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Abstract Abstract for BOOST2013 report1

Keywords boosted objects · jet substructure ·2

beyond-the-Standard-Model physics searches · Large3

Hadron Collider4

1 Introduction5

The characteristic feature of collisions at the LHC is a6

center-of-mass energy, 7 TeV in 2010 and 2011, of 8 TeV7

in 2012, and near 14 TeV with the start of the second8

phase of operation in 2015, that is large compared to9

even the heaviest of the known particles. Thus these10

particles (and also previously unknown ones) will often11

be produced at the LHC with substantial boosts. As a12

result, when decaying hadronically, these particles will13

not be observed as multiple jets in the detector, but14

rather as a single hadronic jet with distinctive internal15

substructure. This realization has led to a new era of16

sophistication in our understanding of both standard17

QCD jets and jets containing the decay of a heavy par-18

ticle, with an array of new jet observables and detection19

techniques introduced and studies. To allow the efficient20

sharing of results from these jet substructure studies a21

series of BOOST Workshops have been held on a yearly22

basis: SLAC (2009, [?]), Oxford University (2010, [?]),23

Princeton University University (2011, [?]), IFIC Va-24

lencia (2012 [?]), University of Arizona (2013 [?]), and,25

most recently, University College London (2014 [?]). Af-26

ter each of these meetings Working Groups have func-27

tioned during the following year to generate reports28

highlighting the most interesting new results, includ-29

ing studies of ever maturing details. Previous BOOST30

reports can be found at [?,?,?].31

The following report from BOOST 2013 thus views32

the study and implementation of jet substructure tech-33

niques as a fairly mature field. The report attempts to34

focus on the question of the correlations between the35

plethora of observables that have been developed and36

employed, and their dependence on the underlying jet37

parameters, especially the jet radius R and jet pT . The38

report is organized as follows: NEED TO GENERATE39

AN OUTLINE OF THE REPORT - ESPECIALLY AS40

I UNDERSTAND IT MYSELF.41

2 Monte Carlo Samples and Event Selection42

2.1 Quark/gluon and W tagging43

Samples were generated at
√
s = 8 TeV for QCD di-44

jets, and for W+W− pairs produced in the decay of45

a (pseudo) scalar resonance and decaying hadronically.46

The QCD events were split into subsamples of gg and qq̄47

events, allowing for tests of discrimination of hadronic48

W bosons, quarks, and gluons.49

Individual gg and qq̄ samples were produced at lead-50

ing order (LO) using MadGraph5, while W+W− sam-51

ples were generated using the JHU Generator to al-52

low for separation of longitudinal and transverse polar-53

izations. Both were generated using CTEQ6L1 PDFs[REF].54

The samples were produced in exclusive pT bins of55

width 100 GeV, with the slicing parameter chosen to56

be the pT of any final state parton or W at LO. At57

the parton-level the pT bins investigated were 300-40058

GeV, 500-600 GeV and 1.0-1.1 TeV. Since no match-59

ing was performed, a cut on any parton was equivalent.60

The samples were then all showered through Pythia861

(version 8.176) using the default tune 4C.62

The showered events were clustered with FastJet63

3.03[REF]using the anti-kT algorithm[REF]with jet64

radii of R = 0.4, 0.8, 1.2. In both signal and back-65

ground, an upper and lower cut on the leading jet pT is66

applied after showering/clustering, to ensure similar pT67

spectra for signal and background in each pT bin. The68

bins in leading jet pT that are investigated in the W-69

tagging and q/g tagging studies are 300-400 GeV, 500-70

600 GeV, 1.0-1.1 TeV. The distribution of the leading71

jet pT for the gg and WW samples in the 300-400 GeV72

parton pT slice prior to the requirement on the leading73

jet pT is shown in Figure 1, for the R=0.8 and R=1.274

anti-kT jet radii considered in this pT slice. Figures 275

and 3 show the equivalent leading jet pT distributions76

for the jet radii considered in the 500-600 GeV and 1.077

- 1.1 TeV slices respectively.78

2.2 Top tagging79

Samples were generated at
√
s = 14 TeV. Standard80

Model dijet and top pair samples were produced with81

Sherpa 2.0.0[REF], with matrix elements of up to two82

extra partons matched to the shower. The top sam-83

ples included only hadronic decays and were generated84

in exclusive pT bins of width 100 GeV, taking as slic-85

ing parameter the maximum of the top/anti-top pT .86

The QCD samples were generated with a cut on the87

leading parton-level jet pT , where parton-level jets are88

clustered with the anti-kt algorithm and jet radii of89

R = 0.4, 0.8, 1.2. The matching scale is selected to be90

Qcut = 40, 60, 80 GeV for the pT min = 600, 1000, and91

1500 GeV bins, respectively.92

The analysis again relies on FastJet 3.0.3 for jet93

clustering and calculation of jet substructure observ-94

ables, and an upper and lower pT cut are applied to95

each sample to ensure similar pT spectra in each bin.96
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(a) anti-kT R=0.8 (b) anti-kT R=1.2

Fig. 1 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 300-400 GeV parton pT
slice using the different anti-kT jet distance parameters explored in this pT bin. These distributions are formed prior to the
300-400 GeV leading jet pT requirement.

(a) anti-kT R=0.8 (b) anti-kT R=1.2

Fig. 2 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 500-600 GeV parton pT
slice using the different anti-kT jet distance parameters explored in this pT bin. These distributions are formed prior to the
500-600 GeV leading jet pT requirement.

(a) anti-kT R=0.4 (b) anti-kT R=0.8 (c) anti-kT R=1.2

Fig. 3 Comparisons of the leading jet pT spectrum of the gg background to the WW signal in the pT 1.0-1.1 TeV parton pT
slice using the different anti-kT jet distance parameters explored in this pT bin. These distributions are formed prior to the
500-600 GeV leading jet pT requirement.
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The bins in leading jet pT that are investigated for top97

tagging are 600-700 GeV, 1-1.1 TeV, and 1.5-1.6 TeV.98

ED: What jet algorithm is used to define the pT99

bins?100

3 Jet Algorithms and Substructure Observables101

In this section, we define the jet algorithms and observ-102

ables used in our analysis. Over the course of our study,103

we considered a larger set of observables, but for the fi-104

nal analysis, we eliminated redundant observables for105

presentation purposes. In Sections 3.1, 3.2, 3.3 and 3.4106

we first describe the various jet algorithms, groomers,107

taggers and other substructure variables used in these108

studies, and then in Section 3.5 list which observables109

are considered in each section of this report, and the110

exact settings of the parameters used.111

3.1 Jet Clustering Algorithms112

Jet clustering: Jets were clustered using sequential113

jet clustering algorithms[REF]. Final state particles i,114

j are assigned a mutual distance dij and a distance115

to the beam, diB. The particle pair with smallest dij116

are recombined and the algorithm repeated until the117

smallest distance is instead the distance to the beam,118

diB, in which case i is set aside and labelled as a jet.119

The distance metrics are defined as120

dij = min(p2γ
Ti, p

2γ
Tj)

∆R2
ij

R2
, (1)

diB = p2γ
Ti, (2)

where ∆R2
ij = (∆η)2 + (∆φ)2. In this analysis, we use121

the anti-kt algorithm (γ = −1), the Cambridge/Aachen122

(C/A) algorithm (γ = 0)[REF], and the kt algorithm123

(γ = 1)[REF], each of which has varying sensitivity to124

soft radiation in defining the jet.125

126

Qjets: We also perform non-deterministic jet cluster-

ing[REF]. Instead of always clustering the particle pair

with smallest distance dij , the pair selected for combi-

nation is chosen probabilistically according to a mea-

sure

Pij ∝ e−α (dij−dmin)/dmin , (3)

where dmin is the minimum distance for the usual jet127

clustering algorithm at a particular step. This leads to a128

different cluster sequence for the jet each time the Qjet129

algorithm is used, and consequently different substruc-130

ture properties. The parameter α is called the rigidity131

and is used to control how sharply peaked the probabil-132

ity distribution is around the usual, deterministic value.133

The Qjets method uses statistical analysis of the result-134

ing distributions to extract more information from the135

jet than can be found in the usual cluster sequence. We136

use α = 0.1 and 25 trees per event for all the studies137

presented here.138

3.2 Jet Grooming Algorithms139

Pruning: Given a jet, re-cluster the constituents us-

ing the C/A algorithm. At each step, proceed with the

merger as usual unless both

min(pTi, pTj)

pTij
< zcut and ∆Rij >

2mj

pTj
Rcut, (4)

in which case the merger is vetoed and the softer branch140

discarded. The default parameters used for pruning[REF]in141

this study are zcut = 0.1 and Rcut = 0.5. One advan-142

tage of pruning is that the thresholds used to veto soft,143

wide-angle radiation scale with the jet kinematics, and144

so the algorithm is expected to perform comparably145

over a wide range of momenta.146

147

Trimming: Given a jet, re-cluster the constituents into

subjets of radius Rtrim with the kt algorithm. Discard

all subjets i with

pTi < fcut pTJ . (5)

