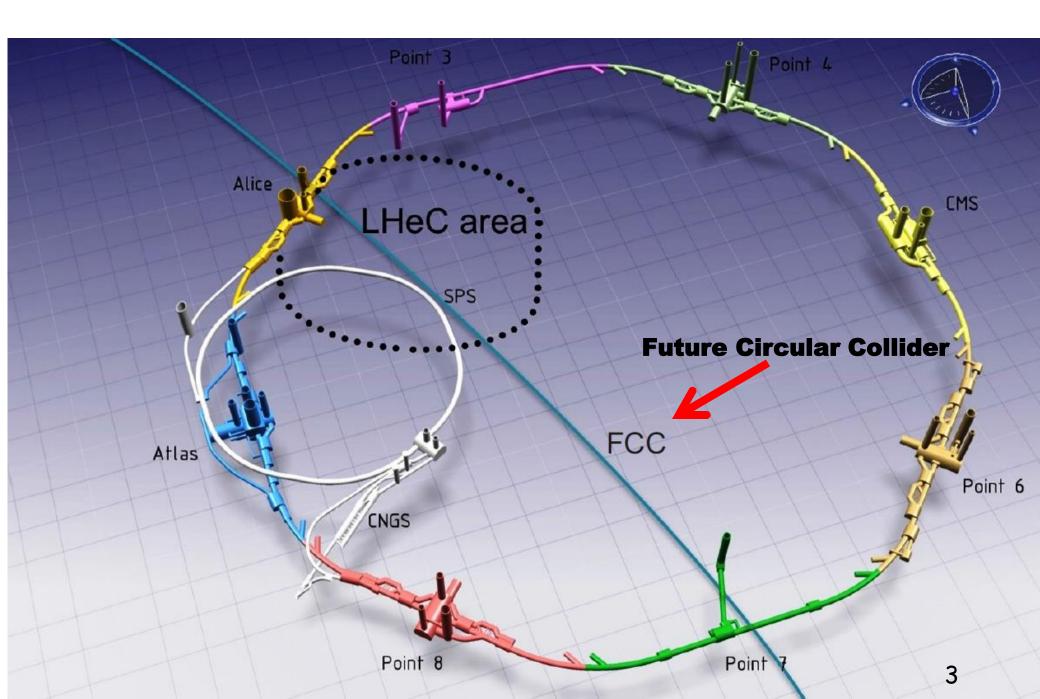
Double Higgs Production at the FCC-he

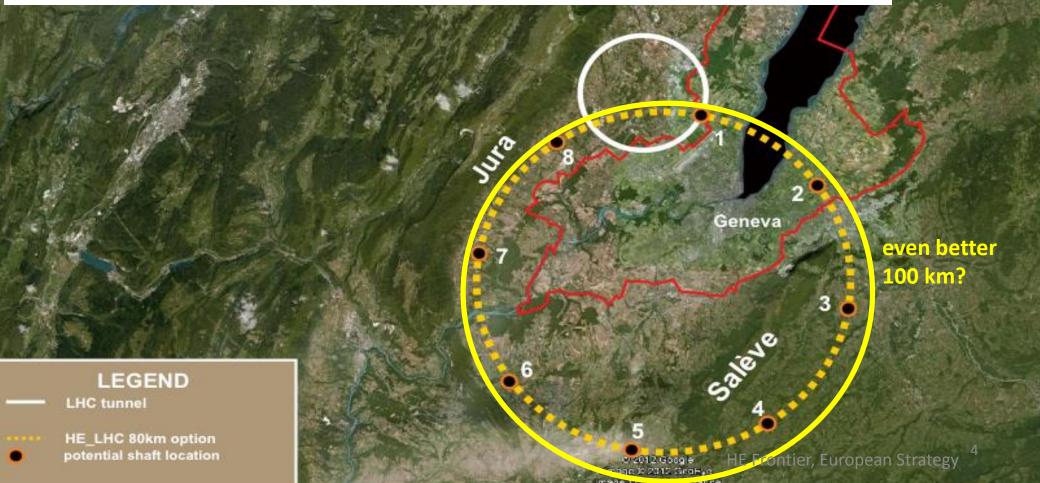
M.Kumar, X.Ruan, A.Cornell, R.Islam, M.Klein, U.Klein and B.Mellado


LHeC Workshop, Chavannes-de-Bogis, 26/06/15

LHeC, a Higgs Facility

LHeC Higgs		$CC(e^-p)$	NC (e^-p)	$CC(e^+p)$
Polarisation		-0.8	-0.8	0
Luminosity $[ab^{-1}]$		1	1	0.1
Cross Section [fb]		196	25	58
Decay BrFraction		$\mathcal{N}_{CC}^{H} e^{-} p$	$\mathbf{N}_{NC}^{H} e^{-} p$	$\mathcal{N}_{CC}^{H} e^{+} p$
$H \to b\overline{b}$	0.577	$113 \ 100$	13 900	$3 \ 350$
$H \to c\overline{c}$	0.029	5 700	700	170
$H \to \tau^+ \tau^-$	0.063	$12 \ 350$	1 600	370
$H \to \mu \mu$	0.00022	50	5	—
$H \to 4l$	0.00013	30	3	—
$H \rightarrow 2l2\nu$	0.0106	2080	250	60
$H \to gg$	0.086	16 850	2050	500
$H \to WW$	0.215	42 100	5150	$1 \ 250$
$H \to ZZ$	0.0264	$5\ 200$	600	150
$H \to \gamma \gamma$	0.00228	450	60	15
$H \to Z\gamma$	0.00154	300	40	10

What about the FCC-he option?


