next step…
 - Integrate ERL lattice with the interaction region

Thomas Jefferson National Accelerator Facility

Jefferson Lab

Thanks for your attention!

and special thanks to:

Frank Zimmermann Oliver Brüning and Max Klein

http://lhec.web.cern.ch

Thomas Jefferson National Accelerator Facility

LHeC Workshop, Chavennes-de-Bogis, June 26, 2015

Operated by JSA for the U.S. Department of Energy