The default parameters used for trimming[REF]in this148

study are Rtrim = 0.2 and fcut = 0.03.149

150

Filtering:[REF] Given a jet, re-cluster the constituents151

into subjets of radius Rfilt with the C/A algorithm. Re-152

define the jet to consist of only the hardest N subjets,153

where N is determined by the final state topology and154

is typically one more than the number of hard prongs in155

the resonance decay (to include the leading final-state156

gluon emission). ED: Do we actually use filtering157

as described here anywhere?158

159

Soft drop: Given a jet, re-cluster all of the constituents

using the C/A algorithm. Iteratively undo the last stage

of the C/A clustering from j into subjets j1, j2. If

min(pT1, pT2)

pT1 + pT2
< zcut

(
∆R12

R

)β
, (6)

discard the softer subjet and repeat. Otherwise, take j160

to be the final soft-drop jet[REF]. Soft drop has two161

input parameters, the angular exponent β and the soft-162

drop scale zcut, with default value zcut = 0.1. ED: Soft-163

drop actually functions as a tagger when β = −1164
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3.3 Jet Tagging Algorithms165

Modified Mass Drop Tagger: Given a jet, re-cluster

all of the constituents using the C/A algorithm. Itera-

tively undo the last stage of the C/A clustering from j

into subjets j1, j2 with mj1 > mj2 . If either

mj1 > µmj or
min(p2

T1, p
2
T2)

m2
j

∆R2
12 < ycut, (7)

then discard the branch with the smaller transverse166

mass mT =
√
m2
i + p2

Ti, and re-define j as the branch167

with the larger transverse mass. Otherwise, the jet is168

tagged. If de-clustering continues until only one branch169

remains, the jet is untagged. In this study we use by170

default µ = 1.0 and ycut = 0.1.171

172

Johns Hopkins Tagger: Re-cluster the jet using the173

C/A algorithm. The jet is iteratively de-clustered, and174

at each step the softer prong is discarded if its pT is175

less than δp pT jet. This continues until both prongs are176

harder than the pT threshold, both prongs are softer177

than the pT threshold, or if they are too close (|∆ηij |+178

|∆φij | < δR); the jet is rejected if either of the latter179

conditions apply. If both are harder than the pT thresh-180

old, the same procedure is applied to each: this results181

in 2, 3, or 4 subjets. If there exist 3 or 4 subjets, then182

the jet is accepted: the top candidate is the sum of the183

subjets, and W candidate is the pair of subjets closest184

to the W mass. The output of the tagger is mt, mW ,185

and θh, a helicity angle defined as the angle, measured186

in the rest frame of the W candidate, between the top187

direction and one of the W decay products.188

189

HEPTopTagger: Re-cluster the jet using the C/A190

algorithm. The jet is iteratively de-clustered, and at191

each step the softer prong is discarded if m1/m12 > µ192

(there is not a significant mass drop). Otherwise, both193

prongs are kept. This continues until a prong has a mass194

mi < m, at which point it is added to the list of sub-195

jets. Filter the jet using Rfilt = min(0.3, ∆Rij), keeping196

the five hardest subjets (where ∆Rij is the distance be-197

tween the two hardest subjets). Select the three subjets198

whose invariant mass is closest to mt. The output of the199

tagger is mt, mW , and θh, a helicity angle defined as200

the angle, measured in the rest frame of the W candi-201

date, between the top direction and one of the W decay202

products.203

204

Top Tagging with Pruning: For comparison with205

the other top taggers, we add a W reconstruction step206

to the trimming algorithm described above. A W can-207

didate is found as follows: if there are two subjets, the208

highest-mass subjet is the W candidate (because the209

W prongs end up clustered in the same subjet); if there210

are three subjets, the two subjets with the smallest in-211

variant mass comprise the W candidate. In the case of212

only one subjet, no W is reconstructed.213

214

Top Tagging with Trimming: For comparison with215

the other top taggers, we add a W reconstruction step216

to the trimming algorithm described above. A W can-217

didate is found as follows: if there are two subjets, the218

highest-mass subjet is the W candidate (because the219

W prongs end up clustered in the same subjet); if there220

are three subjets, the two subjets with the smallest in-221

variant mass comprise the W candidate. In the case of222

only one subjet, no W is reconstructed.223

3.4 Other Jet Substructure Observables224

Qjet mass volatility: As described above, Qjet al-

gorithms re-cluster the same jet non-deterministically

to obtain a collection of interpretations of the jet. For

each jet interpretation, the pruned jet mass is computed

with the default pruning parameters. The mass volatil-

ity, ΓQjet, is defined as

ΓQjet =

√
〈m2

J〉 − 〈mJ〉2
〈mJ〉

, (8)

where averages are computed over the Qjet interpreta-225

tions.226

227

N-subjettiness: N -subjettiness[REF]quantifies how

well the radiation in the jet is aligned along N direc-

tions. To compute N -subjettiness, τ
(β)
N , one must first

identify N axes within the jet. Then,

τN =
1

d0

∑
i

pTi min
(
∆Rβ1i, . . . ,∆R

β
Ni

)
, (9)

where distances are between particles i in the jet and

the axes,

d0 =
∑
i

pTiR
β (10)

and R is the jet clustering radius. The exponent β is228

a free parameter. There is also some choice in how229

the axes used to compute N -subjettiness are deter-230

mined. The optimal configuration of axes is the one231

that minimizes N -subjettiness; recently, it was shown232

that the “winner-takes-all” axes can be easily computed233

and have superior performance compared to other min-234

imization techniques[REF]. ED: Do we use WTA?235

Otherwise why do we mention this?236

A more powerful discriminant is often the ratio,

τN,N−1 ≡
τN
τN−1

. (11)
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While this is not an infrared-collinear (IRC) safe ob-237

servable, it is calculable[REF]and can be made IRC238

safe with a loose lower cut on τN−1.239

240

Energy correlation functions: The transverse mo-

mentum version of the energy correlation functions are

defined as[REF]:

ECF(N, β) =
∑

i1<i2<...<iN∈j

(
N∏
a=1

pTia

)(
N−1∏
b=1

N∏
c=b+1

∆Ribic

)β
,

(12)

where i is a particle inside the jet. It is preferable to

work in terms of dimensionless quantities, particularly

the energy correlation function double ratio:

C
(β)
N =

ECF(N + 1, β) ECF(N − 1, β)

ECF(N, β)2
. (13)

This observable measures higher-order radiation from241

leading-order substructure.242

3.5 Observables for Each Analysis243

Quark/gluon discrimination:244

– The ungroomed jet mass, m.245

– 1-subjettiness, τβ1 with β = 1, 2. TheN -subjettiness246

axes are computed using one-pass kt axis optimiza-247

tion.248

– 1-point energy correlation functions, C
(β)
1 with β =249

1, 2.250

– The pruned Qjet mass volatility, ΓQjet.251

– The number of constituents (Nconstits).252

W vs. gluon discrimination:253

– The ungroomed, trimmed (mtrim), and pruned (mprun)254

jet masses.255

– The mass output from the modified mass drop tag-256

ger (mmmdt).257

– The soft drop mass with β = −1, 2 (msd).258

– 2-point energy correlation function ratio Cβ=1
2 (we259

also studied β = 2 but did not show its results be-260

cause it showed poor discrimination power).261

– N -subjettiness ratio τ2/τ1 with β = 1 (τβ=1
21 ) and262

with axes computed using one-pass kt axis optimiza-263

tion (we also studied β = 2 but did not show its re-264

sults because it showed poor discrimination power).265

– The pruned Qjet mass volatility.266

Top vs. QCD discrimination:267

– The ungroomed jet mass.268

– The HEPTopTagger and the Johns Hopkins tagger.269

– Trimming and grooming supplemented with W can-270

didate identification.271

– N -subjettiness ratios τ2/τ1 and τ3/τ2 with β = 1272

and the “winner-takes-all” axes.273

– 2-point energy correlation function ratios Cβ=1
2 and274

Cβ=1
3 .275

– The pruned Qjet mass volatility, ΓQjet.276

4 Multivariate Analysis Techniques277

Multivariate techniques are used to combine vari-278

ables into an optimal discriminant. In all cases vari-279

ables are combined using a boosted decision tree (BDT)280

as implemented in the TMVA package [?]. We use the281

BDT implementation including gradient boost. An ex-282

ample of the BDT settings are as follows:283

– NTrees=1000284

– BoostType=Grad285

– Shrinkage=0.1286

– UseBaggedGrad=F287

– nCuts=10000288

– MaxDepth=3289

– UseYesNoLeaf=F290

– nEventsMin=200291

Exact parameter values are chosen to best reduce the292

effect of overtraining.293

5 Quark-Gluon Discrimination294

In this section, we examine the differences between quark-295

and gluon-initiated jets in terms of substructure vari-296

ables, and to determine to what extent these variables297

are correlated. Along the way, we provide some theoret-298

ical understanding of these observations. The motiva-299

tion for these studies comes not only from the desire to300

“tag” a jet as originating from a quark or gluon, but also301

to improve our understanding of the quark and gluon302

components of the QCD background relative to boosted303

resonances. While recent studies have suggested that304

quark/gluon tagging efficiencies depend highly on the305

Monte Carlo generator used, we are more interested in306

understanding the scaling performance with pT and R,307

and the correlations between observables, which are ex-308

pected to be treated consistently within a single shower309

scheme. ED: How about this?310

5.1 Methodology311

These studies use the qq and gg samples, described pre-312

viously in Section 2. Jets are reconstructed using the313
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anti-kT algorithm with radius parameters of 0.4, 0.8 and314

