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51
1 Introduction 52

53
The characteristic feature of collisions at the LHC is a5+
center-of-mass energy, 7 TeV in 2010 and 2011, of 8 TeV s
in 2012, and near 14 TeV with the start of the second s
phase of operation in 2015, that is large compared tos
even the heaviest of the known particles. Thus thesess
particles (and also previously unknown ones) will often =
be produced at the LHC with substantial boosts. As a0
result, when decaying hadronically, these particles will &1
not be observed as multiple jets in the detector, but s
rather as a single hadronic jet with distinctive internal 63
substructure. This realization has led to a new era ofe
sophistication in our understanding of both standard e
QCD jets and jets containing the decay of a heavy par- e
ticle, with an array of new jet observables and detection ¢
techniques introduced and studies. To allow the efficient e
sharing of results from these jet substructure studies a &
series of BOOST Workshops have been held on a yearly 7
basis: SLAC (2009, [?]), Oxford University (2010, [?]), 7
Princeton University University (2011, [?]), IFIC Va-7
lencia (2012 [?]), University of Arizona (2013 [?]), and, =
most recently, University College London (2014 [?]). Af-7
ter each of these meetings Working Groups have func-
tioned during the following year to generate reports
highlighting the most interesting new results, includ-7
ing studies of ever maturing details. Previous BOOST 7
reports can be found at [?,7,7].

The following report from BOOST 2013 thus views N
the study and implementation of jet substructure tech-
niques as a fairly mature field. The report attempts to o
focus on the question of the correlations between the o
plethora of observables that have been developed and ”
employed, and their dependence on the underlying jet
parameters, especially the jet radius R and jet pr. The
report is organized as follows: NEED TO GENERATE
AN OUTLINE OF THE REPORT - ESPECIALLY AS
I UNDERSTAND IT MYSELF.

87
88
2 Monte Carlo Samples and Event Selection ®

90
2.1 Quark/gluon and W tagging o

92

Samples were generated at /s = 8 TeV for QCD di-*
jets, and for W+W ™ pairs produced in the decay of®

95

96

a (pseudo) scalar resonance and decaying hadronically.
The QCD events were split into subsamples of gg and ¢g
events, allowing for tests of discrimination of hadronic
W bosons, quarks, and gluons.

Individual gg and gq samples were produced at lead-
ing order (LO) using MADGRAPH5, while W W™ sam-
ples were generated using the JHU GENERATOR to al-
low for separation of longitudinal and transverse polar-

izations. Both were generated using CTEQ6L1 PDFs[REF].

The samples were produced in exclusive pr bins of
width 100 GeV, with the slicing parameter chosen to
be the pr of any final state parton or W at LO. At
the parton-level the pp bins investigated were 300-400
GeV, 500-600 GeV and 1.0-1.1 TeV. Since no match-
ing was performed, a cut on any parton was equivalent.
The samples were then all showered through PYTHIAS
(version 8.176) using the default tune 4C.

The showered events were clustered with FASTJET
3.03[REF]using the anti-kr algorithm[REF]|with jet
radii of R = 0.4, 0.8, 1.2. In both signal and back-
ground, an upper and lower cut on the leading jet pr is
applied after showering/clustering, to ensure similar py
spectra for signal and background in each pr bin. The
bins in leading jet pr that are investigated in the W-
tagging and q/g tagging studies are 300-400 GeV, 500-
600 GeV, 1.0-1.1 TeV. The distribution of the leading
jet pr for the gg and WW samples in the 300-400 GeV
parton pr slice prior to the requirement on the leading
jet pr is shown in Figure [T} for the R=0.8 and R=1.2
anti-kr jet radii considered in this pr slice. Figures 2]
and [3| show the equivalent leading jet pr distributions
for the jet radii considered in the 500-600 GeV and 1.0
- 1.1 TeV slices respectively.

2.2 Top tagging

Samples were generated at /s = 14 TeV. Standard
Model dijet and top pair samples were produced with
SHERPA 2.0.0[REF], with matrix elements of up to two
extra partons matched to the shower. The top sam-
ples included only hadronic decays and were generated
in exclusive py bins of width 100 GeV, taking as slic-
ing parameter the maximum of the top/anti-top pr.
The QCD samples were generated with a cut on the
leading parton-level jet pr, where parton-level jets are
clustered with the anti-k; algorithm and jet radii of
R = 0.4, 0.8, 1.2. The matching scale is selected to be
Qcut = 40,60,80 GeV for the prmin = 600, 1000, and
1500 GeV bins, respectively.

The analysis again relies on FASTJET 3.0.3 for jet
clustering and calculation of jet substructure observ-
ables, and an upper and lower pr cut are applied to
each sample to ensure similar py spectra in each bin.
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Fig. 1 Comparisons of the leading jet pr spectrum of the gg background to the WW signal in the pp 300-400 GeV parton pp
slice using the different anti-kr jet distance parameters explored in this pr bin. These distributions are formed prior to the
300-400 GeV leading jet pr requirement.
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Fig. 2 Comparisons of the leading jet pr spectrum of the gg background to the WW signal in the py 500-600 GeV parton pr
slice using the different anti-kr jet distance parameters explored in this py bin. These distributions are formed prior to the
500-600 GeV leading jet pr requirement.
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Fig. 3 Comparisons of the leading jet pr spectrum of the gg background to the WW signal in the pr 1.0-1.1 TeV parton pr
slice using the different anti-kT jet distance parameters explored in this pr bin. These distributions are formed prior to the
500-600 GeV leading jet pr requirement.
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The bins in leading jet pr that are investigated for topiss
tagging are 600-700 GeV, 1-1.1 TeV, and 1.5-1.6 TeV.s3s
ED: What jet algorithm is used to define the pris
bins? 137

138

3 Jet Algorithms and Substructure Observables

In this section, we define the jet algorithms and observ-
ables used in our analysis. Over the course of our study,
we considered a larger set of observables, but for the fi-
nal analysis, we eliminated redundant observables for
presentation purposes. In Sections [3.1] [3:2} [3:3] and 3-4]
we first describe the various jet algorithms, groomers,
taggers and other substructure variables used in these
studies, and then in Section list which observables
are considered in each section of this report, and theuo
exact settings of the parameters used. 141
142
143
3.1 Jet Clustering Algorithms »

145
Jet clustering: Jets were clustered using sequential146

jet clustering algorithms[REF]. Final state particles 4, _
j are assigned a mutual distance d;; and a distance
to the beam, d;g. The particle pair with smallest d;;
are recombined and the algorithm repeated until the
smallest distance is instead the distance to the beam,
d;B, in which case 7 is set aside and labelled as a jet.
The distance metrics are defined as

ARZ 148

2 2
dzj = mln(pTZ7pT’;) R;] ) (1)149
dig = p7), (2)e

151

where AR, = (An)? + (A¢)?. In this analysis, we use -
the anti-k; algorlthm (v = —1), the Cambrldge/AaChen "
(C/A) algorithm (v = 0)[REF], and the k; algorithm

(v = 1)[REF], each of which has varying sensitivity to :

soft radiation in defining the jet. .

157
Qjets: We also perform non-deterministic jet Cluster—

ing[REF]. Instead of always clustering the particle palr Z
with smallest distance d;;, the pair selected for combi-
nation is chosen probabilistically according to a mea-
sure

Pij oc (o) o, )
where dpi, is the minimum distance for the usual jet
clustering algorithm at a particular step. This leads to a
different cluster sequence for the jet each time the Qjetico
algorithm is used, and consequently different substruc-ie:
ture properties. The parameter « is called the rigidityie
and is used to control how sharply peaked the probabil-ies

ity distribution is around the usual, deterministic value.ss

The Qjets method uses statistical analysis of the result-
ing distributions to extract more information from the
jet than can be found in the usual cluster sequence. We
use a = 0.1 and 25 trees per event for all the studies
presented here.