Lake-side option kept for further studies

P. Jenni

Lake Geneva

Pre-Feasibility Study for an 80-km tunnel at CERN - John Osborne and Caroline Waaijer

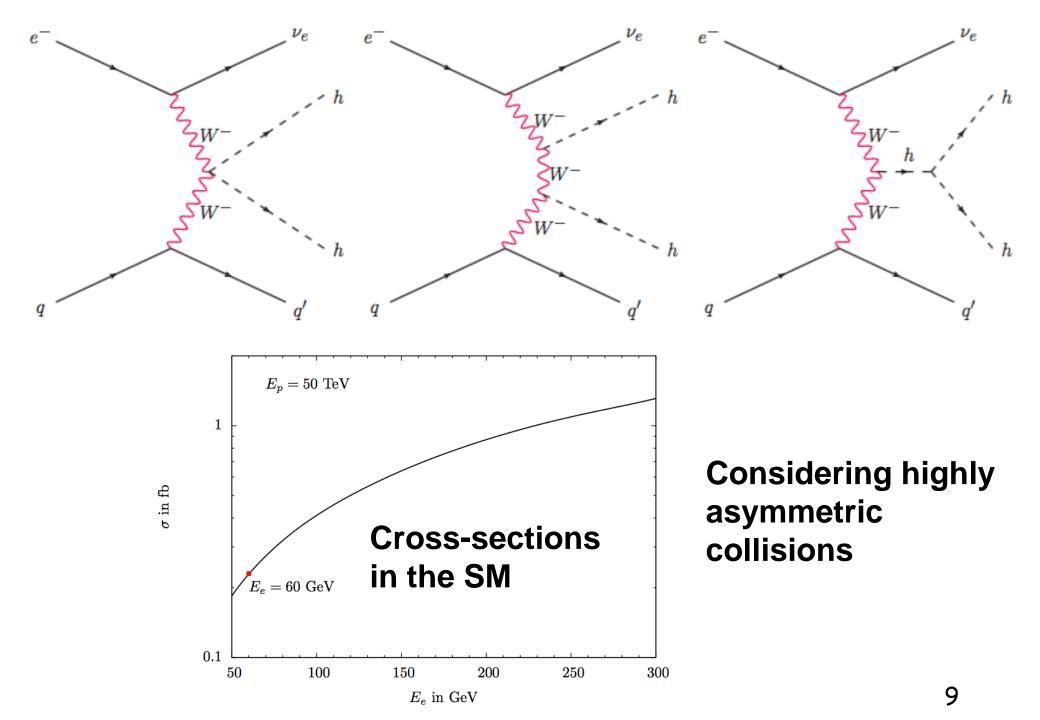
For a Very High Energy Hadron Collider ranging from 42 TeV (8.3T LHC magnets) to 100 TeV (20T very high field magnets with HTS), and could house first an e⁺e⁻ collider TLEP up to 350 GeV

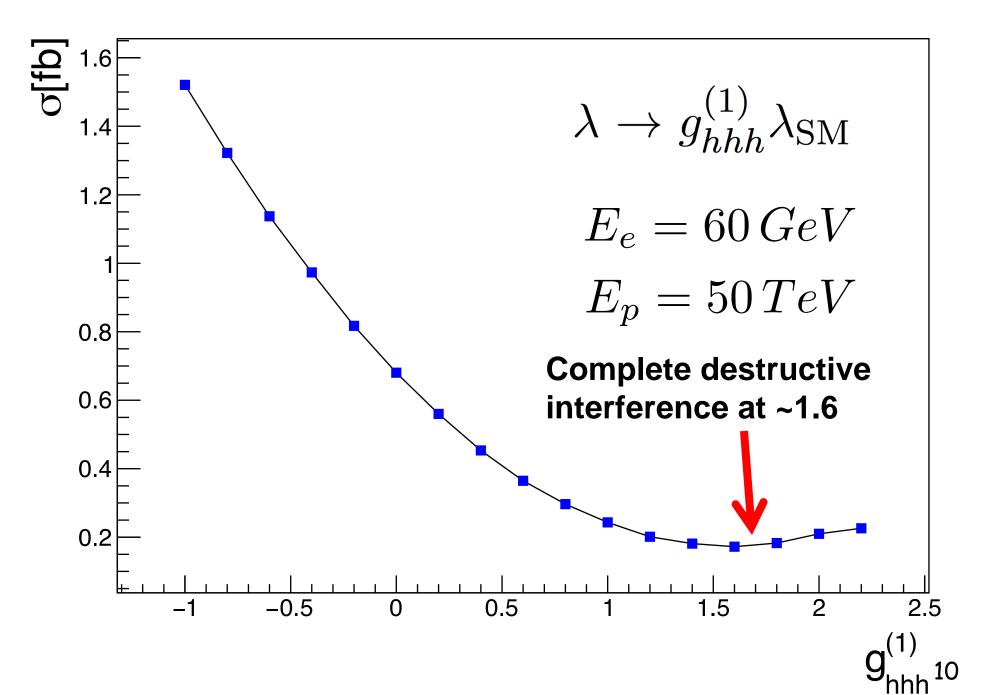
collider parameters	FCC ERL	FCC-ee ring		protons
species	$e^{-}(e^{+}?)$	e^{\pm}	e^{\pm}	p
beam energy [GeV]	60	60	120	50000
bunches/beam	-	10600	1360	10600
bunch intensity [10 ¹¹]	0.05	0.94	0.46	1.0
beam current [mA]	25.6	480	30	500
rms bunch length [cm]	0.02	0.15	0.12	8
rms emittance [nm]	0.17	1.9 (x)	0.94 (x)	$0.04 \ [0.02 \ y]$
$eta_{x,y}^* [ext{mm}]$	94	8, 4	17, 8.5	400 [200 y]
$\sigma^*_{x,y}~[\mu~{ m m}]$	4.0	4.0, 2.0		equal
beam-b. parameter ξ	(D=2)	0.13	0.13	0.022 (0.0002)
hourglass reduction	$0.92~(H_D=1.35)$	0.21	0.39	
CM energy [TeV]	3.5	3.5	4.9	
luminosity $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	1.0	6.2	0.7	