1.2, and have various jet grooming approaches applied,315

as described in Section 3.4. Only leading and subleading316

jets in each sample are used.317

Figure 4 shows a comparison of the pT and η dis-318

tributions of the quark and gluon samples with pT =319

500− 600 GeV. The differences in the pT distributions320

can be attributed to different out-of-cone radiation pat-321

terns for quark and gluons ED: Is this just due to322

an increased likelihood of hard ISR/FSR for gg323

states due to the larger QCD charge?, while the324

different η distributions are related to the different par-325

ton distribution functions initiating qq and gg produc-326

tion. The qualitative features of the η distributions do327

not change as the R parameter is changed. As the pT328

increases, the η distributions peak more strongly near329

zero, as expected. Differences in the pT distributions330

between the leading and sub-leading (and quark and331

gluon-induced) jets become smaller as the R param-332

eter is increased, as expected from the physics behind333

these differences, outlined above. ED: But in the end334

don’t we make narrow cuts on the pT of the335

leading/sub-leading jets in the q/g study, and336

so these differences aren’t so important? (or are337

these cuts only made for the W-tagging study?)338

5.2 Single Variable Discrimination339

(ED: Do we want to organize this section similar340

to for top tagging, where we first discuss the per-341

formance of each observable at fixed R/pT , and342

then discuss the variations? It’s a little mixed343

right now.)344

Figure 5 shows the mass of jets in the quark and345

gluon samples when using different groomers, and Fig-346

ure 6 shows similar comparisons for different substruc-347

ture variables. Jets built with the anti-kT algorithm348

with R=0.8 and with pT = 500 − 650 GeV are used349

ED: Are these pT bins right? Should this be 500-350

600 GeV?. Qualitatively, the application of grooming351

shifts the mass distributions towards lower values as352

expected. No clear gain in discrimination can be seen,353

and for certain grooming parameters, such as the use354

of soft drop with β = −1 a clear loss in discrimina-355

tion power is observed; this is because the soft-drop356

condition for β = −1 discards collinear radiation, and357

the differences between quarks and gluons are mani-358

fest in the collinear structure (spin, splitting functions,359

etc.). Few variations are observed as the radius param-360

eter of the jet reconstruction is increased in the two361

highest pT bins. However, for the 300 − 400 GeV bin,362

the use of small-R jets produces a shift in the mass363

distributions towards lower values, so that large-R jet364

masses are more stable with pT and small-R jet masses365

are smaller at low-pT as expected from the spatial con-366

straints imposed by the R parameter. These statements367

are explored more quantitatively later in this section.368

Among the different substructure variables explored,369

nconstits provides the highest separation power, followed370

by Cβ=0
1 and Cβ=1

1 as was also found by the CMS and371

ATLAS Collaborations[REF]. The evolution of some of372

these distributions with pT and R is less trivial than for373

the jet masses. In particular, changing the R parameter374

at high pT changes significantly the Cβa for β > 0 and375

the nconstits distributions, while leaving all other dis-376

tributions qualitatively unchanged. This is illustrated377

in Figure 7 for β = 0 and β = 1 using a = 1 in378

both cases for jets with pT = 1 − 1.2 TeV. The shift379

towards lower values with changing R is evident for380

the Cβ=1
1 distributions, while the stability of Cβ=0

1 can381

also be observed. These features are present in all pT382

bins studied, but are even more pronounced for lower383

pT bins. The shape of the Q-jet volatility distribution384

shows some non-trivial shape that deserves some expla-385

nation. Two peaks are observed, one at low volatility386

values and one at mid-volatility. These peaks are gen-387

erated by two somewhat distinct populations. The high388

volatility peak arises from jets that get their mass pri-389

marily from soft (and sometimes wide-angle) emissions.390

The removal of some of the constituents when build-391

ing Q-jets thus changes the mass significantly, increas-392

ing the volatility. The lower volatility peak corresponds393

to jets for which mass is generated by a hard emis-394

sion, which makes the fraction of Q-jets that change395

the mass significantly to be smaller. Since the proba-396

bility of a hard emission is proportional to the color397

charge (squared), the volatility peak is higher for gluon398

jets by about the color factor CA/CF .399

To more quantitatively study the power of each ob-400

servable as a discriminator for quark/gluon tagging, Re-401

ceiver Operating Characteristic (ROC) curves are built402

by scanning each distribution and plotting the back-403

ground efficiency (to select gluon jets) vs. the signal404

efficiency (to select quark jets). Figure 8 shows these405

ROC curves for all of the variables shown in Figure 6406

and the ungroomed mass, representing the best per-407

forming mass variable, for jets of pT = 300− 400 GeV.408

In addition, the ROC curve for the tagger built from409

a BDT combining all the variables. The details of how410

the BDT is constructed are explained in Section 4.411

Clearly, nconstits is the best performing variable for412

all Rs, even though Cβ=0
1 is close, particularly for R=0.8.413

Most other variables have similar performance, except414

the Q-jet volatility, which shows significantly worse dis-415

crimination (this may be due to our choice of rigid-416

ity α = 0.1, while other studies suggest that a smaller417
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(a) Leading jet pT (b) Sub-leading jet pT

(c) Leading jet η (d) Sub-leading jet η

Fig. 4 Comparisons of quark and gluon pT and η distributions in the sample used for the jets of pT = 500−600 GeV bin using
the anti-kT R=0.8 algorithm.

value, such as α = 0.01, produces better results). The418

combination of all variables shows somewhat better dis-419

crimination. The overall discriminating power decreases420

with increasing R (BS: Do we understand if this is due421

to increased contamination from UE, or if this is an ac-422

tual physical effect? ), and the features discussed for this423

pT bin also apply to the higher pT bins. This statement424

is quantified in the next section.425

5.3 Correlations and Combined Performance426

The combined performance displayed in Fig. 8 is not427

much better than that of single variables. However, that428

improvement in performance can be critical for certain429

analyses requiring a quark/gluon tagger, and poten-430

tially larger in data than in Monte Carlo simulation.431

Furthermore, insight can be gained into the features al-432

lowing for quark/gluon discrimination if how that im-433

provement arises is understood. It is therefore worth434

investigating quantitatively the improvements in per-435

formance: to do so, quark/gluon taggers are built from436

every pair-wise combination of variables studied in the437

previous section, as well as the full set of variables using438

a boosted decision tree.439

In order to quantitatively study the value of each440

variable for quark/gluon tagging, the gluon rejection,441

defined as 1/εgluon, is studied at a fixed quark selection442

efficiency of 50%. Figure 9 shows the rejection for each443
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(a) Ungroomed mass (b) Pruned mass (c) Trimmed mass

(d) mMDT mass (e) Soft-drop β = 2 mass (f) Soft-drop β = −1 mass

Fig. 5 Comparisons of ungroomed and groomed quark and gluon mass distributions for leading jets in the pT = 500−650 GeV
bin using the anti-kT R=0.8 algorithm.