3.2 Jet Grooming Algorithms

Pruning: Given a jet, re-cluster the constituents us-
ing the C/A algorithm. At each step, proceed with the
merger as usual unless both

min is DT 2m;
M < Zewt and ARZ] > 7Rcut7
Prij Pr

(4)

in which case the merger is vetoed and the softer branch
discarded. The default parameters used for pruning[REF]in
this study are z¢,y = 0.1 and Rey; = 0.5. One advan-
tage of pruning is that the thresholds used to veto soft,
wide-angle radiation scale with the jet kinematics, and
so the algorithm is expected to perform comparably
over a wide range of momenta.

Trimming: Given a jet, re-cluster the constituents into
subjets of radius Ry, with the k; algorithm. Discard
all subjets ¢ with

pri < feut P1J- (5)
The default parameters used for trimming[REF]in this
study are Riyim = 0.2 and fet = 0.03.

Filtering:[REF] Given a jet, re-cluster the constituents
into subjets of radius Rgy, with the C/A algorithm. Re-
define the jet to consist of only the hardest N subjets,
where N is determined by the final state topology and
is typically one more than the number of hard prongs in
the resonance decay (to include the leading final-state
gluon emission). ED: Do we actually use filtering
as described here anywhere?

Soft drop: Given a jet, re-cluster all of the constituents
using the C/A algorithm. Iteratively undo the last stage
of the C/A clustering from j into subjets ji, jo. If

<A3m>5
Zcut T )

discard the softer subjet and repeat. Otherwise, take j
to be the final soft-drop jet[REF]. Soft drop has two
input parameters, the angular exponent 8 and the soft-
drop scale z.ut, with default value zqyy = 0.1. ED: Soft-
drop actually functions as a tagger when § = —1

min(pr1, pra2)
pr1 + P12

(6)
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3.3 Jet Tagging Algorithms 210

211
Modified Mass Drop Tagger: Given a jet, re-cluster,;,
all of the constituents using the C/A algorithm. Ttera;
tively undo the last stage of the C/A clustering from j,

into subjets ji, jo with m;, > m,,. If either 215
. 9 9 216

min(ps,p
mj, > pm; or M AR%Q < Yeuts (7)217
7 218

then discard the branch with the smaller transverse™
mass mr = \/m? + p2,, and re-define j as the branch™
with the larger transverse mass. Otherwise, the jet is™
tagged. If de-clustering continues until only one branch™
remains, the jet is untagged. In this study we use by
default © = 1.0 and y¢ut = 0.1.

224
Johns Hopkins Tagger: Re-cluster the jet using the
C/A algorithm. The jet is iteratively de-clustered, and
at each step the softer prong is discarded if its pr is
less than 6, prjet. This continues until both prongs are
harder than the pt threshold, both prongs are softer
than the pr threshold, or if they are too close (|An;;|+
|Ag;j| < dr); the jet is rejected if either of the latter
conditions apply. If both are harder than the pr thresh-
old, the same procedure is applied to each: this results
in 2, 3, or 4 subjets. If there exist 3 or 4 subjets, then
the jet is accepted: the top candidate is the sum of the,
subjets, and W candidate is the pair of subjets closest,,,
to the W mass. The output of the tagger is m¢, mw ,,,
and 6y, a helicity angle defined as the angle, measured
in the rest frame of the W candidate, between the top
direction and one of the W decay products.

25

HEPTopTagger: Re-cluster the jet using the C/A
algorithm. The jet is iteratively de-clustered, and at
each step the softer prong is discarded if m/mi2 > p
(there is not a significant mass drop). Otherwise, both
prongs are kept. This continues until a prong has a mass
m; < m, at which point it is added to the list of sub-
jets. Filter the jet using Rgix = min(0.3, AR;;), keeping
the five hardest subjets (where AR;; is the distance be-
tween the two hardest subjets). Select the three subjetseos
whose invariant mass is closest to m;. The output of thexo
tagger is my, my, and 6y, a helicity angle defined as
the angle, measured in the rest frame of the W candi-a
date, between the top direction and one of the W decay»s
products. 233
234
Top Tagging with Pruning: For comparison withess
the other top taggers, we add a W reconstruction stepess
to the trimming algorithm described above. A W can-
didate is found as follows: if there are two subjets, the
highest-mass subjet is the W candidate (because the

W prongs end up clustered in the same subjet); if there
are three subjets, the two subjets with the smallest in-
variant mass comprise the W candidate. In the case of
only one subjet, no W is reconstructed.

Top Tagging with Trimming: For comparison with
the other top taggers, we add a W reconstruction step
to the trimming algorithm described above. A W can-
didate is found as follows: if there are two subjets, the
highest-mass subjet is the W candidate (because the
W prongs end up clustered in the same subjet); if there
are three subjets, the two subjets with the smallest in-
variant mass comprise the W candidate. In the case of
only one subjet, no W is reconstructed.

3.4 Other Jet Substructure Observables

Qjet mass volatility: As described above, Qjet al-
gorithms re-cluster the same jet non-deterministically
to obtain a collection of interpretations of the jet. For
each jet interpretation, the pruned jet mass is computed
with the default pruning parameters. The mass volatil-
ity, 1Qjet, is defined as

(m3) — (m.)*

(m.)

FQjet == ) (8)
where averages are computed over the Qjet interpreta-
tions.

N-subjettiness: N-subjettiness| REF]quantifies how
well the radiation in the jet is aligned along N direc-
tions. To compute N-subjettiness, T]\f ), one must first
identify N axes within the jet. Then,
1

— : B B
TN = d—ozi:pTi min (ARM,...,ARM) , (9)
where distances are between particles ¢ in the jet and
the axes,

do = ZpTi R’

and R is the jet clustering radius. The exponent ( is
a free parameter. There is also some choice in how
the axes used to compute N-subjettiness are deter-
mined. The optimal configuration of axes is the one
that minimizes N-subjettiness; recently, it was shown
that the “winner-takes-all” axes can be easily computed
and have superior performance compared to other min-
imization techniques[REF]. ED: Do we use WTA?
Otherwise why do we mention this?
A more powerful discriminant is often the ratio,

(10)

TN

TN N—1 = (11)

TN-1



237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

BOOST2013 participants

While this is not an infrared-collinear (IRC) safe ob-wo
servable, it is calculablefREF]and can be made IRCon
safe with a loose lower cut on 7n_1. 272

273
Energy correlation functions: The transverse mo-
mentum version of the energy correlation functions aress

defined as[REF]: 276

ECF(N,8) =
a=1 b=1 c=b+1

(12)278

279

where i is a particle inside the jet. It is preferable toso

work in terms of dimensionless quantities, particularlyss

11 <i2<...<iNEJ

the energy correlation function double ratio: 28
o) _ BECF(QV + 1L ) ECF(N — 1,5) (13)”3
N ECF(N, 3)2 '

285
This observable measures higher-order radiation from,

leading-order substructure.

86
287
288
3.5 Observables for Each Analysis ”

290

. . . . 201
Quark/gluon discrimination:

. 292
— The ungroomed jet mass, m.

— 1-subjettiness, Tlﬂ with 8 =1, 2. The N—subjettiness293
axes are computed using one-pass k; axis optimiza-
tion.

. . . B . 204

— 1-point energy correlation functions, C;"’ with g =
1, 2.

— The pruned Qjet mass volatility, Iqjet-

— The number of constituents (Nconstits)-

295
296
297
vs. gluon discrimination: 298

299
— The ungroomed, trimmed (Mim ), and pruned (Mpyyy,)

jet masses. 501
— The mass output from the modified mass drop tag-,,
ger (mmmdt)' 303
— The soft drop mass with 8 = —1, 2 (msq). s
— 2-point energy correlation function ratio Cg =t (Weyy,
also studied 8 = 2 but did not show its results be-,
cause it showed poor discrimination power). 207
— N-subjettiness ratio 7o/m with 8 = 1 (75, ') and,,
with axes computed using one-pass k; axis optimiza-,
tion (we also studied 8 = 2 but did not show its re-, |
sults because it showed poor discrimination power).
— The pruned Qjet mass volatility.

. « . . 3
Top vs. QCD discrimination: "

— The ungroomed jet mass. 312
— The HEPTopTagger and the Johns Hopkins tagger s

s (1) (1 11 e

— Trimming and grooming supplemented with W can-
didate identification.