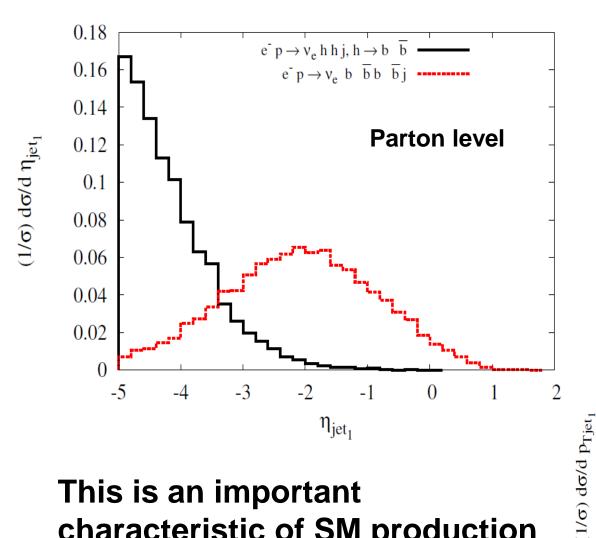
F. Zimmermann, ICHEP2014

Feynman rules for the interactions of the scalar boson with gauge bosons, fermions and self-interactions.

Gauge	Self-interaction	Fermion
$\begin{array}{c} HW_{\mu}^{+}W_{\nu}^{-}:(-ig_{\mu\nu})2\frac{m_{W}^{2}}{\nu}\\ HZ_{\mu}Z_{\nu}:(-ig_{\mu\nu})2\frac{m_{Z}^{2}}{\nu}\\ HHW_{\mu}^{+}W_{\nu}^{-}:(-ig_{\mu\nu})2\frac{m_{W}^{2}}{\nu^{2}}\\ HHZ_{\mu}Z_{\nu}:(-ig_{\mu\nu})2\frac{m_{Z}^{2}}{\nu^{2}}\end{array}$	$HHH:(i)3rac{m_{H}^{2}}{ u} \ HHHH:(i)3rac{m_{H}^{2}}{ u^{2}}$	$Har{f}f:(i)rac{m_f}{ u}$

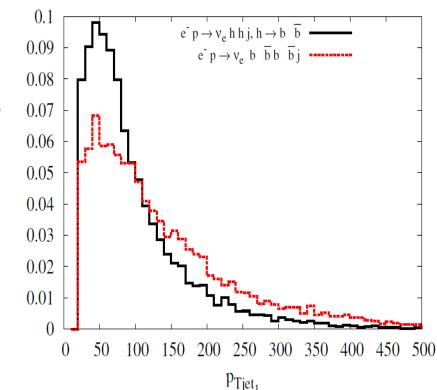

Exploring the feasibility of the HHH coupling via double-Higgs boson production


HWW coupling well probed at LHeC. However, physics in hh production can also be due to HHWW, which is not constrained.