individual variable (along the diagonal of the plots) and444

for each pair-wise combination. The rejection for the445

BDT combining all variables is also shown on the bot-446

tom right of each plot. Results are shown for jets with447

pT = 1 − 1.2 TeV and for different R parameters. As448

already observed in the previous section, nconstits is the449

most powerful single variable and C
(β=0)
1 follows closely.450

The combination of the two variables is also one of the451

most powerful combinations for the two large-R collec-452

tions. Performance is generally better at small R, and453

in this case other pair-wise combinations are more pow-454

erful. In particular, the combinations of τβ=1
1 or C

(β=1)
1455

with nconstits are capable of getting very close to the456

rejection achievable through the use of all variables.457

The overall loss in performance with increasing R458

can be observed in all single variables studied, except459

for C
(β=0)
1 and the Q-jet volatility, which are quite re-460

silient to increasing R. This is expected, since their dis-461

tributions were observed to be also quite insensitive to462

R in the previous section. Their combination, however,463

does lose performance significantly as R is increased.464

[do we understand this?] Of all the variables stud-465

ied, β = 2 1-subjettiness and energy correlation vari-466

ables are particularly sensitive to increasing R. This is467

understandable, because for β = 2 a larger weight is468

put in large-angle emissions. However, from other vari-469

ables, it is understood that most of the discrimination470

power comes from analyzing a small-R jet, or the center471

of the large-R jet.472

These observations are qualitatively similar across473

all ranges of pT . Quantitatively, however, there is a loss474

of rejection power for the taggers made of a combina-475

tion of variables as the pT decreases. This can be ob-476

served in Fig. 10 for anti-kT R=0.4 jets of different pT s.477

Clearly, most single variables retain their gluon rejec-478

tion potential at lower pT s. However, when combined479

with other variables, the highest performing pairwise480

combinations lose ground with respect to other pair-481

wise combinations. This is also reflected in the rejection482

of the tagger that uses a combination of all variables,483

which is lower at lower pT s. [do we understand this?]484

(BS: Do we want to explicitly mention some aspects485

of the correlation, namely quantifying which observables486

seem to be most correlated and that it seems that the487
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(a) Cβ=0
1 (b) Cβ=1

1 (c) Cβ=2
1

(d) ΓQjet (e) nconstits (f) τβ=1
1

(g) τβ=2
1

Fig. 6 Comparisons of quark and gluon distributions of different substructure variables for leading jets in the pT = 500 −
650 GeV bin using the anti-kT R=0.8 algorithm.

all-variable performance is not much better than some488

of the pair-wise combinations, and so there seem to be489

∼ 2 independent observables? Also, I remember Nhan490

had some tables that showed some variable rankings in491

terms of how (un)correlated they were; not sure if we492

want to show these.493
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(a) Cβ=0
1 , R = 0.4 (b) Cβ=0

1 , R = 0.8 (c) Cβ=0
1 , R = 1.2

(d) Cβ=1
1 , R = 0.4 (e) Cβ=1

1 , R = 0.8 (f) Cβ=1
1 , R = 1.2

Fig. 7 Comparisons of quark and gluon distributions of Cβ=0
1 (top) and Cβ=1

1 (bottom) for leading jets in the pT = 1−1.2 TeV
bin using the anti-kT algorithm with R=0.4,0.8 and 1.2.

Fig. 8 The ROC curve for all single variables considered for quark-gluon discrimination in the pT 500 GeV bin using the
anti-kT R=0.8 algorithm.
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Fig. 9 Gluon rejection defined as 1/εgluon when using each 2-variable combination as a tagger with 50% acceptance for quark
jets. Results are shown for jets with pT = 1 − 1.2 TeV and for different R parameters. The rejection obtained with a tagger
that uses all variables is also shown in the plots.

Fig. 10 Gluon rejection defined as 1/εgluon when using each 2-variable combination as a tagger with 50% acceptance for quark
jets. Results are shown for R=0.4 jets with pT = 300 − 400 GeV, pT = 500 − 600 GeV and pT = 1 − 1.2 TeV. The rejection
obtained with a tagger that uses all variables is also shown in the plots.
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6 Boosted W -Tagging494

In this section, we study the discrimination of a boosted495

hadronically decaying W signal against a gluon back-496

ground, comparing the performance of various groomed497

jet masses, substructure variables, and BDT combina-498

tions of groomed mass and substructure. We produce499

ROC curves that elucidate the performance of the vari-500

ous groomed mass and substructure variables. A range501

of different distance parameters R for the anti-kT jet502

algorithm are explored, as well as a variety of kine-503

matic regimes (lead jet pT 300-400 GeV, 500-600 GeV,504

1.0-1.1 TeV). This allows us to determine the perfor-505

mance of observables as a function of jet radius and jet506

boost, and to see where different approaches may break507

down. The groomed mass and substructure variables508

are then combined in a BDT as described in Section 4,509

and the performance of the resulting BDT discriminant510

explored through ROC curves to understand the degree511

to which variables are correlated, and how this changes512

with jet boost and jet radius.513

6.1 Methodology514

These studies use the WW samples as signal and the515

dijet gg samples to model the QCD background, as516

described previously in Section 2. Whilst only gluonic517

backgrounds are explored here, the conclusions as to518

the dependence of the performance and correlations on519

the jet boost and radius have been verified to hold also520

for qq backgrounds. ED: To be checked!521

In each of the three pT slices considered jets are522

reconstructed using the anti-kT algorithm with distance523

parameter R=0.4, 0.8 and 1.2, as described in Section 2.524

They then have various grooming approaches applied525

as described in Section 3.5. (ED: Probably better if526

some of the information from Sections 2 and 3.5527

is brought into this section to avoid this back-528

referencing.)529

6.2 Single Variable Performance530

In this section we will explore the performance of the531

various groomed jet mass and substructure variables in532

terms of discriminating signal and background, and how533

this performance changes depending on the kinematic534

bin and jet radius considered.535

Figure 11 the compares the signal and background536

in terms of the different groomed masses explored for537

the anti-kT R=0.8 algorithm in the pT 500-600 bin. One538

can clearly see that in terms of separating signal and539

background the groomed masses will be significantly540

more performant than the ungroomed anti-kT R=0.8541

mass. Figure 12 compares signal and background in the542

different substructure variables explored for the same543

jet radius and kinematic bin.544

Figures 13, 14 and 15 show the single variable ROC545

curves compared to the ROC curve for a BDT combi-546

nation of all the variables (labelled “allvars”), for each547

of the anti-kT distance parameters considered in each548

of the kinematic bins. One can see that, in all cases,549

the “allvars” option is considerably better performant550
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(a) Ungroomed mass (b) Pruned mass (c) Trimmed mass

(d) mMDT mass (e) Soft-drop β = 2 mass

Fig. 11 Comparisons of the QCD background to the WW signal in the pT 500-600 GeV bin using the anti-kT R=0.8 algorithm:
leading jet mass distributions.

than any of the individual single variables considered,551

indicating that there is considerable complementarity552

between the variables, and this will be explored further553

in the next section.554

Although the ROC curves give all the relevant in-555

formation, it is hard to compare performance quanti-556

tatively. In Figures 16, 17 and 18 are shown matrices557

which give the background rejection for a signal effi-558

ciency of 70% when two variables (that on the x-axis559

and that on the y-axis) are combined in a BDT. These560

are shown separately for each pT bin and jet radius561

considered. The diagonal of these plots correspond to562

the background rejections for a single variable BDT,563

and can thus be examined to get a quantitative mea-564

sure of the individual single variable performance, and565

to study how this changes with jet radius and momenta.566

One can see that in general the most performant567

single variables are the groomed masses. However, in568

certain kinematic bins and for certain jet radii, Cβ=1
2569

has a background rejection that is comparable to or570

better than the groomed masses.571

By comparing Figures 16(a), 17(a) and 18(b), we572

can see how the background rejection performance evolves573

as we increase momenta whilst keeping the jet radius574

fixed to R=0.8. Similarly, by comparing Figures 16(b), 17(b)575

and 18(c) we can see how performance evolves with pT576

for R=1.2. For both R=0.8 and R=1.2 the background577

rejection power of the groomed masses increases with578

increasing pT , with a factor 1.5-2.5 increase in rejec-579

tion in going from the 300-400 GeV to 1.0-1.1 TeV bins.580

ED: Add some of the 1-D plots comparing sig-581

nal and bkgd in the different masses and pT bins582

here? However, the Cβ=1
2 , ΓQjet and τβ=1

21 substructure583

variables behave somewhat differently. The background584

rejection power of the ΓQjet and τβ=1
21 variables both585

decrease with increasing pT , by up to a factor two586

in going from the 300-400 GeV to 1.0-1.1 TeV bins.587

Conversely the rejection power of Cβ=1
2 dramatically588

increases with increasing pT for R=0.8, but does not589

improve with pT for the larger jet radius R=1.2. ED:590

Can we explain this? Again, should we add some591

of the 1-D plots?592
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(a) Cβ=1
2 (b) Cβ=2

2 (c) ΓQjet

(d) τβ=1
21 (e) τβ=2

21

Fig. 12 Comparisons of the QCD background to the WW signal in the pT 500-600 GeV bin using the anti-kT R=0.8 algorithm:
substructure variables.