— N-subjettiness ratios 72/71; and 73/75 with § = 1
and the “winner-takes-all” axes.

— 2-point energy correlation function ratios CQB =1 and
oyt

— The pruned Qjet mass volatility, I qjet-

B
> Multivariate Analysis Techniques

Multivariate techniques are used to combine vari-
ables into an optimal discriminant. In all cases vari-
ables are combined using a boosted decision tree (BDT)
as implemented in the TMVA package [?]. We use the
BDT implementation including gradient boost. An ex-
ample of the BDT settings are as follows:

— NTrees=1000

— BoostType=Grad
— Shrinkage=0.1

— UseBaggedGrad=F
— nCuts=10000

— MaxDepth=3

— UseYesNoLeaf=F
— nEventsMin=200

Exact parameter values are chosen to best reduce the
effect of overtraining.

5 Quark-Gluon Discrimination

In this section, we examine the differences between quark-
and gluon-initiated jets in terms of substructure vari-
ables, and to determine to what extent these variables
are correlated. Along the way, we provide some theoret-
ical understanding of these observations. The motiva-
tion for these studies comes not only from the desire to
“tag” a jet as originating from a quark or gluon, but also
to improve our understanding of the quark and gluon
components of the QCD background relative to boosted
resonances. While recent studies have suggested that
quark/gluon tagging efficiencies depend highly on the
Monte Carlo generator used, we are more interested in
understanding the scaling performance with pr and R,
and the correlations between observables, which are ex-
pected to be treated consistently within a single shower
scheme. ED: How about this?

5.1 Methodology

These studies use the gq and gg samples, described pre-
viously in Section [2| Jets are reconstructed using the
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anti-kr algorithm with radius parameters of 0.4, 0.8 andsss
1.2, and have various jet grooming approaches applied s
as described in Section[3.4] Only leading and subleadingss
jets in each sample are used. 368

Figure [4 shows a comparison of the pr and 7 dis-,
tributions of the quark and gluon samples with pr =,
500 — 600 GeV. The differences in the py distributions,,
can be attributed to different out-of-cone radiation pat-,,,
terns for quark and gluons ED: Is this just due to,,
an increased likelihood of hard ISR/FSR for gg,,
states due to the larger QCD charge?, while the,,
different 7 distributions are related to the different par-,,
ton distribution functions initiating qq and gg produc-,,
tion. The qualitative features of the 7 distributions do,,
not change as the R parameter is changed. As the pry,
increases, the n distributions peak more strongly neary,
zero, as expected. Differences in the pp distributions,,
between the leading and sub-leading (and quark and,,
gluon-induced) jets become smaller as the R param-,,
eter is increased, as expected from the physics behind,,
these differences, outlined above. ED: But in the end,,
don’t we make narrow cuts on the pr of they,
leading/sub-leading jets in the q/g study, and,,
so these differences aren’t so important? (or are,
these cuts only made for the W-tagging study?),,

390
391

5.2 Single Variable Discrimination
392

(ED: Do we want to organize this section similar*®
to for top tagging, where we first discuss the per-**
formance of each observable at fixed R/pr, and*®
then discuss the variations? It’s a little mixed™®®
right now.) 37

Figure [5] shows the mass of jets in the quark and®®
gluon samples when using different groomers, and Fig-**°
ure [6] shows similar comparisons for different substruc-o
ture variables. Jets built with the anti-kp algorithmyo:
with R=0.8 and with pr = 500 — 650 GeV are used?
ED: Are these pT bins right? Should this be 500-03
600 GeV?. Qualitatively, the application of grooming+
shifts the mass distributions towards lower values asws
expected. No clear gain in discrimination can be seen s
and for certain grooming parameters, such as the usew?
of soft drop with 8 = —1 a clear loss in discrimina-s
tion power is observed; this is because the soft-dropo
condition for § = —1 discards collinear radiation, and+o
the differences between quarks and gluons are mani-+
fest in the collinear structure (spin, splitting functions
etc.). Few variations are observed as the radius param-us
eter of the jet reconstruction is increased in the twons
highest pr bins. However, for the 300 — 400 GeV binus
the use of small-R jets produces a shift in the massus
distributions towards lower values, so that large-R jetur

masses are more stable with py and small-R jet masses
are smaller at low-pr as expected from the spatial con-
straints imposed by the R parameter. These statements
are explored more quantitatively later in this section.

Among the different substructure variables explored,
Neconstits Provides the highest separation power, followed
by CY=° and C=" as was also found by the CMS and
ATLAS Collaborations[REF]. The evolution of some of
these distributions with p7 and R is less trivial than for
the jet masses. In particular, changing the R parameter
at high pr changes significantly the C# for 8 > 0 and
the nconstits distributions, while leaving all other dis-
tributions qualitatively unchanged. This is illustrated
in Figure [7] for § = 0 and f = 1 using ¢ = 1 in
both cases for jets with pr = 1 — 1.2 TeV. The shift
towards lower values with changing R is evident for
the CP=" distributions, while the stability of CY=° can
also be observed. These features are present in all pp
bins studied, but are even more pronounced for lower
pr bins. The shape of the Q-jet volatility distribution
shows some non-trivial shape that deserves some expla-
nation. Two peaks are observed, one at low volatility
values and one at mid-volatility. These peaks are gen-
erated by two somewhat distinct populations. The high
volatility peak arises from jets that get their mass pri-
marily from soft (and sometimes wide-angle) emissions.
The removal of some of the constituents when build-
ing Q-jets thus changes the mass significantly, increas-
ing the volatility. The lower volatility peak corresponds
to jets for which mass is generated by a hard emis-
sion, which makes the fraction of Q-jets that change
the mass significantly to be smaller. Since the proba-
bility of a hard emission is proportional to the color
charge (squared), the volatility peak is higher for gluon
jets by about the color factor Cx/CF.

To more quantitatively study the power of each ob-
servable as a discriminator for quark/gluon tagging, Re-
ceiver Operating Characteristic (ROC) curves are built
by scanning each distribution and plotting the back-
ground efficiency (to select gluon jets) vs. the signal
efficiency (to select quark jets). Figure 8| shows these
ROC curves for all of the variables shown in Figure [0]
and the ungroomed mass, representing the best per-
forming mass variable, for jets of pr = 300 — 400 GeV.
In addition, the ROC curve for the tagger built from
a BDT combining all the variables. The details of how
the BDT is constructed are explained in Section [4

Clearly, nconstits is the best performing variable for
all Rs, even though Cf =Vis close, particularly for R=0.8.
Most other variables have similar performance, except
the Q-jet volatility, which shows significantly worse dis-
crimination (this may be due to our choice of rigid-
ity a = 0.1, while other studies suggest that a smaller
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Fig. 4 Comparisons of quark and gluon pr and 7 distributions in the sample used for the jets of pr = 500 — 600 GeV bin using

the anti-kr R=0.8 algorithm.

value, such as a = 0.01, produces better results). Theso
combination of all variables shows somewhat better dis-
crimination. The overall discriminating power decreases:
with increasing R (BS: Do we understand if this is duess
to increased contamination from UE, or if this is an ac-sa
tual physical effect?), and the features discussed for thisiss
pr bin also apply to the higher py bins. This statementsss
is quantified in the next section. 437

438

439
5.3 Correlations and Combined Performance

440
The combined performance displayed in Fig. [§] is notiu
much better than that of single variables. However, thatu
improvement in performance can be critical for certairuas

analyses requiring a quark/gluon tagger, and poten-
tially larger in data than in Monte Carlo simulation.
Furthermore, insight can be gained into the features al-
lowing for quark/gluon discrimination if how that im-
provement arises is understood. It is therefore worth
investigating quantitatively the improvements in per-
formance: to do so, quark/gluon taggers are built from
every pair-wise combination of variables studied in the
previous section, as well as the full set of variables using
a boosted decision tree.