$$\begin{split} \mathcal{L}_{hhh}^{(3)} &= \frac{m_h^2}{2v} (1 - g_{hhh}^{(1)}) h^3 + \frac{1}{2} g_{hhh}^{(2)} h \partial_\mu h \partial^\mu h, \\ \mathcal{L}_{hWW}^{(3)} &= -\frac{g}{2m_W} g_{hWW}^{(1)} W^{\mu\nu} W_{\mu\nu}^{\dagger} h - \frac{g}{m_W} \left[g_{hWW}^{(2)} W^\nu \partial^\mu W_{\mu\nu}^{\dagger} h + \text{h.c.} \right] \\ &- \frac{g}{2m_W} \tilde{g}_{hWW} W^{\mu\nu} \tilde{W}_{\mu\nu}^{\dagger} h, \\ \mathcal{L}_{hhWW}^{(4)} &= -\frac{g^2}{4m_W^2} g_{hhWW}^{(1)} W^{\mu\nu} W_{\mu\nu}^{\dagger} h^2 - \frac{g^2}{2m_W^2} \left[g_{hhWW}^{(2)} W^\nu \partial^\mu W_{\mu\nu}^{\dagger} h^2 + \text{h.c.} \right] \\ &- \frac{g^2}{4m_W^2} \tilde{g}_{hhWW} W^{\mu\nu} \tilde{W}_{\mu\nu}^{\dagger} h^2. \end{split}$$
$$\begin{aligned} \mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{hhhh}^{(3)} + \mathcal{L}_{hWW}^{(3)} + \mathcal{L}_{hhWW}^{(4)} \end{split}$$

Effective vertices. Note the dependence on momenta in non-SM vertices. This induces significant impact on scattering kinematics.

$$\begin{split} \mathrm{i}\Gamma_{hhh} &= -\ 6\mathrm{i}v\lambda g_{hhh}^{(1)} - \mathrm{i}g_{hhh}^{(2)}(p_1\cdot p_2 + p_2\cdot p_3 + p_3\cdot p_1), \\ \mathrm{i}\Gamma_{hW^-W^+} &= \mathrm{i}\left[\left\{\frac{g^2}{2}v + \frac{g}{m_W}g_{hWW}^{(1)}p_2\cdot p_3 + \frac{g}{m_W}g_{hWW}^{(2)}(p_2^2 + p_3^2)\right\}\eta^{\mu_2\mu_3} \\ &\quad -\frac{g}{m_W}g_{hWW}^{(1)}p_2^{\mu_3}p_3^{\mu_2} - \frac{g}{m_W}g_{hWW}^{(2)}(p_2^{\mu_2}p_2^{\mu_3} + p_3^{\mu_2}p_3^{\mu_3}) \\ &\quad -\mathrm{i}\frac{g}{m_W}\tilde{g}_{hWW}\epsilon_{\mu_2\mu_3\mu\nu}p_2^{\mu}p_3^{\nu}\right], \\ \mathrm{i}\Gamma_{hhW^-W^+} &= \mathrm{i}\left[\left\{\frac{g^2}{2} + \frac{g^2}{m_W^2}g_{hhWW}^{(1)}p_3\cdot p_4 + \frac{g^2}{m_W^2}g_{hhWW}^{(2)}(p_3^2 + p_4^2)\right\}\eta^{\mu_3\mu_4} \\ &\quad -\frac{g^2}{m_W^2}g_{hhWW}^{(1)}p_3^{\mu_4}p_4^{\mu_3} - \frac{g^2}{m_W^2}g_{hhWW}^{(2)}(p_3^{\mu_3}p_3^{\mu_4} + p_4^{\mu_3}p_4^{\mu_4}) \\ &\quad -\mathrm{i}\frac{g^2}{m_W^2}\tilde{g}_{hhWW}\epsilon_{\mu_3\mu_4\mu\nu}p_3^{\mu}p_4^{\nu}\right]. \end{split}$$



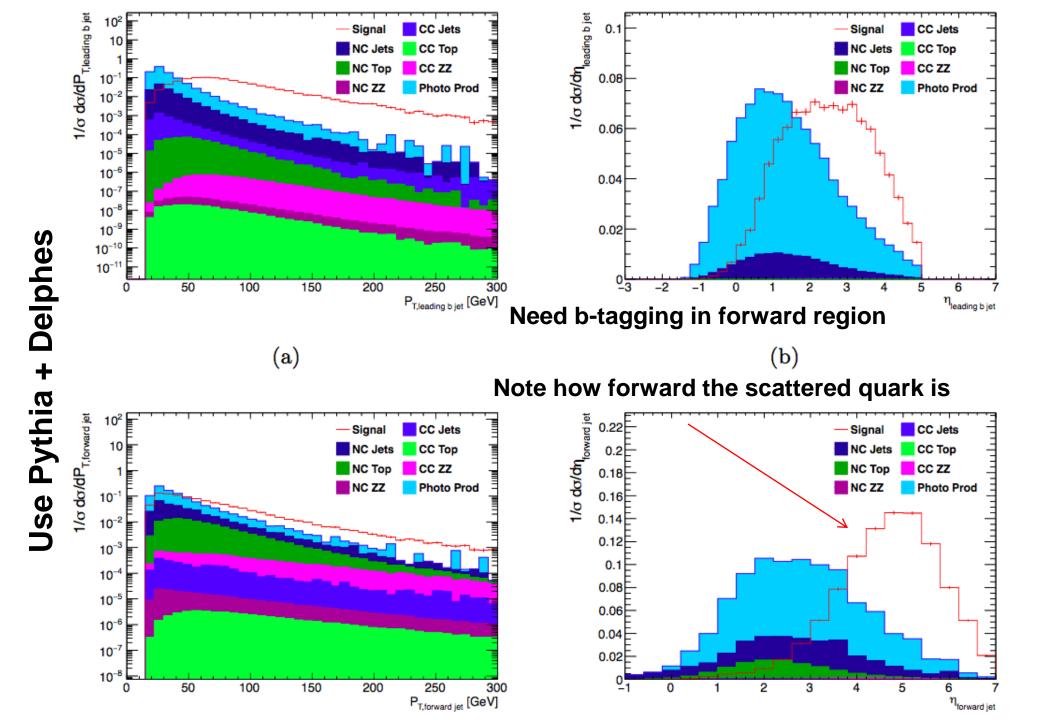
This is an important characteristic of SM production in VBF that is, in turn, sensitive to coupling structures. Strong advantage of the LHeC This is a important discriminator to distinguish EW from QCD multi-jet production