(a) anti-kT R=0.8, pT 300-400 GeV bin (b) anti-kT R=1.2, pT 300-400 GeV bin

Fig. 13 The ROC curve for all single variables considered for W tagging in the pT 300-400 GeV bin using the anti-kT R=0.8
algorithm and R=1.2 algorithm.
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(a) anti-kT R=0.8, pT 500-600 GeV bin (b) anti-kT R=1.2, pT 500-600 GeV bin

Fig. 14 The ROC curve for all single variables considered for W tagging in the pT 500-600 GeV bin using the anti-kT R=0.8
algorithm and R=1.2 algorithm.

(a) anti-kT R=0.4, pT 1.0-1.1 TeV bin (b) anti-kT R=0.8, pT 1.0-1.1 TeV bin

(c) anti-kT R=1.2, pT 1.0-1.1 TeV bin

Fig. 15 The ROC curve for all single variables considered for W tagging in the pT 1.0-1.1 TeV bin using the anti-kT R=0.4
algorithm, anti-kT R=0.8 algorithm and R=1.2 algorithm.
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By comparing the individual sub-figures of Figures 16, 17593

and 18 we can see how the background rejection perfor-594

mance depends on jet radius within the same pT bin.595

To within ∼ 25%, the background rejection power of596

the groomed masses remains constant with respect to597

the jet radius. However, we again see rather different598

behaviour for the substructure variables. In all pT bins599

considered the most performant substructure variable,600

Cβ=1
2 , performs best for an anti-kT distance parame-601

ter of R=0.8. The performance of this variable is dra-602

matically worse for the larger jet radius of R=1.2 (a603

factor seven worse background rejection in the 1.0-1.1604

TeV bin), and substantially worse for R=0.4. For the605

other jet substructure variables considered, ΓQjet and606

τβ=1
21 , their background rejection power also reduces for607

larger jet radius, but not to the same extent. ED: In-608

sert some nice discussion/explanation of why jet609

substructure power generally gets worse as we610

go to large jet radius, but groomed mass perfor-611

mance does not. Probably need the 1-D figures612

for this.613

6.3 Combined Performance614

The off-diagonal entries in Figures 16, 17 and 18 can615

be used to compare the performance of different BDT616

two-variable combinations, and see how this varies as617

a function of pT and R. By comparing the background618

rejection achieved for the two-variable combinations to619

the background rejection of the “all variables” BDT,620

one can understand how much more discrimination is621

possible by adding further variables to the two-variable622

BDTs.623

One can see that in general the most powerful two-624

variable combinations involve a groomed mass and a625

non-mass substructure variable (Cβ=1
2 , ΓQjet or τβ=1

21 ).626

Two-variable combinations of the substructure variables627

are not powerful in comparison. Which particular mass628

+ substructure variable combination is the most pow-629

erful depends strongly on the pT and R of the jet, as630

discussed in the sections that follow.631

There is also modest improvement in the background632

rejection when different groomed masses are combined,633

compared to the single variable groomed mass perfor-634

mance, indicating that there is complementary informa-635

tion between the different groomed masses. In addition,636

there is an improvement in the background rejection637

when the groomed masses are combined with the un-638

groomed mass, indicating that grooming removes some639

useful discriminatory information from the jet. These640

observations are explored further in the section below.641

Generally one can see that the R=0.8 jets offer the642

best two-variable combined performance in all pT bins643

explored here. This is despite the fact that in the high-644

est 1.0-1.1 GeV pT bin the average separation of the645

quarks from the W decay is much smaller than 0.8,646

and well within 0.4. This conclusion could of course be647

susceptible to pile-up, which is not considered in this648

study.649

6.3.1 Mass + Substructure Performance650

As already noted, the largest background rejection at651

70% signal efficiency are in general achieved using those652

two variable BDT combinations which involve a groomed653

mass and a non-mass substructure variable. For both654

R=0.8 and R=1.2 jets, the rejection power of these two655

variable combinations increases substantially with in-656

creasing pT , at least within the pT range considered657

here.658

For a jet radius of R=0.8, across the full pT range659

considered, the groomed mass + substructure variable660

combinations with the largest background rejection are661

those which involve Cβ=1
2 . For example, in combination662

with mβ=2
sd , this produces a five-, eight- and fifteen-fold663

increase in background rejection compared to using the664

groomed mass alone. In Figure 19 the low degree of665

correlation between mβ=2
sd versus Cβ=1

2 that leads to666

these large improvements in background rejection can667

be seen. One can also see that what little correlation668

exists is rather non-linear in nature, changing from a669

negative to a positive correlation as a function of the670

groomed mass, something which helps to improve the671

background rejection in the region of the W mass peak.672

However, when we switch to a jet radius of R=1.2673

the picture for Cβ=1
2 combinations changes dramati-674

cally. These become significantly less powerful, and the675

most powerful variable in groomed mass combinations676

becomes τβ=1
21 for all jet pT considered. Figure 20 shows677

the correlation between mβ=2
sd and Cβ=1

2 in the pT 1.0678

- 1.2 TeV bin for the various jet radii considered. Fig-679

ure 21 is the equivalent set of distributions for mβ=2
sd680

and τβ=1
21 . One can see from Figure 20 that, due to the681

sensitivity of the observable to to soft, wide-angle ra-682

diation, as the jet radius increases Cβ=1
2 increases and683

becomes more and more smeared out for both signal684

and background, leading to worse discrimination power.685

This does not happen to the same extent for τβ=1
21 . We686

can see from Figure 21 that the negative correlation be-687

tween mβ=2
sd and τβ=1

21 that is clearly visible for R=0.4688

decreases for larger jet radius, such that the groomed689

mass and substructure variable are far less correlated690

and τβ=1
21 offers improved discrimination within a mβ=2

sd691

mass window.692
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(a) anti-kT R=0.8, pT 300-400 GeV bin (b) anti-kT R=1.2, pT 300-400 GeV bin

Fig. 16 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pT 300-400 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

(a) anti-kT R=0.8, pT 500-600 GeV bin (b) anti-kT R=1.2, pT 500-600 GeV bin

Fig. 17 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pT 500-600 GeV bin using the anti-kT R=0.8 algorithm and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

6.3.2 Mass + Mass Performance693

The different groomed masses and the ungroomed mass694

are of course not fully correlated, and thus one can al-695

ways see some kind of improvement in the background696

rejection (relative to the single mass performance) when697

two different mass variables are combined in the BDT.698

However, in some cases the improvement can be dra-699

matic, particularly at higher pT , and particularly for700

combinations with the ungroomed mass. For example,701

in Figure 18 we can see that in the pT 1.0-1.1 TeV bin702

the combination of pruned mass with ungroomed mass703

produces a greater than eight-fold improvement in the704

background rejection for R=0.4 jets, a greater than five-705

fold improvement for R=0.8 jets, and a factor ∼two im-706

provement for R=1.2 jets. A similar behaviour can be707

seen for mMDT mass. In Figures 22, 23 and 24 is shown708

the 2-D correlation plots of the pruned mass versus the709

ungroomed mass separately for the WW signal and gg710

background samples in the pT 1.0-1.1 TeV bin, for the711

various jet radii considered. For comparison, the corre-712
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(a) anti-kT R=0.4, pT 1.0-1.1 TeV bin (b) anti-kT R=0.8, pT 1.0-1.1 TeV bin

(c) anti-kT R=1.2, pT 1.0-1.1 TeV bin

Fig. 18 The background rejection for a fixed signal efficiency (70%) of each BDT combination of each pair of variables
considered, in the pT 1.0-1.1 TeV bin using the anti-kT R=0.4, R=0.8 and R=1.2 algorithm. Also shown is the background
rejection for a BDT combination of all of the variables considered.

lation of the trimmed mass with the ungroomed mass,713

a combination that does not improve on the single mass714

as dramatically, is shown. In all cases one can see that715

there is a much smaller degree of correlation between716

the pruned mass and the ungroomed mass in the back-717

grounds sample than for the trimmed mass and the un-718

groomed mass. This is most obvious in Figure 22, where719

the high degree of correlation between the trimmed and720

ungroomed mass is expected, since with the parameters721

used (in particular Rtrim = 0.2) we cannot expect trim-722

ming to have a significant impact on an R=0.4 jet. The723

reduced correlation with ungroomed mass for pruning724

in the background means that, once we have made the725

requirement that the pruned mass is consistent with726

a W (i.e. ∼80 GeV), a relatively large difference be-727

tween signal and background in the ungroomed mass728

still remains, and can be exploited to improve the back-729

ground rejection further. In other words, many of the730

background events which pass the pruned mass require-731

ment do so because they are shifted to lower mass (to732

be within a signal mass window) by the grooming, but733

these events still have the property that they look very734

much like background events before the grooming. A735

single requirement on the groomed mass only does not736

exploit this. Of course, the impact of pile-up, not con-737

sidered in this study, could significantly limit the degree738

to which the ungroomed mass could be used to improve739

discrimination in this way.740
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(a) pT 300-400 GeV

(b) pT 500-600 GeV

(c) pT 1.0-1.1 TeV

Fig. 19 2-D plots showing mβ=2
sd versus Cβ=1

2 for R=0.8 jets in the various pT bins considered.
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(a) pT R=0.4

(b) pT R=0.8

(c) pT R=1.2

Fig. 20 2-D plots showing mβ=2
sd versus Cβ=1

2 for R=0.4, 0.8 and 1.2 jets in the pT 1.0-1.1 TeV bin.
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(a) pT R=0.4

(b) pT R=0.8

(c) pT R=1.2

Fig. 21 2-D plots showing mβ=2
sd versus τβ=1

21 for R=0.4, 0.8 and 1.2 jets in the pT 1.0-1.1 TeV bin.
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(a) Pruned mass vs ungroomed mass

(b) Trimmed mass vs ungroomed mass

Fig. 22 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pT 1.0-1.1
TeV bin using the anti-kT R=0.4 algorithm.