In order to quantitatively study the value of each
variable for quark/gluon tagging, the gluon rejection,
defined as 1/¢giuon, is studied at a fixed quark selection
efficiency of 50%. Figure [9] shows the rejection for each
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Fig. 5 Comparisons of ungroomed and groomed quark and gluon mass distributions for leading jets in the pr = 500 — 650 GeV

bin using the anti-kr R=0.8 algorithm.

individual variable (along the diagonal of the plots) andaes
for each pair-wise combination. The rejection for thess:
BDT combining all variables is also shown on the bot-ss
tom right of each plot. Results are shown for jets withuso
pr = 1 — 1.2 TeV and for different R parameters. Asio
already observed in the previous section, nconstits 1S them
most powerful single variable and Cfﬂ =9 follows closely.an
The combination of the two variables is also one of the,
most powerful combinations for the two large-RR collec-,
tions. Performance is generally better at small R, and,,
in this case other pair-wise combinations are more pow-, .
erful. In particular, the combinations of 7'16 =!or Cf’B :1)477
with neonstits are capable of getting very close to the,_,

rejection achievable through the use of all variables.

The overall loss in performance with increasing R*
can be observed in all single variables studied, except
for C’EB =9 and the Q-jet volatility, which are quite re-*®2
silient to increasing R. This is expected, since their dis-*®
tributions were observed to be also quite insensitive to**
R in the previous section. Their combination, however pss
does lose performance significantly as R is increased.ss
[do we understand this?] Of all the variables stud-s

ied, B = 2 1-subjettiness and energy correlation vari-
ables are particularly sensitive to increasing R. This is
understandable, because for § = 2 a larger weight is
put in large-angle emissions. However, from other vari-
ables, it is understood that most of the discrimination
power comes from analyzing a small-R jet, or the center
of the large-R jet.

These observations are qualitatively similar across
all ranges of pr. Quantitatively, however, there is a loss
of rejection power for the taggers made of a combina-
tion of variables as the pr decreases. This can be ob-
served in Fig.[10] for anti-kr R=0.4 jets of different prs.
Clearly, most single variables retain their gluon rejec-
tion potential at lower prs. However, when combined
with other variables, the highest performing pairwise
combinations lose ground with respect to other pair-
wise combinations. This is also reflected in the rejection
of the tagger that uses a combination of all variables,
which is lower at lower prs. [do we understand this?]

(BS: Do we want to explicitly mention some aspects
of the correlation, namely quantifying which observables
seem to be most correlated and that it seems that the
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all-variable performance is not much better than some
of the pair-wise combinations, and so there seem to be
~ 2 independent observables? Also, I remember Nhan
had some tables that showed some variable rankings in
terms of how (un)correlated they were; not sure if we
want to show these.
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In this section, we study the discrimination of a boostedss
hadronically decaying W signal against a gluon back-ss
ground, comparing the performance of various groomedsss
jet masses, substructure variables, and BDT combina-ss
tions of groomed mass and substructure. We producess
ROC curves that elucidate the performance of the vari-s
ous groomed mass and substructure variables. A rangess
of different distance parameters R for the anti-kr jetsso

algorithm are explored, as well as a variety of kine-
matic regimes (lead jet pr 300-400 GeV, 500-600 GeV,
1.0-1.1 TeV). This allows us to determine the perfor-
mance of observables as a function of jet radius and jet
boost, and to see where different approaches may break
down. The groomed mass and substructure variables
are then combined in a BDT as described in Section [4]
and the performance of the resulting BDT discriminant
explored through ROC curves to understand the degree
to which variables are correlated, and how this changes
with jet boost and jet radius.

6.1 Methodology

These studies use the WW samples as signal and the
dijet gg samples to model the QCD background, as
described previously in Section [2] Whilst only gluonic
backgrounds are explored here, the conclusions as to
the dependence of the performance and correlations on
the jet boost and radius have been verified to hold also
for gq backgrounds. ED: To be checked!

In each of the three pr slices considered jets are
reconstructed using the anti-kr algorithm with distance
parameter R=0.4, 0.8 and 1.2, as described in Section
They then have various grooming approaches applied
as described in Section [3.5] (ED: Probably better if
some of the information from Sections [2] and [3.5]
is brought into this section to avoid this back-
referencing.)

6.2 Single Variable Performance

In this section we will explore the performance of the
various groomed jet mass and substructure variables in
terms of discriminating signal and background, and how
this performance changes depending on the kinematic
bin and jet radius considered.

Figure [11] the compares the signal and background
in terms of the different groomed masses explored for
the anti-kt R=0.8 algorithm in the py 500-600 bin. One
can clearly see that in terms of separating signal and
background the groomed masses will be significantly
more performant than the ungroomed anti-kt R=0.8
mass. Figure [12| compares signal and background in the
different substructure variables explored for the same
jet radius and kinematic bin.

Figures [I3] [I4] and [I5] show the single variable ROC
curves compared to the ROC curve for a BDT combi-
nation of all the variables (labelled “allvars”), for each
of the anti-kr distance parameters considered in each
of the kinematic bins. One can see that, in all cases,
the “allvars” option is considerably better performant
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Fig. 11 Comparisons of the QCD background to the WW signal
leading jet mass distributions.

than any of the individual single variables considered sz
indicating that there is considerable complementaritys:s
between the variables, and this will be explored furthers
in the next section. 575

576

Although the ROC curves give all the relevant in-_,
formation, it is hard to compare performance quanti-_,
tatively. In Figures [I6] [I7] and [I§ are shown matrices,,
which give the background rejection for a signal effi-
ciency of 70% when two variables (that on the x-axis
and that on the y-axis) are combined in a BDT. These,,
are shown separately for each pr bin and jet radius,,
considered. The diagonal of these plots correspond to,,
the background rejections for a single variable BDT,_
and can thus be examined to get a quantitative mea-,
sure of the individual single variable performance, and,,
to study how this changes with jet radius and momenta._,

One can see that in general the most performan‘c589
single variables are the groomed masses. However, i
certain kinematic bins and for certain jet radii, Cg =1
has a background rejection that is comparable to or’
better than the groomed masses.

2

(e) Soft-drop B8 = 2 mass

in the pz 500-600 GeV bin using the anti-k+ R=0.8 algorithm:

By comparing Figures [16(a)} [17(a)| and [18(b), we
can see how the background rejection performance evolves
as we increase momenta whilst keeping the jet radius
fixed to R=0.8. Similarly, by comparing Figures
and we can see how performance evolves with pr
for R=1.2. For both R=0.8 and R=1.2 the background
rejection power of the groomed masses increases with
increasing pr , with a factor 1.5-2.5 increase in rejec-
tion in going from the 300-400 GeV to 1.0-1.1 TeV bins.
ED: Add some of the 1-D plots comparing sig-
nal and bkgd in the different masses and pT bins
here? However, the C5 ", I'gjer and 75" substructure
variables behave somewhat differently. The background
rejection power of the I'gje.: and 7'251:1 variables both
decrease with increasing pr , by up to a factor two
in going from the 300-400 GeV to 1.0-1.1 TeV bins.
Conversely the rejection power of Cg =! dramatically
increases with increasing pr for R=0.8, but does not
improve with pp for the larger jet radius R=1.2. ED:
Can we explain this? Again, should we add some
of the 1-D plots?
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Fig. 12 Comparisons of the QCD background to the WW signal in the pp 500-600 GeV bin using the anti-kr R=0.8 algorithm:

substructure variables.
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Fig. 15 The ROC curve for all single variables considered for W tagging in the py 1.0-1.1 TeV bin using the anti-k0 R=0.4
algorithm, anti-kt R=0.8 algorithm and R=1.2 algorithm.
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By comparing the individual sub-figures of Figures[T6;[T@xplored here. This is despite the fact that in the high-

and [I8 we can see how the background rejection perfor-ss
mance depends on jet radius within the same pr bin.ss
To within ~ 25%, the background rejection power ofssr
the groomed masses remains constant with respect toss
the jet radius. However, we again see rather differentes
behaviour for the substructure variables. In all p7 bins

considered the most performant substructure variable,

Cg :1, performs best for an anti-kt distance parame-

ter of R=0.8. The performance of this variable is dra-sso
matically worse for the larger jet radius of R=1.2 (a

factor seven worse background rejection in the 1.0-1.1es1
TeV bin), and substantially worse for R=0.4. For thess
other jet substructure variables considered, I'gje; andsss
TQﬁ 1:1, their background rejection power also reduces forss
larger jet radius, but not to the same extent. ED: In-sss
sert some nice discussion/explanation of why jetsss
substructure power generally gets worse as wess
go to large jet radius, but groomed mass perfor-sss
mance does not. Probably need the 1-D figuress,
for this. 660
661
662