Scattered quark is more forward in signal

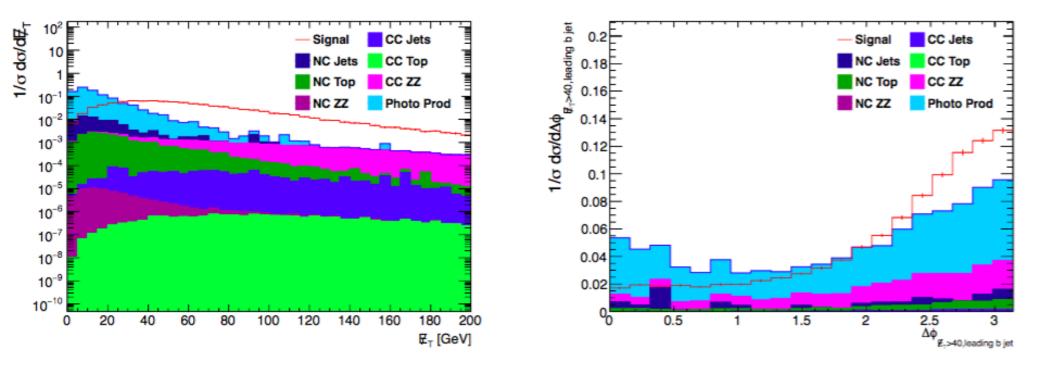
Background classification

(Charm and light partons also considered)

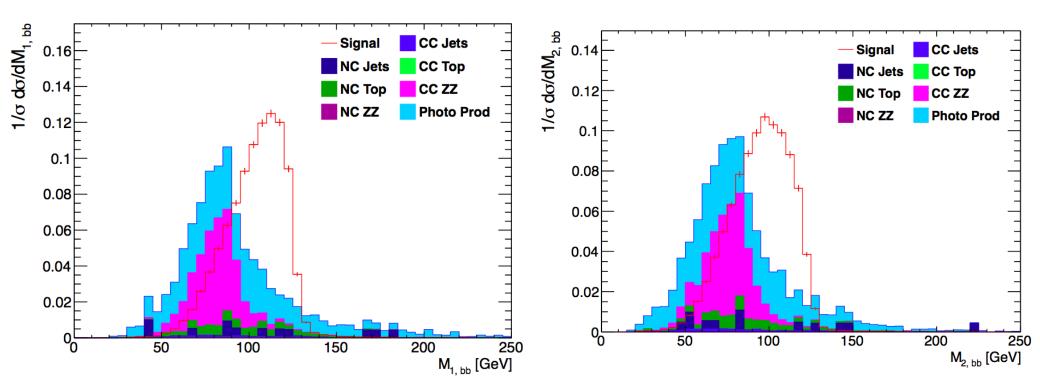
• CC processes:


• NC processes:

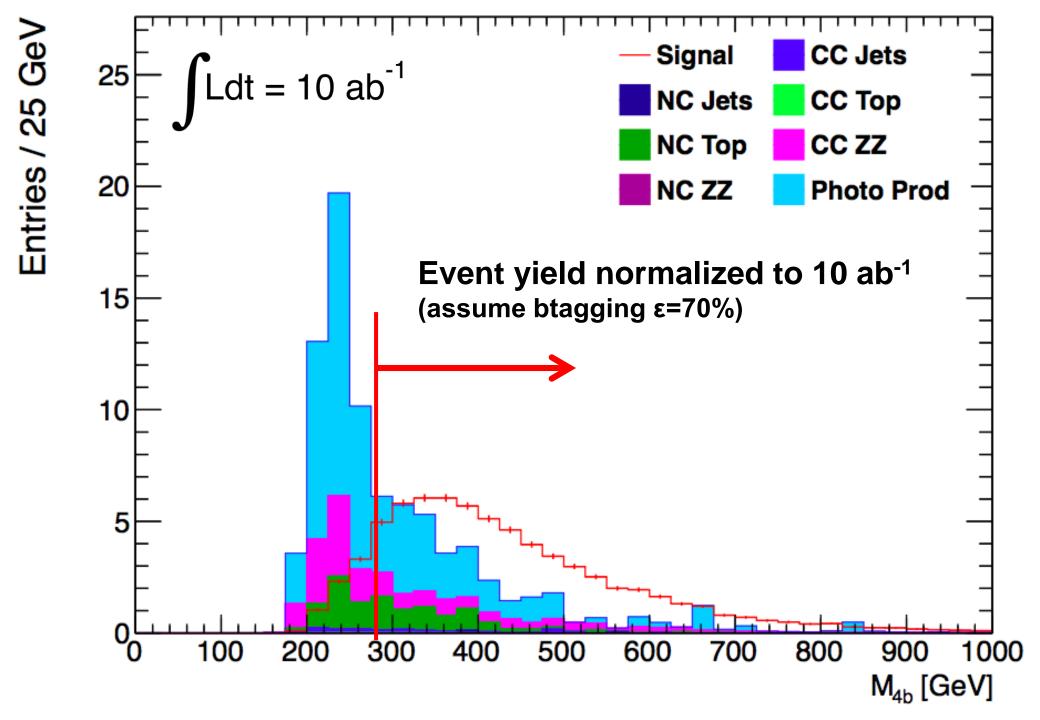
Particularly dangerous background


• PHOTO-production:

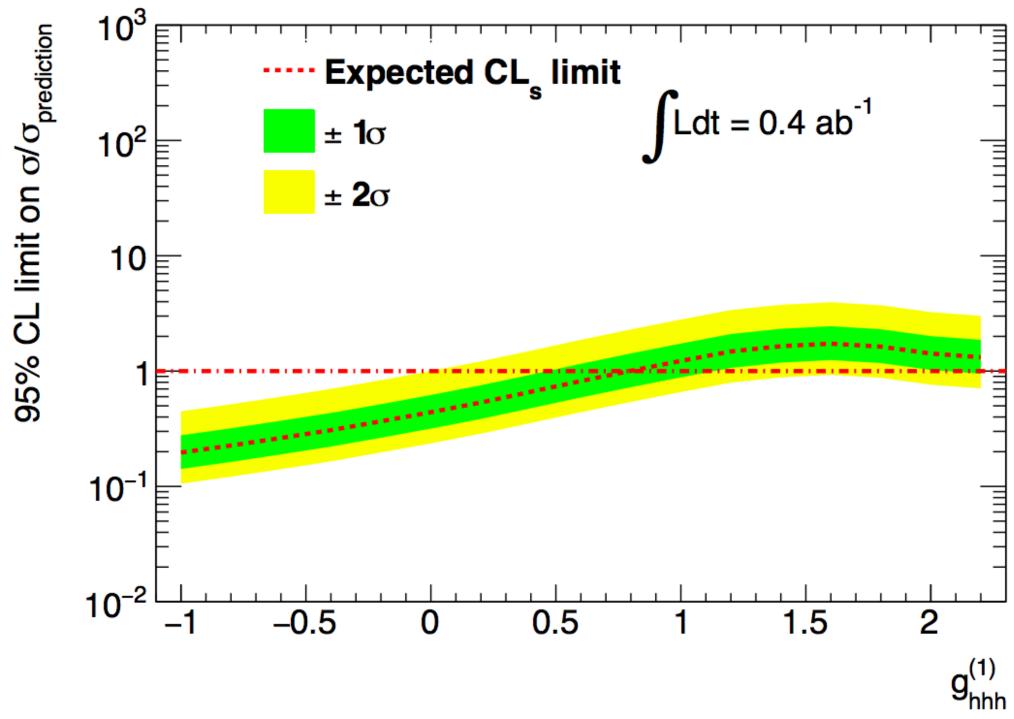
 $pe^-
ightarrow \begin{cases} bar{b}bar{b}j
u_e; \\ bar{b}jjj
u_e; \\ zzj
u_e, z
ightarrow bar{b}; \\ tar{t}j
u_e, (hadronic/semi-leptonic); \end{cases}$ $pe^-
ightarrow \left\{ egin{array}{c} bar{b}bar{b}je^-;\ bar{b}jjje^-;\ zzje^-,z
ightarrow bar{b};\ tar{t}je^-,({
m hadronic/semi-leptonic}); \end{array}
ight.$ $p\gamma \rightarrow \begin{cases} b\bar{b}b\bar{b}j;\\ b\bar{b}jjj;\\ zzj, z \rightarrow b\bar{b};\\ \bar{z}z \ (\text{badronic/semi-leptonic}) \end{cases}$ Tree-level cross-sections with Madgraph. Generation requires p_T >10 GeV for partons and MET, ΔR_{ii} >0.4, ΔR_{II} >0.2.