6.3.3 “All Variables” Performance741

As well as the background rejection at a fixed 70% sig-742

nal efficiency for two-variable combinations, Figures 16, 17743

and 18 also report the background rejection achieved744

by a combination of all the variables considered into a745

single BDT discriminant. One can see that, in all cases,746

the rejection power of this “all variables” BDT is signif-747

icantly larger than the best two-variable combination,748

by between a factor 2-3. This indicates that beyond the749

best two-variable combination there is still significant750

complementary information availiable in the remaining751

variables in order to improve the discrimination of sig-752

nal and background.753

ED: This section will be filled in when we754

have got the 3-variable combination studies, so755

we have a better idea where the dramatic in-756

crease in rejection power with “all variables” is757

coming from. Would also be good to show per-758

haps some of the “all variables” BDT discrimi-759

nants in 1-D plots.760
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(a) Pruned mass vs ungroomed mass

(b) Trimmed mass vs ungroomed mass

Fig. 23 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pT 1.0-1.1
TeV bin using the anti-kT R=0.8 algorithm.
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(a) Pruned mass vs ungroomed mass

(b) Trimmed mass vs ungroomed mass

Fig. 24 2-D plots showing the correlation between groomed and ungroomed mass for WW and gg events in the pT 1.0-1.1
TeV bin using the anti-kT R=1.2 algorithm.
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7 Top Tagging761

In this section, we study the identification of boosted762

top quarks at Run II of the LHC. Boosted top quarks763

result in large-radius jets with complex substructure,764

containing a b-subjet and a boosted W . The additional765

kinematic handles coming from the reconstruction of766

the W mass and b-tagging allows a very high degree767

of discrimination of top quark jets from QCD back-768

grounds.769

We consider top quarks with moderate boost (600-770

1000 GeV), and perhaps most interestingly, at high771

boost (& 1500 GeV). Top tagging faces several chal-772

lenges in the high-pT regime. For such high-pT jets,773

the b-tagging efficiencies are no longer reliably known.774

Also, the top jet can also accompanied by additional775

radiation with pT ∼ mt, leading to combinatoric ambi-776

guities of reconstructing the top and W , and the pos-777

sibility that existing taggers or observables shape the778

background by looking for subjet combinations that re-779

construct mt/mW . To study this, we examine the per-780

formance of both mass-reconstruction variables, as well781

as shape observables that probe the three-pronged na-782

ture of the top jet and the accompanying radiation pat-783

tern.784

7.1 Methodology785

We study a number of top-tagging strategies, in partic-786

ular:787

1. HEPTopTagger788

2. Johns Hopkins Tagger (JH)789

3. Trimming790

4. Pruning791

The top taggers have criteria for reconstructing a top792

and W candidate, while the grooming algorithms (trim-793

ming and pruning) do not incorporate aW -identification794

step. For a level playing field, we construct a W candi-795

date from the three leading subjets by taking the pair796

of subjets with the smallest invariant mass; in the case797

that only two subjets are reconstructed, we take the798

mass of the leading subjet. All of the above taggers799

and groomers incorporate a step to remove pile-up and800

other soft radiation.801

We also consider the performance of jet shape ob-802

servables. In particular, we consider the N -subjettiness803

ratios τβ=1
32 and τβ=1

21 , energy correlation function ra-804

tios Cβ=1
3 and Cβ=1

2 , and the Qjet mass volatility Γ . In805

addition to the jet shape performance, we combine the806

jet shapes with the mass-reconstruction methods listed807

above to determine the optimal combined performance.808

For determining the performance of multiple vari-809

ables, we combine the relevant tagger output observ-810

ables and/or jet shapes into a boosted decision tree811

(BDT), which determines the optimal cut. Addition-812

ally, because each tagger has two inputs (list, or maybe813

refer back to Section 3), we scan over reasonable values814

of the inputs to determine the optimal value for each815

top tagging signal efficiency. This allows a direct com-816

parison of the optimized version of each tagger. The817

input values scanned for the various algorithms are:818

– HEPTopTagger: m ∈ [30, 100] GeV, µ ∈ [0.5, 1]819

– JH Tagger: δp ∈ [0.02, 0.15], δR ∈ [0.07, 0.2]820

– Trimming: fcut ∈ [0.02, 0.14], Rtrim ∈ [0.1, 0.5]821

– Pruning: zcut ∈ [0.02, 0.14], Rcut ∈ [0.1, 0.6]822
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7.2 Single-observable performance823