6.3 Combined Performance
663

The off-diagonal entries in Figures and [18] can®™
be used to compare the performance of different BDT**
two-variable combinations, and see how this varies ag®®
a function of pyr and R. By comparing the background®”
rejection achieved for the two-variable combinations to*®
the background rejection of the “all variables” BDT
one can understand how much more discrimination i
possible by adding further variables to the two-variable®™
BDTs. 672

One can see that in general the most powerful two-s7
variable combinations involve a groomed mass and asw
non-mass substructure variable (C5 =", I'gjer or T4y ' )67
Two-variable combinations of the substructure variabless
are not powerful in comparison. Which particular mass
+ substructure variable combination is the most pow-67
erful depends strongly on the pr and R of the jet, as
discussed in the sections that follow. 680

There is also modest improvement in the backgrounds:
rejection when different groomed masses are combined gs2
compared to the single variable groomed mass perfor-sss
mance, indicating that there is complementary informa-sss
tion between the different groomed masses. In addition sss
there is an improvement in the background rejectionsss
when the groomed masses are combined with the un-ss
groomed mass, indicating that grooming removes somesss
useful discriminatory information from the jet. Thesesso
observations are explored further in the section below.ss

Generally one can see that the R=0.8 jets offer thesa
best two-variable combined performance in all p; binsse

est 1.0-1.1 GeV pr bin the average separation of the
quarks from the W decay is much smaller than 0.8,
and well within 0.4. This conclusion could of course be
susceptible to pile-up, which is not considered in this
study.

0.3.1 Mass + Substructure Performance

As already noted, the largest background rejection at
70% signal efficiency are in general achieved using those
two variable BDT combinations which involve a groomed
mass and a non-mass substructure variable. For both
R=0.8 and R=1.2 jets, the rejection power of these two
variable combinations increases substantially with in-
creasing pr , at least within the pr range considered
here.

For a jet radius of R=0.8, across the full pr range
considered, the groomed mass + substructure variable
combinations with the largest background rejection are
those which involve Czﬂ =1 For example, in combination
with mf 0 2 this produces a five-, eight- and fifteen-fold
increase in background rejection compared to using the
groomed mass alone. In Figure the low degree of
correlation between m’ij versus C5=' that leads to
these large improvements in background rejection can
be seen. One can also see that what little correlation
exists is rather non-linear in nature, changing from a
negative to a positive correlation as a function of the
groomed mass, something which helps to improve the
background rejection in the region of the W mass peak.

However, when we switch to a jet radius of R=1.2
the picture for Cg =1 combinations changes dramati-
cally. These become significantly less powerful, and the
most powerful variable in groomed mass combinations
becomes 7'261:1 for all jet pr considered. Figureshows
the correlation between m”;> and C5~" in the pp 1.0
- 1.2 TeV bin for the various jet radii considered. Fig-
ure is the equivalent set of distributions for mfd:2
and 75, '. One can see from Figure 20| that, due to the
sensitivity of the observable to to soft, wide-angle ra-
diation, as the jet radius increases Cg =! increases and
becomes more and more smeared out for both signal
and background, leading to worse discrimination power.
This does not happen to the same extent for 7'2[31:1. We
can see from Figure 21]that the negative correlation be-
tween mf =% and 75" that is clearly visible for R=0.4
decreases for larger jet radius, such that the groomed
mass and substructure variable are far less correlated
and 75" offers improved discrimination within a m®;>
mass window.
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Fig. 16 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pr 300-400 GeV bin using the anti-kr R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.
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Fig. 17 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pr 500-600 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

6.3.2 Mass + Mass Performance 703
704
The different groomed masses and the ungroomed mass;s
are of course not fully correlated, and thus one can al-g
ways see some kind of improvement in the backgroundy,
rejection (relative to the single mass performance) whenyg
two different mass variables are combined in the BDT 4
However, in some cases the improvement can be dra-;,
matic, particularly at higher pr , and particularly for,
combinations with the ungroomed mass. For examplej;,
in Figure [I§ we can see that in the p7 1.0-1.1 TeV bin

the combination of pruned mass with ungroomed mass
produces a greater than eight-fold improvement in the
background rejection for R=0.4 jets, a greater than five-
fold improvement for R=0.8 jets, and a factor ~two im-
provement for R=1.2 jets. A similar behaviour can be
seen for mMDT mass. In Figures[22] [23]and [24]is shown
the 2-D correlation plots of the pruned mass versus the
ungroomed mass separately for the WW signal and gg
background samples in the pr 1.0-1.1 TeV bin, for the
various jet radii considered. For comparison, the corre-
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Fig. 18 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pr 1.0-1.1 TeV bin using the anti-k+ R=0.4, R=0.8 and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

lation of the trimmed mass with the ungroomed mass;zs
a combination that does not improve on the single massno
as dramatically, is shown. In all cases one can see thato
there is a much smaller degree of correlation betweernya
the pruned mass and the ungroomed mass in the back-z
grounds sample than for the trimmed mass and the un-ss
groomed mass. This is most obvious in Figure[22] wherers
the high degree of correlation between the trimmed andrss
ungroomed mass is expected, since with the parameterss
used (in particular Ry, = 0.2) we cannot expect trim-r
ming to have a significant impact on an R=0.4 jet. Therss
reduced correlation with ungroomed mass for pruningso
in the background means that, once we have made themuo
requirement that the pruned mass is consistent with

a W (i.e. ~80 GeV), a relatively large difference be-

tween signal and background in the ungroomed mass
still remains, and can be exploited to improve the back-
ground rejection further. In other words, many of the
background events which pass the pruned mass require-
ment do so because they are shifted to lower mass (to
be within a signal mass window) by the grooming, but
these events still have the property that they look very
much like background events before the grooming. A
single requirement on the groomed mass only does not
exploit this. Of course, the impact of pile-up, not con-
sidered in this study, could significantly limit the degree
to which the ungroomed mass could be used to improve
discrimination in this way.
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Fig. 22 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pp 1.0-1.1

TeV bin using the anti-kT R=0.4 algorithm.

6.3.3 “All Variables” Performance 756

757
As well as the background rejection at a fixed 70% sig-rss
nal efficiency for two-variable combinations, Figures[16]
and also report the background rejection achievedrso

by a combination of all the variables considered into a
single BDT discriminant. One can see that, in all cases,
the rejection power of this “all variables” BDT is signif-
icantly larger than the best two-variable combination,
by between a factor 2-3. This indicates that beyond the
best two-variable combination there is still significant
complementary information availiable in the remaining
variables in order to improve the discrimination of sig-
nal and background.

ED: This section will be filled in when we
have got the 3-variable combination studies, so

we have a better idea where the dramatic in-
crease in rejection power with “all variables” is
coming from. Would also be good to show per-
haps some of the “all variables” BDT discrimi-
nants in 1-D plots.
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Fig. 23 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pp 1.0-1.1
TeV bin using the anti-kr R=0.8 algorithm.
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7 Top Tagging 776
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In this section, we study the identification of boosted

top quarks at Run II of the LHC. Boosted top quarks™
result in large-radius jets with complex substructure,*
containing a b-subjet and a boosted W. The additional™
kinematic handles coming from the reconstruction of*
the W mass and b-tagging allows a very high degree™
of discrimination of top quark jets from QCD back-"’

798
grounds.
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We consider top quarks with moderate boost (600-ss
1000 GeV), and perhaps most interestingly, at high

boost (2 1500 GeV). Top tagging faces several chal-»w

lenges in the high-pr regime. For such high-pr jets?

the b-tagging efficiencies are no longer reliably known &

Also, the top jet can also accompanied by additionale

radiation with pp ~ my, leading to combinatoric ambi-
guities of reconstructing the top and W, and the pos-
sibility that existing taggers or observables shape the
background by looking for subjet combinations that re-
construct m;/my . To study this, we examine the per-
formance of both mass-reconstruction variables, as well
as shape observables that probe the three-pronged na-
ture of the top jet and the accompanying radiation pat-
tern.