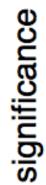

Process	$\rm CC (fb)$	NC (fb)	рното (fb)
Signal:	$2.40 imes 10^{-1}$	$3.95 imes 10^{-2}$	$3.30 imes10^{-6}$
$bar{b}bar{b}ar{b}j$:	$8.20 imes 10^{-1}$	$3.60 imes 10^{+3}$	$2.85\times10^{+3}$
$bar{b}jjj$:	$6.50 imes 10^{+3}$	$2.50 imes 10^{+4}$	$1.94 imes 10^{+6}$
$zzj(z ightarrow bar{b})$:	7.40×10^{-1}	1.65×10^{-2}	$1.73 imes 10^{-2}$
$t\bar{t}j$ (hadronic):	$3.30 imes 10^{-1}$	$1.40\times10^{+2}$	$3.27 imes 10^{+2}$
$t\bar{t}j$ (semi-leptonic):	1.22×10^{-1}	$4.90 imes 10^{+1}$	$1.05\times10^{+2}$

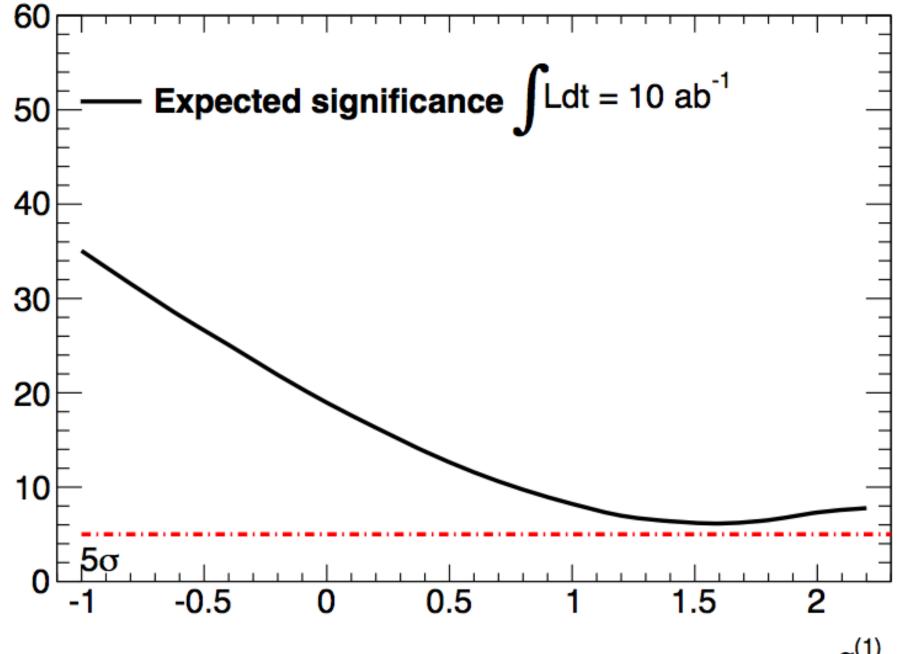
The reconstruction of Missing E_T is critical to the suppression of the photo-production background. Lack of pile-up in ep collisions is critical to search feasibility.


B-jet invariant mass distributions are used to further suppress background. Mass windows are defined following optimization procedure

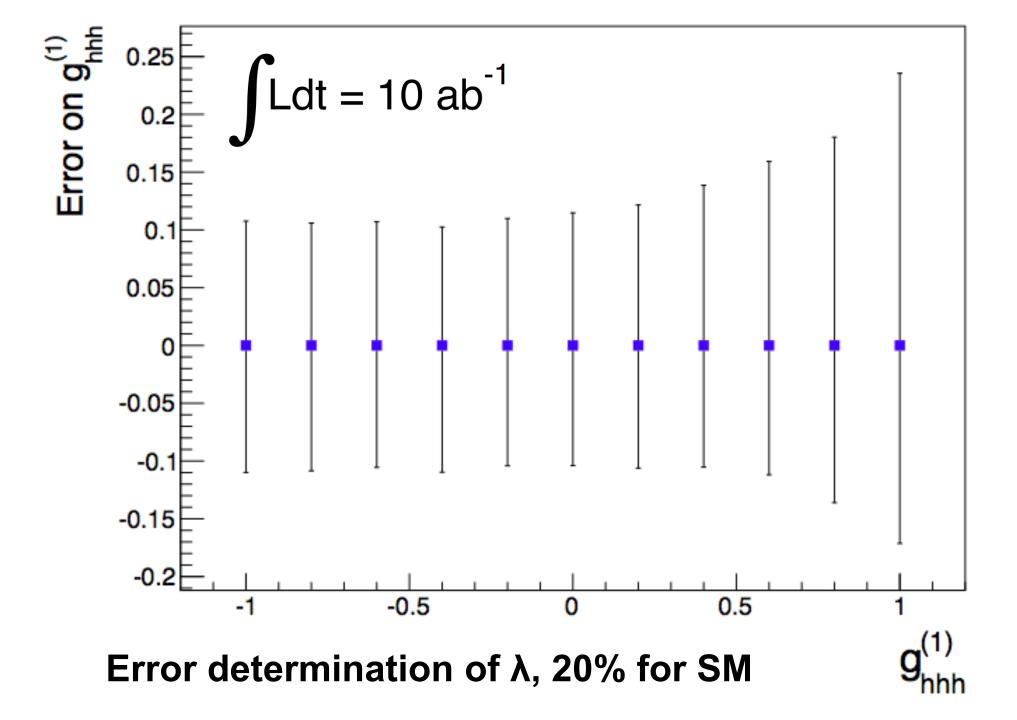
Final event selection


Require 4-btags. Forward jet is leading non-b-jet. Leading b-jet pair contains leading b-jet. $p_{Tb}, p_{Tj} > 20 \, GeV$ $|\eta_j| < 7, |\eta_b| < 5, \Delta R > 0.7$ $p_T^{e^-} < 10 GeV$ $\eta_{Tag} > 4$


$$\begin{split} MET > 40 \, GeV, \Delta \Phi_{MET,b_1}, \Delta \Phi_{MET,b_2} > 0.4 \\ 90 < M_1 < 125 \, GeV, 75 < M_2 < 125 \, GeV \\ M_{4b} > 280 \, GeV \end{split}$$