We start by investigating the behaviour of individual824

jet substructure observables. Because of the rich, three-825

pronged structure of the top decay, it is expected that826

combinations of masses and jet shapes will far out-827

perform single observables in identifying boosted tops.828

However, a study of the top-tagging performance of sin-829

gle variables facilitates a direct comparison with the W830

tagging results in Section 6, and also allows a straight-831

forward examination of the performance of each observ-832

able for different pT and jet radius.833

Fig. 25 shows the ROC curves for each of the top-834

tagging observables, with the bare jet mass also plot-835

ted for comparison. Unlike W tagging, the jet shape836

observables perform more poorly than jet mass. As an837

example illustrating why this is the case, consider N -838

subjettiness. TheW is two-pronged and the top is three-839

pronged; therefore, we expect τ21 and τ32 to be the best-840

performant N -subjettiness ratio, respectively. However,841

τ21 also contains an implicit cut on the denominator,842

τ1, which is strongly correlated with jet mass. There-843

fore, τ21 combines both mass and shape information to844

some extent. By contrast, and as is clear in Fig.25(a),845

the best shape for top tagging is τ32, which contains846

no information on the mass. Therefore, it is unsurpris-847

ing that the shapes most useful for top tagging are less848

sensitive to the jet mass, and under-perform relative to849

the corresponding observables for W tagging.850

Of the two top tagging algorithms, the Johns Hop-851

kins (JH) tagger out-performs the HEPTopTagger in852

its signal-to-background separation of both the top and853

W candidate masses, with larger discrepancy at higher854

pT and larger jet radius. In Fig. 26, we show the his-855

tograms for the top mass output from the JH and HEP-856

TopTagger for different R (Fig. 26) and pT (27), opti-857

mized at a signal efficiency of 30%. The likely reason for858

this behavior is that, in the HEPTopTagger algorithm,859

the jet is filtered to select the five hardest subjets, and860

then three subjets are chosen which reconstruct the top861

mass. This requirement tends to shape a peak in the862

QCD background around mt for the HEPTopTagger,863

while the JH tagger has no such requirement. It has864

been suggested by Anders et al. [?] that performance865

in the HEPTopTagger may be improved by selecting the866

three subjets reconstructing the top only among those867

that pass the W mass constraints, which somewhat re-868

duces the shaping of the background. Note that both869

the JH tagger and the HEPTopTagger are superior at870

using the W candidate inside of the top for signal dis-871

crimination; this is because the the pruning and trim-872

ming algorithms do not have inherent W -identification873

steps and are not optimized for this purpose.874

We also directly compare the performance of top875

mass and jet shape observables for different jet pT and876

radius. The input parameters of the taggers, groomers,877

and shape variables are separately optimized for each878

pT and radius:879

880

pT comparison: We compare various top tagging ob-881

servables for jets in different pT bins and R = 0.8 in882

Figs. 28 and 31. The tagging performance of jet shapes883

do not change substantially with pT . τ
(β=1)
32 and the884

Qjet volatility Γ have the most variation and tend to885

degrade with higher pT (see Fig. 29-30). This makes886

sense, as higher-pT QCD jets have more, harder emis-887

sions within the jet, giving rise to substructure that888

fakes the signal. By contrast, most of the top mass ob-889

servables have superior performance at higher pT due890

to the radiation from the top quark becoming more col-891

limated. The notable exception is the HEPTopTagger,892

which degrades at higher pT , likely in part due to the893

background-shaping effects discussed earlier.894

895

R comparison: We compare various top tagging ob-896

servables for jets of different R and pT = 1.5 − 1.6897

TeV in Figs. 32-36. Most of the top-tagging parame-898

ters perform best for smaller radius; this is because, at899

such high pT , most of the radiation from the top quark900

is confined within R = 0.4, and having a larger jet901

radius makes the observable more susceptible to con-902

tamination from the underlying event and other un-903

correlated radiation. As we show in Figs. 33-35, the904

distributions for both signal broaden with increasing905

R, degrading the discriminating power. For C
(β=1)
2 and906

C
(β=1)
3 , the background distributions are shifted up-907

ward as well. Therefore, the discriminating power gen-908

erally gets worse with increasing R. The main exception909

is for C
(β=1)
3 , which performs optimally at R = 0.8; in910

this case, the signal and background coincidentally hap-911

pen to have the same distribution around R = 0.4, and912

so R = 0.8 gives better discrimination.913

7.3 Performance of multivariable combinations914

We now consider various combinations of the observ-915

ables from Section 7.2. In particular, we consider the916

performance of individual taggers such as the JH tagger917

and HEPTopTagger, which output information about918

the t and W candidate masses and the helicity angle;919

groomers, such as trimming and pruning, which remove920

soft, uncorrelated radiation from the top candidate to921

improve mass reconstruction, and to which we have922

added a W reconstruction step; and the combination of923

the above taggers/groomers with shape variables such924
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Fig. 25 Comparison of single-variable top-tagging performance in the pT = 1−1.1 GeV bin using the anti-kT, R=0.8 algorithm.

as N -subjettiness ratios and energy correlation ratios.925

For all observables with tuneable input parameters, we926

scan and optimize over realistic values of such parame-927

ters. Our multivariate techniques are discussed in Sec-928

tion 4.929

Fig. 37 shows our main results for the multivariable930

combinations; in all cases, we also show the ungroomed931

jet mass as a baseline comparison. In Fig. 37(a), we di-932

rectly compare the performance of the HEPTopTagger,933

the JH tagger, trimming, and grooming. Generally, we934

find that pruning, which does not naturally incorporate935

subjets into the algorithm, does not perform as well936

as the others. Interestingly, trimming, which does in-937

clude a subjet-identification step, performs comparably938

to the HEPTopTagger over much of the range, possi-939

bly due to the background-shaping observed in Section940

7.2. By contrast, the JH tagger outperforms the other941

algorithms.942

To determine whether there is complementary in-943

formation in the mass outputs from different top tag-944

gers, we also consider a multivariable combination of all945

of the JH and HEPTopTagger outputs. The maximum946

efficiency of the combined JH and HEPTopTaggers is947

limited, as some fraction of signal events inevitably fails948

either one or other of the taggers. We do see a 20-50%949

improvement in performance when combining all out-950

puts, which suggests that the different algorithms used951

to identify the t and W for different taggers contains952

complementary information.953

In Fig. 37(b)-(d), we present the results for multi-954

variable combinations of top tagger outputs with and955

without shape variables. We see that, for both the HEP-956

TopTagger and the JH tagger, the shape observables957

contain additional information uncorrelated with the958

masses and helicity angle, and give on average 2-3 im-959

provement in signal discrimination. We see that, when960

combined with the tagger outputs, both the energy cor-961

relation functions C2+C3 and the N -subjettiness ratios962

τ21 + τ32 give comparable performance, while the Qjet963

mass volatility is slightly worse; this is unsurprising, as964

Qjets accesses shape information in a more indirect way965

from other shape observables. Combining all shape ob-966
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(a) Johns Hopkins Tagger, R = 0.4
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(b) HEPTopTagger, R = 0.4
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(c) Johns Hopkins Tagger, R = 0.8

 (GeV)tHEP m
0 200 400 600 800 1000

 fr
ac

tio
n 

of
 e

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22 top

QCD

BOOST13WG

(d) HEPTopTagger, R = 0.8
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(e) Johns Hopkins Tagger, R = 1.2
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(f) HEPTopTagger, R = 1.2

Fig. 26 Comparison of top mass reconstruction with the JH and HEPTopTaggers at different R using the anti-kT algorithm,
pT = 1.5 − 1.6 TeV. Each histogram is shown for the working point optimized for best performance with mt in the 0.3 − 0.35
signal efficiency bin, and is normalized to the fraction of events passing the tagger.
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(a) Johns Hopkins Tagger, pT = 600 − 700 GeV
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(b) HEPTopTagger, pT = 600 − 700 GeV
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(c) Johns Hopkins Tagger, pT = 1 − 1.1 TeV
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(d) HEPTopTagger, pT = 1 − 1.1 TeV
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(e) Johns Hopkins Tagger, pT = 1.5 − 1.6 TeV
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(f) HEPTopTagger, pT = 1.5 − 1.6 TeV

Fig. 27 Comparison of top mass reconstruction with the JH and HEPTopTaggers at different pT using the anti-kT algorithm,
R = 0.8. Each histogram is shown for the working point optimized for best performance with mt in the 0.3 − 0.35 signal
efficiency bin, and is normalized to the fraction of events passing the tagger.
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(d) τ(β=1)
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(e) Qjet mass volatility

Fig. 28 Comparison of individual jet shape performance at different pT using the anti-kT R=0.8 algorithm.

servables with a single top tagger provides even more967

enhancement in discrimination power.968

We directly compare the performance of the JH and969

HEPTopTaggers in Fig. 37(d). Combining the taggers970

with shape information nearly erases the difference be-971

tween the tagging methods observed in Fig. 37(a); this972

indicates that combining the shape information with973

the HEPTopTagger identifies the differences between974

signal and background missed by the tagger alone. This975

also suggests that further improvement to discriminat-976

ing power may be minimal, as various multivariable977

combinations are converging to within a factor of 20%978

or so.979

In Fig. 37(e)-(g), we present the results for mul-980

tivariable combinations of groomer outputs with and981

without shape variables. As with the tagging algorithms,982
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(a) ΓQjet, pT = 600 − 700 GeV
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(b) ΓQjet, pT = 1 − 1.1 TeV
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(c) ΓQjet, pT = 1.5 − 1.6 TeV

Fig. 29 Comparison of ΓQjet at R = 0.8 and different values of the pT .
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(a) τ(β=1)
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(c) τ(β=1)
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(e) τ(β=1)
32 , pT = 1 − 1.1 TeV
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(f) τ(β=1)
32 , pT = 1.5 − 1.6 TeV

Fig. 30 Comparison of τβ=1
21 and τβ=1

32 with R = 0.8 and different values of the pT .
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(a) HEPTopTagger mt
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(b) Johns Hopkins Tagger mt
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(c) Pruning mt
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(d) Trimming mt

Fig. 31 Comparison of top mass performance of different taggers at different pT using the anti-kT R=0.8 algorithm.

combinations of groomers with shape observables im-983

proves their discriminating power; combinations with984

τ32 + τ21 perform comparably to those with C3 + C2,985

and both of these are superior to combinations with986

the mass volatility, Γ . Substantial improvement is fur-987

ther possible by combining the groomers with all shape988

observables. Not surprisingly, the taggers that lag be-989

hind in performance enjoy the largest gain in signal-990

background discrimination with the addition of shape991

observables. Once again, in 37(g), we find that the dif-992

ferences between pruning and trimming are erased when993

combined with shape information.994

995

pT comparison: We now compare the BDT combina-996

tions of tagger outputs, with and without shape vari-997

ables, at different pT . The taggers are optimized over998

all input parameters for each choice of pT and signal ef-999

ficiency. As with the single-variable study, we consider1000

anti-kT jets clustered with R = 0.8 and compare the1001

outcomes in the pT = 500−600 GeV, pT = 1−1.1 TeV,1002

and pT = 1.5−1.6 TeV bins. The comparison of the tag-1003

gers/groomers is shown in Fig. 38. The behaviour with1004

pT is qualitatively similar to the behaviour of themt ob-1005

servable for each tagger/groomer shown in Fig. 31; this1006

suggests that the pT behaviour of the taggers is dom-1007

inated by the top mass reconstruction. As before, the1008

HEPTopTagger performance degrades slightly with in-1009

creased pT due to the background shaping effect, while1010

the JH tagger and groomers modestly improve in per-1011

formance.1012

In Fig. 39, we show the pT dependence of BDT1013

combinations of the JH tagger output combined with1014

shape observables. We find that the curves look nearly1015

identical: the pT dependence is dominated by the top1016

mass reconstruction, and combining the tagger outputs1017

with different shape observables does not substantially1018

change this behaviour. The same holds true for trim-1019

ming and pruning. By contrast, HEPTopTagger ROC1020

curves, shown in Fig. 40, do change somewhat when1021

combined with different shape observables; due to the1022

suboptimal performance of the HEPTopTagger at high1023

pT , we find that combining the HEPTopTagger with1024

C
(β=1)
3 , which in Fig. 28(b) is seen to have some mod-1025

est improvement at high pT , can improve its perfor-1026
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Fig. 32 Comparison of individual jet shape performance at different R in the pT = 1.5 − 1.6 TeV bin.