7.1 Methodology

We study a number of top-tagging strategies, in partic-
ular:

1. HEPTopTagger

2. Johns Hopkins Tagger (JH)
3. Trimming

4. Pruning

The top taggers have criteria for reconstructing a top
and W candidate, while the grooming algorithms (trim-
ming and pruning) do not incorporate a W-identification
step. For a level playing field, we construct a W candi-
date from the three leading subjets by taking the pair
of subjets with the smallest invariant mass; in the case
that only two subjets are reconstructed, we take the
mass of the leading subjet. All of the above taggers
and groomers incorporate a step to remove pile-up and
other soft radiation.

We also consider the performance of jet shape ob-
servables. In particular, we consider the N-subjettiness
ratios 74, © and 75, ', energy correlation function ra-
tios szl and C2=", and the Qjet mass volatility I". In
addition to the jet shape performance, we combine the
jet shapes with the mass-reconstruction methods listed
above to determine the optimal combined performance.

For determining the performance of multiple vari-
ables, we combine the relevant tagger output observ-
ables and/or jet shapes into a boosted decision tree
(BDT), which determines the optimal cut. Addition-
ally, because each tagger has two inputs (list, or maybe
refer back to Section 3), we scan over reasonable values
of the inputs to determine the optimal value for each
top tagging signal efficiency. This allows a direct com-
parison of the optimized version of each tagger. The
input values scanned for the various algorithms are:

— HEPTopTagger: m € [30,100] GeV, p € [0.5,1]
JH Tagger: ¢, € [0.02,0.15], g € [0.07,0.2]
Trimming: fc, € [0.02,0.14], Riyim € [0.1,0.5]
— Pruning: z.,; € [0.02,0.14], Reyt € [0.1,0.6]
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7.2 Single-observable performance 875

876
We start by investigating the behaviour of individuals7
jet substructure observables. Because of the rich, three-ss
pronged structure of the top decay, it is expected thatsm
combinations of masses and jet shapes will far out-sso
perform single observables in identifying boosted tops.ss
However, a study of the top-tagging performance of sin-ss
gle variables facilitates a direct comparison with the Wsss
tagging results in Section [6] and also allows a straight-ss
forward examination of the performance of each observ-ss
able for different pr and jet radius. 886

Fig. [25] shows the ROC curves for each of the top-¥
tagging observables, with the bare jet mass also plot-®
ted for comparison. Unlike W tagging, the jet shape®
observables perform more poorly than jet mass. As ant®
example illustrating why this is the case, consider N-8
subjettiness. The W is two-pronged and the top is three$%
pronged; therefore, we expect 197 and 735 to be the best-83
performant N-subjettiness ratio, respectively. However 8
To1 also contains an implicit cut on the denominator 8%
71, which is strongly correlated with jet mass. There-%
fore, 791 combines both mass and shape information tc
some extent. By contrast, and as is clear in Fig(a),ﬁg8
the best shape for top tagging is 732, which contains®
no information on the mass. Therefore, it is unsurpris-o
ing that the shapes most useful for top tagging are lesgn
sensitive to the jet mass, and under-perform relative to2
the corresponding observables for W tagging. 903

Of the two top tagging algorithms, the Johns Hop-"*
kins (JH) tagger out-performs the HEPTopTagger in™®
its signal-to-background separation of both the top and™®
W candidate masses, with larger discrepancy at higher®”
pr and larger jet radius. In Fig. we show the his-%®
tograms for the top mass output from the JH and HEP-%
TopTagger for different R (Fig. and pr 7 opti-*1°
mized at a signal efficiency of 30%. The likely reason for!
this behavior is that, in the HEPTopTagger algorithm 2
the jet is filtered to select the five hardest subjets, and’
then three subjets are chosen which reconstruct the top
mass. This requirement tends to shape a peak in the
QCD background around m; for the HEPTopTagger o1
while the JH tagger has no such requirement. It has
been suggested by Anders et al. [?] that performancens
in the HEPTopTagger may be improved by selecting thess
three subjets reconstructing the top only among thosesnr
that pass the W mass constraints, which somewhat re-os
duces the shaping of the background. Note that bothoo
the JH tagger and the HEPTopTagger are superior atox
using the W candidate inside of the top for signal dis-x
crimination; this is because the the pruning and trim-»
ming algorithms do not have inherent W-identificationess
steps and are not optimized for this purpose. 024

We also directly compare the performance of top
mass and jet shape observables for different jet pr and
radius. The input parameters of the taggers, groomers,
and shape variables are separately optimized for each
pr and radius:

pr comparison: We compare various top tagging ob-
servables for jets in different pr bins and R = 0.8 in
Figs. 28 and [31] The tagging performance of ;et shapes
do not change substantially with pr. Tég =Y and the
Qjet volatility I' have the most variation and tend to
degrade with higher ppr (see Fig. . This makes
sense, as higher-pr QCD jets have more, harder emis-
sions within the jet, giving rise to substructure that
fakes the signal. By contrast, most of the top mass ob-
servables have superior performance at higher pr due
to the radiation from the top quark becoming more col-
limated. The notable exception is the HEPTopTagger,
which degrades at higher pr, likely in part due to the
background-shaping effects discussed earlier.

R comparison: We compare various top tagging ob-
servables for jets of different R and pr = 1.5 — 1.6
TeV in Figs. B2}36] Most of the top-tagging parame-
ters perform best for smaller radius; this is because, at
such high pp, most of the radiation from the top quark
is confined within R = 0.4, and having a larger jet
radius makes the observable more susceptible to con-
tamination from the underlying event and other un-
correlated radiation. As we show in Figs. the
distributions for both signal broaden with increasing
R, degrading the discriminating power. For C’éﬁ =Y and
Céﬁ =1), the background distributions are shifted up-
ward as well. Therefore, the discriminating power gen-
erally gets worse with increasing R. The main exception
is for Céﬁ :1), which performs optimally at R = 0.8; in
this case, the signal and background coincidentally hap-
pen to have the same distribution around R = 0.4, and
so R = 0.8 gives better discrimination.

7.3 Performance of multivariable combinations

We now consider various combinations of the observ-
ables from Section In particular, we consider the
performance of individual taggers such as the JH tagger
and HEPTopTagger, which output information about
the ¢ and W candidate masses and the helicity angle;
groomers, such as trimming and pruning, which remove
soft, uncorrelated radiation from the top candidate to
improve mass reconstruction, and to which we have
added a W reconstruction step; and the combination of
the above taggers/groomers with shape variables such
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as IN-subjettiness ratios and energy correlation ratios.s
For all observables with tuneable input parameters, wer
scan and optimize over realistic values of such parame-ous
ters. Our multivariate techniques are discussed in Sec-o
tion [l

950

51

Fig. [37 shows our main results for the multivariable’
combinations; in all cases, we also show the ungroomed™
jet mass as a baseline comparison. In Fig. [37|(a), we di-**
rectly compare the performance of the HEPTopTagger,
the JH tagger, trimming, and grooming. Generally, we__
find that pruning, which does not naturally incorporate_
subjets into the algorithm, does not perform as well
as the others. Interestingly, trimming, which does in-
clude a subjet-identification step, performs comparably,
to the HEPTopTagger over much of the range, possi-
bly due to the background-shaping observed in Section961
By contrast, the JH tagger outperforms the other

algorithms. o

To determine whether there is complementary in-sss
formation in the mass outputs from different top tag-ees
gers, we also consider a multivariable combination of alles

of the JH and HEPTopTagger outputs. The maximum
efficiency of the combined JH and HEPTopTaggers is
limited, as some fraction of signal events inevitably fails
either one or other of the taggers. We do see a 20-50%
improvement in performance when combining all out-
puts, which suggests that the different algorithms used
to identify the ¢ and W for different taggers contains
complementary information.