Samples	Signal	CC Jets	NC Jets	CC Top	NC Top
Initial	$2.36\times10^3\pm4.82$	$6.45\times10^6\pm9.3\times10^3$	$2.5 \times 10^8 \pm 4.26 \times 10^5$	$4.49\times10^3\pm5.03$	$7.4\times10^6\pm6.86\times10^5$
4 b and 1 light jets	299 ± 1.16	293 ± 7.56	$2.23\times10^4\pm678$	5.72 ± 0.023	$9.87\times10^3\pm31.1$
Electron rejection	299 ± 1.16	293 ± 7.56	$6.84\times10^3\pm385$	5.66 ± 0.0229	$6.43\times10^3\pm28$
Forward jet	224 ± 1.01	22.9 ± 1.39	864 ± 65.1	0.399 ± 0.00537	307 ± 5.8
E_T	149 ± 0.823	18.7 ± 0.981	93.9 ± 26.7	0.372 ± 0.00524	85.4 ± 2.86
$\not\!\!\!E_T - \phi$ rejection	128 ± 0.76	16.8 ± 0.957	45.3 ± 14	0.326 ± 0.00493	63.6 ± 2.48
M_1M_2	71 ± 0.568	1.49 ± 0.216	0.151 ± 0.0866	0.06 ± 0.00212	11.1 ± 1.08
M_{4b}	63.4 ± 0.536	0.849 ± 0.191	0.151 ± 0.0866	0.0346 ± 0.00141	5.4 ± 0.776
Samples	CC ZZ	NC ZZ	Photo Prod	Total background	Significance
Initial	$7.36\times10^3\pm10.6$	338 ± 0.426	$2.1 \times 10^9 \pm 3.43 \times 10^6$	$2.36\times10^9\pm3.5\times10^6$	0.049
4 b and 1 light jets	678 ± 2.19	21.7 ± 0.0707	$7.36\times10^4\pm4.21\times10^3$	$1.07\times10^5\pm4.3\times10^3$	0.92
Electron rejection	678 ± 2.19	14 ± 0.0614	$6.23\times10^4\pm1.29\times10^3$	$7.65\times10^4\pm1.4\times10^3$	1.1
Forward jet	380 ± 1.64	1.04 ± 0.014	$1.43\times10^4\pm297$	$1.59\times10^4\pm3\times10^2$	1.8
$\not\!$	342 ± 1.55	0.18 ± 0.00575	980 ± 21.9	$1.52\times10^3\pm35$	3.8
${\not\!\! E}_T-\phi~{\rm rejection}$	287 ± 1.42	0.1 ± 0.00427	440 ± 10.4	853 ± 18	4.3
M_1M_2	16.8 ± 0.344	0.00613 ± 0.00117	54.4 ± 1.21	84.00 ± 1.68	6.9
M_{4b}	7.43 ± 0.229	0.00239 ± 0.000661	21.9 ± 0.63	35.78 ± 1.05	8.7


Table 6: Number of events after optimisation, and weighted with luminosity $\mathcal{L} = 10 \text{ ab}^{-1}$. The abbreviations CC(NC)Jet and CC(NC)Top accounts for the weighted sum of CC(NC) backgrounds 1, 2 and 4, 5 as given in Table 4. NCPhotoProd refer to weighted sums of all PHOTO-production.

g⁽¹⁾

 $Ldt = 0.4 \text{ ab}^{-1}$ ×10⁻³ 2.5 0.4 0.02 0.2 2 0.01 0 1.5 -0.2 О -0.4 -0.01 -0.6 0.5 -0.02 -0.8 Ο -1 -0.03 $g_{hhWW}^{(1)}$ $g_{hhWW}^{(2)}$ $g_{hWW}^{(2)}$ **g**⁽²⁾_{hhh} g⁽¹⁾_{hhh} g⁽¹⁾_{hWW} $\widetilde{g}_{_{hhWW}}$ \widetilde{g}_{hWW}

95% CL limits on different couplings

Outlook and Conclusions

- First look at search for double Higgs boson production at high-energy collisions ep collisions
 - $\Box E_{\rm e}$ =60 GeV, $E_{\rm p}$ =50 TeV. Highly assymetric collisions. Requires very forward jet tagging and b-tagging
 - □May achieve S/B>1
 - **D** May reach more than 5 σ effect with 20% measurement of λ for 10 ab⁻¹
 - □ep offers possibility of exploring structure of hhh, hhWW couplings
 - Sensitivity to non-SM couplings explored

□Promising results, to be validated with full simulation studies