Local probe investigation of spin and charge dynamics in organic semiconductors

Queen Mary <u>A J Drew</u>, P Murahari, K Wang, K Yokoyama, D Dunstan

J Lord, F L Pratt

KENTUCKY

J Anthony

L Schulz, S Zhang, M Willis, A J Drew

• MuSR - spin relaxation

- Photomusr the background
- Excitonic physics probed with temporal and spatial resolution
- Complexities and the future

Muon spin spectroscopy

Primary International Facilities for µSR

★ Continuous sources

★ Pulsed sources

Muonium

Sherren et al., Chem. Sci 2, 2173 (2011)

Baumeier et al., Phys. Chem. Chem. Phys.12, 11103-11113 (2010)

Muon - Electron system; Bro

Breit - Rabi diagram

Brilliant.... localised spin probe, level crossings, change of polarisation.... But what can you do with it?

Example 1.... electron (hole?) spin relaxation

TIPS-Pentacene: crystalline

Amplitude roughly proportional to eSR ^{a)}

e⁻ spin-flips changes *amplitude* of resonance (in <1MHz limit) Heming et al., Hyp. Interactions 32 727 (1986)

Can extract *localised* e⁻ spin relaxation rate as function of T

L Schulz & <u>A J Drew</u> et al., *Phys. Rev. B* 84, 085209 (2011); L Nuccio, L Schulz & <u>A J Drew</u>, *J. Phys D: Appl. Phys.* 47, 473001 (2014)

Periodic table

Can we differentiate between SO and HFC driven electron spin relaxation rate?

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Се	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Но	Er	Tm	Υb	Lu
+ Actinide Series	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Example 2: is SOI or HFI responsible for eSR?

L Nuccio & <u>A J Drew</u> et al., *Phys. Rev. Lett.* **110**, 216602 (2013)

Example 2: is SOI or HFI responsible for eSR?

The future.... positional sensitivity?

The devil is in the detail.....

L Nuccio, L Schulz & <u>A J Drew</u>, J. Phys D: Appl. Phys. (2014), at press

Spins in organic semiconductors: recent developments in the application of muons

Brilliant.... positional sensitivity if one moves to liquids.... But what can you do with it?

Excited states at high fields....

- Nd- YAG pumped OPO
- Switchable between modes of operation:
 - + Nd-YAG
 - * 2.5 J per 5 ns pulse at 1064 nm
 - * Fixed-wavelength harmonics available: 1064nm, 532nm, 355nm, 266nm and 213nm
 - + OPO
 - * Tuneable between 200nm and 2000nm,
 - \ast No less than 50mJ / pulse over full wavelength range
- Delay lines on triggers to allow time resolved measurements:
 - Delay lines to ~20ms (ISIS pulse separation)
 - Time resolution: ISIS pulse width

Light excitations at high fields....

What can you do?

Nandy et al., Beilstein J. Org. Chem. 2010, 6, 992-1001.

What would you see?

It's complicated...

- Additional ALC lines
- Shifting of existing ALCs
- Different muonium chemistry

-

KISS (Keep It Simple Stupid): TIPS-pentacene

Why TIPS?

- Already know the muonium states & lots of experience with it
- Relatively small molecule
- Want to see whether we can measure excitons...No funny charge transfer states
- Undergoes singlet fission (with 200% quantum yield: Walker et al., Nat. Chem. 5, 1019 (2013))
- Triplet lifetime = 6.5 microseconds :-)
- Soluble (single molecule, can match muon penetration profile with optical absorption)
- Extensive DFT calculations done

KISS (Keep It Simple Stupid): TIPS-pentacene

KISS (Keep It Simple Stupid): TIPS-pentacene

IWIKISS (I Wish I Kept It Simple Stupid)

Walker et al., Nat. Chem. 5, 1019 (2013)

IWIKISS (I Wish I Kept It Simple Stupid)

Walker et al., Nat. Chem. 5, 1019 (2013)

IWIKISS (I Wish I Kept It Simple Stupid)

So what is going on here?

It's complicated...

- Additional ALC lines

-

- Shifting of existing ALCs
- Different muonium chemistry

No change in LF repolarisation, Ochams Razor. Possible, but this might be for the 6.5us signal See next few slides.....

ITKISS (Impossible To Keep It Simple Stupid)

Increase in ALC amplitude (

Increase in muonium reaction rate

Summary

AKISS: Always Keep It Simple Stupid

- MuSR is not simple, but it is powerful
- Photo-MuSR is even more complex, but even more *power*ful
- In principle, photo-MuSR can measure:
 - The presence of excitons
 - Photochemical reaction rates
 - Exiplexes, charge transfer....
 - Photomagnetism
 - All of this with temporal and spatial resolution.
- Spatial resolution: about I benzene ring; Temporal resolution: 10 ns 20 ms (< Ins with £30M)

IWIKISS: I Wish I Kept It Simple Stupid

- Two timescales of transient photoexcited species measured
- Time dependent tomography of photochemistry
- In principle, photo-MuSR can measure:
 - The presence of excitons
 - Photochemical reaction rates
 - Exciplexes, charge transfer, dissassociation....
 - All of this with temporal and spatial resolution.
- $\frac{1}{20}$ Significant work to still be done on the fundamentals:
 - experiments on pyrene, anthracene and naphthalene planned
 - Can definitely say that the \sim I us signal is due to increased reaction rate
 - 6.5us signal is still not identified, could be shifting of ALC to elsewhere

The plan (for world domination)

Excitonic physics in simple molecules

Photomagnetism in ruby

T Tamaki et al., J. Phys. Soc. Japan. 45, 122 (1978)

Triplet lifetime > I ms Singlet fission possible

Singlet lifetime 400ms

Triplet lifetime > I ms Singlet fission possible

Plus experiments on Si, polypeptides, organic semiconductors, GaAs....

Into the future.... Japanese, American and European collaborators

What do we need from a future muon source?

Problem: How do we match muon stopping profile with light absorption length?

JPARC LEM:

Pros:

- ~1ns resolution
- Pulsed technique,
- Possible high data rate?

- Cons:
- New (relatively untested) spectrometer
- Would need to buy a <1ns tuneable laser + make modifications (£££).
- Polarisation loss?

Possibility with joint JSPS/EPSRC spintronics project: call in July 2015?

PSI LEM:

- Still ~100% polarised
- Existing spectrometer
- Light already available
- ~5ns tuneable laser (££)

- ~5ns resolution
- Not pulsed
 - Difficult pump-probe measurements
 - Difficult to trigger

Problem: How do we improve time resolution to access interesting physics (biology/chemistry) <10ns?

Currently: We don't. Limited to >100ns

JPARC LEM:

Pros:

- ~1ns resolution
- Pulsed technique,
- Possible high data rate?

Cons:

- New (relatively untested) spetrometer
- Would need to buy a <1ns tuneable laser + modifications (£££).
- Polarisation loss?

Possibility with joint JSPS/EPSRC spintronics project: call in July 2015?

PSI LEM:

- Still ~100% polarised
- Existing spectrometer
- Light already available
- ~5ns tuneable laser (££)

- ~5ns resolution
- Not pulsed
 - Difficult pump-probe measurements
 - Difficult to trigger

Holy Grail?

- •Tuneable energy (keV) muon beam
- •Tuneable timing structure...
 - Pulsed, but with pulse length and separation user tuneable
- High intensity beam (>100M useable events/hr)
- High LF field (>3T)

Conclusion: A shrubbery would be a lot easier.