In Fig. [37(b)-(d), we present the results for multi-
variable combinations of top tagger outputs with and
without shape variables. We see that, for both the HEP-
TopTagger and the JH tagger, the shape observables
contain additional information uncorrelated with the
masses and helicity angle, and give on average 2-3 im-
provement in signal discrimination. We see that, when
combined with the tagger outputs, both the energy cor-
relation functions Cy+C'5 and the N-subjettiness ratios
To1 + T32 give comparable performance, while the Qjet
mass volatility is slightly worse; this is unsurprising, as
Qjets accesses shape information in a more indirect way
from other shape observables. Combining all shape ob-
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Fig. 28 Comparison of individual jet shape performance at different pr using the anti-k+ R=0.8 algorithm.

servables with a single top tagger provides even moreys
enhancement in discrimination power. o76

We directly compare the performance of the JH ando
HEPTopTaggers in Fig. d). Combining the taggers
with shape information nearly erases the difference be-<7
tween the tagging methods observed in Fig. [37|(a); thisso
indicates that combining the shape information withes
the HEPTopTagger identifies the differences betweenss:

signal and background missed by the tagger alone. This
also suggests that further improvement to discriminat-
ing power may be minimal, as various multivariable
combinations are converging to within a factor of 20%
or So.

In Fig. 37(e)-(g), we present the results for mul-
tivariable combinations of groomer outputs with and
without shape variables. As with the tagging algorithms,
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Fig. 31 Comparison of top mass performance of different taggers at different pr using the anti-kT R=0.8 algorithm.

combinations of groomers with shape observables imsoos
proves their discriminating power; combinations witloos
T3o + 791 perform comparably to those with Cg + Copor
and both of these are superior to combinations withoos
the mass volatility, I'. Substantial improvement is fursoo
ther possible by combining the groomers with all shapeno
observables. Not surprisingly, the taggers that lag beswoun
hind in performance enjoy the largest gain in signals
background discrimination with the addition of shape,
observables. Once again, in g), we find that the dify,,
ferences between pruning and trimming are erased when,,

combined with shape information. 1016

1017
pr comparison: We now compare the BDT combinasns
tions of tagger outputs, with and without shape variso
ables, at different pp. The taggers are optimized overoo
all input parameters for each choice of pr and signal efiox
ficiency. As with the single-variable study, we considern:
anti-kt jets clustered with R = 0.8 and compare thews
outcomes in the pr = 500—600 GeV, pr = 1—1.1 TeVi
and pr = 1.5—1.6 TeV bins. The comparison of the tagsoos
gers/groomers is shown in Fig. The behaviour withos

pr is qualitatively similar to the behaviour of the m; ob-
servable for each tagger/groomer shown in Fig. this
suggests that the pp behaviour of the taggers is dom-
inated by the top mass reconstruction. As before, the
HEPTopTagger performance degrades slightly with in-
creased pr due to the background shaping effect, while
the JH tagger and groomers modestly improve in per-
formance.

In Fig. 39 we show the pr dependence of BDT
combinations of the JH tagger output combined with
shape observables. We find that the curves look nearly
identical: the pr dependence is dominated by the top
mass reconstruction, and combining the tagger outputs
with different shape observables does not substantially
change this behaviour. The same holds true for trim-
ming and pruning. By contrast, HEPTopTagger ROC
curves, shown in Fig. [0} do change somewhat when
combined with different shape observables; due to the
suboptimal performance of the HEPTopTagger at high
pr , we find that combining the HEPTopTagger with
C§ﬁ21)7 which in Fig. b) is seen to have some mod-
est improvement at high pr , can improve its perfor-
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Fig. 32 Comparison of individual jet shape performance at different R in the pr = 1.5 — 1.6 TeV bin.

mance. Combining the HEPTopTagger with multipless
shape observables gives the maximum improvement inoss
performance at high pr relative to at low pr . 1037

1038
R comparison: We now compare the BDT combinas03o
tions of tagger outputs, with and without shape variwso
ables, at different R and pr = 1.5 — 1.6 TeV. The tagwa
gers are optimized over all input parameters for eachos2

choice of R and signal efficiency, with the results shown
in Fig. We find that, for all taggers and groomers,
the performance is always best at small R; the choice
of R is sufficiently large to admit the full top quark
decay at such high pp , but is small enough to sup-
press contamination from additional radiation. This is
not altered when the taggers are combined with shape
observables; for example, in the case of the JH tagger
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ws  (Fig. , the R-dependence is identical for all combi-

s nations. The same holds true for the HEPTopTagger,

ws  trimming, and pruning.
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7.4 Performance at Sub-Optimal Working Points 1067
1068
1069
1070
1071
1072
1073
1074
1075

1076
Up until now, we have re-optimized our tagger and,,
groomer parameters for each pr, R, and signal efficiency,,
working point. In reality, experiments will choose a fi-,
nite set of working points to use. How do our results,,

hold up when this is taken into account? 1081

1082
1083
1084
1085
1086
1087
1088

1089
To address this concern, we replicate our analy—090
1

ses, but only optimize the top taggers for a particu;091
lar pr/R/efficiency and apply the same parameters to

other scenarios. This allows us to determine the ex-
tent to which re-optimization is necessary to maintain
the high signal-background discrimination power seen |
in the top tagging algorithms we study. o

2

1096
1097
1098
1099
1100
1101
1102
1103

1104

The shape observables typically do not have anys
input parameters to optimize. Therefore, we focus ont
the taggers and groomers, and their combination witht”

shape observables, in this section. 1108
1109

1110
1111
1112
1113
1114
1115
1116
Optimizing at a single py : We show in Fig. 43| theur
performance of the top taggers with all input paramess
ters optimized to the pr = 1.5 — 1.6 TeV relative to theuo

performance optimized at each pr. We see that while
the performance degrades by about 50% when the high-
pr optimized points are used at other momenta, this is
only an O(1) adjustment of the tagger performance,
with trimming and the Johns Hopkins tagger degrad-
ing the most. The jagged behaviour of the points is due
to the finite resolution of the scan. We also observe a
particular effect associated with using suboptimal tag-
gers: since taggers sometimes fail to return a top can-
didate, parameters optimized for a particular efficiency
es at pr = 1.5 — 1.6 TeV may not return enough signal
candidates to reach the same efficiency at a different
pr. Consequently, no point appears for that py value.
This is not often a practical concern, as the largest gains
in signal discrimination and significance are for smaller
values of €g, but it is something that must be consid-
ered when selecting benchmark tagger parameters and
signal efficiencies.

The degradation in performance is more pronounced
for the BDT combinations of the full tagger outputs
(see Fig. , particularly at very low signal efficiency
where the optimization picks out a cut on the tail of
some distribution that depends precisely on the pr/R
of the jet. Once again, trimming and the Johns Hopkins
tagger degrade more markedly.

Similar behaviour holds for the BDT combinations
of taggers + shape observables, although we do not
show the plots here because they look similar to Fig.

Optimizing at a single R:

We perform a similar analysis, optimizing tagger pa-
rameters for each signal efficiency at R = 1.2, and then
use the same parameters for smaller R. We show the ra-
tio of the performance of the top taggers with all input
parameters optimized to the R = 1.2 values compared
to input parameters optimized separately at each ra-
dius, in Fig. While the performance of each observ-
able degrades at small €5, compared to the optimized
search, the HEPTopTagger fares the worst as the ob-
served is quite sensitive to the selected value of R. It
is not surprising that a tagger whose top mass recon-
struction is susceptible to background-shaping at large
R and pr would require a more careful optimization of
parameters to obtain the best performance.

The same holds true for the BDT combinations of
the full tagger outputs (see Fig. . The performance
for the sub-optimal taggers is still within an O(1) fac-
tor of the optimized performance, and the HEPTop-
Tagger performs better with the combination of all of
its outputs relative to the performance with just mg.
The same behaviour holds for the BDT combinations
of tagger outputs and shape observables.
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Fig. 43 Comparison of top mass performance of different taggers at different pp using the anti-kr R=0.8 algorithm; the tagger

inputs are set to the optimum value for pr = 1.5 — 1.6 TeV.

Optimizing at a single efficiency: 141

The strongest assumption we have made so far ig
that the taggers can be reoptimized for each signal effitss
ciency point. This is useful for making a direct compart
ison of different top tagging algorithms, but is not parts
ticularly practical for the LHC analyses. We now con-
sider the effects when the tagger inputs are optimized
once, in the eg = 0.3 — 0.35 bin, and then used to de-
termine the full ROC curve. We do this at pr =1—1.1
TeV and with R = 0.8.

The performance of each tagger, normalized to its
performance optimized in each bin, is shown in Fig.
for cuts on the top mass and W mass, and in Fig.
for BDT combinations of tagger outputs and shape vari-
ables. In both plots, it is apparent that optimizing the
taggers in the 0.3-0.35 efficiency bin gives comparable
performance over efficiencies ranging from 0.2-0.5, al-
though performance degrades at small and large signal
efficiencies. Pruning appears to give especially robust

distance or pr scales that appear in the algorithm.
Figs. [47H48| suggest that, while optimization at all sig-
nal efficiencies is a useful tool for comparing different
algorithms, it is not crucial to achieve good top-tagging
performance in experiments.

signal /background discrimination without re-optimization,

possibly due to the fact that there are no absolute
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Fig. 46 Comparison of tagger and jet shape performance at different radius at pr = 1.5-1.6 TeV; the tagger inputs are set to
the optimum value for R =1.2.

3 35 i 5 350 —Eo0sTING
E i 1 e m (JH) E i 1 My (IH)
g: 3; ] % 3; ]
ke - 4 el - 4
CHN ] 2 | ]
w + 4 w - J
o 25F 4 - m, (HEP) o 25f 4 m, (HEP)
W L ] o i 1
2 { 2} {
E ——— m, (trim) E E - my, (trim)
1.5F - 1
| = T T b el —rnnrﬂﬁ’f‘:‘_‘.‘-‘bwim\mmm;
0.10.203 040506070809 1 m (prune) 0.3 04 0506070809 1 M (Prine)
8si €.
g sig
(a) Top mass (b) W mass

Fig. 47 Comparison of single-variable top-tagging performance in the pr = 1—1.1 GeV bin using the anti-kT, R=0.8 algorithm;
the inputs for each tagger are optimized for the £4;; = 0.3 — 0.35 bin.



Boosted objects at the LHC 49

M — o P S 1
8 [ m prune 80 [ HEP
E ] B E I ]
a R a L R
° a ° 3 .
] ] 2 I ]
W 1 - m,+ my, (trim) w [ 1 - HEP + 1
o ] o 25F .
o T o [ T
N 1 N F 1
1 - JH q 1 - HEP +C
] 2 ]
; . HEP 150 4 ! N HEP + T
} AN }
e A T e et e e R R T Ll
0.10203040506070809 1 ----JH+HEP 0.10.203040506070809 1 ----HEP+shape
£ €
9 sig
(a) Tagger-Groomer comparison (b) HEPTopTagger + Shape
gSS‘FOOSTmWG 3 T e e
8 1 e JH S 1 e JH
£ 1 £ 1
5 ] 5 .
3 ] g ]
& 1 - JH+T o 1 - HEP
> E > E
o ! 1 o 1
N ! ] w ]
y 1 - JH+C 1 - JH + HEP
{ JH+T ! { JH + shape
P e e e e TR TNV T s VTR TR
0.102030405060.70809 1 ----JH+shape 0.10203040506070809 1 ----HEP+shape
&g €
9 sig
(c) Johns Hopkins Tagger + shape (d) HEP vs. JH comparison (incl. shape)
Y S———— P S— |
80 [ m, + m,, (prune) g [ m,+ m, (trim)
E [ ] r ]
£t ] 2 [ 1
° 3 - ° 3 4
2 I ] 2t ]
W L J TR m, +m,, + T (prune) o £ 1 - m,+m,, + T (trim)
o250 . o 25 .
o I T Kol I T
N s 1 N 1
21\ : ——— m, +m,, + C (prune) ] ————— m, +m,, + C (trim)
{ m +m, + T (prune) { m,+m,, + I (trim)
P et ot it LV b e e TN
0.1 020304 0506070809 1 ----m+m,+shape (prune) 0.10.203040506070809 1 ----m+m,+shape trim)
&g €
[¢] sig
(e) Pruning + Shape (f) Trimming + Shape
g 3.5 e g 3.5 A
E N 1 e m, +m,, (prune) E r 1 e JH + shape
£ I ] £ ]
° 3 - ° 3f 4
o L p g : i
30 1 2 F ]
) L ] %) ]
\3’ 2.5 4 - m, +m,, (trim) \3 : - - HEP + shape
o [ T o T
N v 1 N 1
1 --- m, + m,, + shape (prune) 1 --- m, + m,, + shape (prune)
15F . .
1;”” i P W i W ‘v‘_‘; mA+mW+ShapE([rim) s “_‘"-“_‘ il ‘_H—‘TH_‘; n']l+rnW+ShapE(l|'im)
0.10203040506070809 1 0506070809 1
8sig ssig
(g) Trim vs. Prune comparison (incl. shape) (h) Comparison of all Tagger+Shape

Fig. 48 The BDT combinations in the pr =1 — 1.1 TeV bin using the anti-k+ R=0.8 algorithm. Taggers are combined with

the following shape observables: TQ(le) +T§§=1), Cé’szl) + Céﬁzn, I'Gjet, and all of the above (denoted “shape”). The inputs

for each tagger are optimized for the ez = 0.3 — 0.35 bin.



1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

50

BOOST2013 participants

8 Summary & Conclusions 1164

1165
1166
1167
1168
This report discussed the correlations between observyg

ables and looked forward to jet substructure at Run I

of the LHC at 14 TeV center-of-mass collisions eneert'”

. 1172
gles. 173

1174
1175
1176
1177
1178
1179
1180
1181
1182

Acknowledgements

We thank the Department of Physics at the University

of Arizona and for hosting the conference at the Little
America Hotel. We also thank Harvard University for
hosting the event samples used in this report. This work

was made possible in part by the facilities of the Shared

Hierarchical Academic Research Computing Network
(SHARCNET) and Compute/Calcul Canada. We also

thank Hallie Bolonkin for the BOOST2013 poster de-

sign and Jackson Boelts’” ART465 class (fall 2012) at

the University of Arizona School of Arts VisCom pro-

gram. (NEED TO ASK PETER LOCH FOR MORE
ACKNOWLEDGEMENTYS)

References

1. A. Abdesselam, E. B. Kuutmann, U. Bitenc,
G. Brooijmans, J. Butterworth, et al., Boosted objects: A
Probe of beyond the Standard Model physics, Eur.Phys.J.
C71 (2011) 1661, |arXiv:1012.5412|.

2. A. Altheimer, S. Arora, L. Asquith, G. Brooijmans,
J. Butterworth, et al., Jet Substructure at the Tevatron and
LHC: New results, new tools, new benchmarks, J.Phys. G39
(2012) 063001, |arXiv:1201.0008|.

3. A. Altheimer, A. Arce, L. Asquith, J. Backus Mayes,
E. Bergeaas Kuutmann, et al., Boosted objects and jet
substructure at the LHC, larXiv:1311.2708.

4. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag,
E. von Toerne, and H. Voss, TMVA: Toolkit for
Multivariate Data Analysis, PoS ACAT (2007) 040,
[physics/0703039).

5. C. Anders, C. Bernaciak, G. Kasieczka, T. Plehn, and
T. Schell, Benchmarking an Even Better HEPTopTagger,
Phys.Rev. D89 (2014) 074047, |arXiv:1312.1504]|.


http://xxx.lanl.gov/abs/1012.5412
http://xxx.lanl.gov/abs/1201.0008
http://xxx.lanl.gov/abs/1311.2708
http://xxx.lanl.gov/abs/physics/0703039
http://xxx.lanl.gov/abs/1312.1504

	Introduction
	Monte Carlo Samples and Event Selection
	Jet Algorithms and Substructure Observables
	Multivariate Analysis Techniques
	Quark-Gluon Discrimination
	Boosted W-Tagging
	Top Tagging
	Summary & Conclusions