mance. Combining the HEPTopTagger with multiple1027

shape observables gives the maximum improvement in1028

performance at high pT relative to at low pT .1029

1030

R comparison: We now compare the BDT combina-1031

tions of tagger outputs, with and without shape vari-1032

ables, at different R and pT = 1.5− 1.6 TeV. The tag-1033

gers are optimized over all input parameters for each1034

choice of R and signal efficiency, with the results shown1035

in Fig. 41. We find that, for all taggers and groomers,1036

the performance is always best at small R; the choice1037

of R is sufficiently large to admit the full top quark1038

decay at such high pT , but is small enough to sup-1039

press contamination from additional radiation. This is1040

not altered when the taggers are combined with shape1041

observables; for example, in the case of the JH tagger1042
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Fig. 33 Comparison of Cβ=1
2 and Cβ=1

3 in the pT = 1.5 − 1.6 TeV bin and different values of the anti-kT radius R.
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Fig. 34 Comparison of ΓQjet in the pT = 1.5 − 1.6 TeV bin and different values of the anti-kT radius R.
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Fig. 35 Comparison of τβ=1
21 and τβ=1

32 in the pT = 1.5 − 1.6 TeV bin and different values of the anti-kT radius R.

(Fig. 42), the R-dependence is identical for all combi-1043

nations. The same holds true for the HEPTopTagger,1044

trimming, and pruning.1045
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Fig. 36 Comparison of top mass performance of different taggers at different R in the pT = 1.5 − 1.6 TeV bin.
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Fig. 37 The BDT combinations in the pT = 1 − 1.1 TeV bin using the anti-kT R=0.8 algorithm. Taggers are combined with

the following shape observables: τ(β=1)
21 + τ

(β=1)
32 , C(β=1)

2 + C
(β=1)
3 , ΓQjet, and all of the above (denoted “shape”).
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Fig. 38 Comparison of BDT combination of tagger performance at different pT using the anti-kT R=0.8 algorithm.
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Fig. 39 Comparison of BDT combination of JH tagger + shape at different pT using the anti-kT R=0.8 algorithm.
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Fig. 40 Comparison of BDT combination of HEP tagger + shape at different pT using the anti-kT R=0.8 algorithm.



42 BOOST2013 participants

sigε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bk
g

ε

-410

-310

-210

-110

1

R = 1.2

R = 0.8

R = 0.4

BOOST13WG

(a) HEPTopTagger

sigε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bk
g

ε

-410

-310

-210

-110

1

R = 1.2

R = 0.8

R = 0.4

BOOST13WG

(b) Johns Hopkins Tagger

sigε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bk
g

ε

-410

-310

-210

-110

1

R = 1.2

R = 0.8

R = 0.4

BOOST13WG

(c) Trimming

sigε
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bk
g

ε

-410

-310

-210

-110

1

R = 1.2

R = 0.8

R = 0.4

BOOST13WG

(d) Pruning

Fig. 41 Comparison of tagger and jet shape performance at different radius at pT = 1.5-1.6 TeV.
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Fig. 42 Comparison of BDT combination of JH tagger + shape at different radius at pT = 1.5-1.6 TeV.
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7.4 Performance at Sub-Optimal Working Points1046

Up until now, we have re-optimized our tagger and1047

groomer parameters for each pT ,R, and signal efficiency1048

working point. In reality, experiments will choose a fi-1049

nite set of working points to use. How do our results1050

hold up when this is taken into account?1051

To address this concern, we replicate our analy-1052

ses, but only optimize the top taggers for a particu-1053

lar pT /R/efficiency and apply the same parameters to1054

other scenarios. This allows us to determine the ex-1055

tent to which re-optimization is necessary to maintain1056

the high signal-background discrimination power seen1057

in the top tagging algorithms we study.1058

1059

The shape observables typically do not have any1060

input parameters to optimize. Therefore, we focus on1061

the taggers and groomers, and their combination with1062

shape observables, in this section.1063

Optimizing at a single pT : We show in Fig. 43 the1064

performance of the top taggers with all input parame-1065

ters optimized to the pT = 1.5−1.6 TeV relative to the1066

performance optimized at each pT . We see that while1067

the performance degrades by about 50% when the high-1068

pT optimized points are used at other momenta, this is1069

only an O(1) adjustment of the tagger performance,1070

with trimming and the Johns Hopkins tagger degrad-1071

ing the most. The jagged behaviour of the points is due1072

to the finite resolution of the scan. We also observe a1073

particular effect associated with using suboptimal tag-1074

gers: since taggers sometimes fail to return a top can-1075

didate, parameters optimized for a particular efficiency1076

εS at pT = 1.5− 1.6 TeV may not return enough signal1077

candidates to reach the same efficiency at a different1078

pT . Consequently, no point appears for that pT value.1079

This is not often a practical concern, as the largest gains1080

in signal discrimination and significance are for smaller1081

values of εS , but it is something that must be consid-1082

ered when selecting benchmark tagger parameters and1083

signal efficiencies.1084

The degradation in performance is more pronounced1085

for the BDT combinations of the full tagger outputs1086

(see Fig. 44), particularly at very low signal efficiency1087

where the optimization picks out a cut on the tail of1088

some distribution that depends precisely on the pT /R1089

of the jet. Once again, trimming and the Johns Hopkins1090

tagger degrade more markedly.1091

Similar behaviour holds for the BDT combinations1092

of taggers + shape observables, although we do not1093

show the plots here because they look similar to Fig. 44.1094

1095

Optimizing at a single R:1096

We perform a similar analysis, optimizing tagger pa-1097

rameters for each signal efficiency at R = 1.2, and then1098

use the same parameters for smaller R. We show the ra-1099

tio of the performance of the top taggers with all input1100

parameters optimized to the R = 1.2 values compared1101

to input parameters optimized separately at each ra-1102

dius, in Fig. 45. While the performance of each observ-1103

able degrades at small εsig compared to the optimized1104

search, the HEPTopTagger fares the worst as the ob-1105

served is quite sensitive to the selected value of R. It1106

is not surprising that a tagger whose top mass recon-1107

struction is susceptible to background-shaping at large1108

R and pT would require a more careful optimization of1109

parameters to obtain the best performance.1110

The same holds true for the BDT combinations of1111

the full tagger outputs (see Fig. 46). The performance1112

for the sub-optimal taggers is still within an O(1) fac-1113

tor of the optimized performance, and the HEPTop-1114

Tagger performs better with the combination of all of1115

its outputs relative to the performance with just mt.1116

The same behaviour holds for the BDT combinations1117

of tagger outputs and shape observables.1118

1119
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Fig. 43 Comparison of top mass performance of different taggers at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.

Optimizing at a single efficiency:1120

The strongest assumption we have made so far is1121

that the taggers can be reoptimized for each signal effi-1122

ciency point. This is useful for making a direct compar-1123

ison of different top tagging algorithms, but is not par-1124

ticularly practical for the LHC analyses. We now con-1125

sider the effects when the tagger inputs are optimized1126

once, in the εS = 0.3 − 0.35 bin, and then used to de-1127

termine the full ROC curve. We do this at pT = 1−1.11128

TeV and with R = 0.8.1129

The performance of each tagger, normalized to its1130

performance optimized in each bin, is shown in Fig. 471131

for cuts on the top mass and W mass, and in Fig. 481132

for BDT combinations of tagger outputs and shape vari-1133

ables. In both plots, it is apparent that optimizing the1134

taggers in the 0.3-0.35 efficiency bin gives comparable1135

performance over efficiencies ranging from 0.2-0.5, al-1136

though performance degrades at small and large signal1137

efficiencies. Pruning appears to give especially robust1138

signal/background discrimination without re-optimization,1139

possibly due to the fact that there are no absolute1140

distance or pT scales that appear in the algorithm.1141

Figs. 47-48 suggest that, while optimization at all sig-1142

nal efficiencies is a useful tool for comparing different1143

algorithms, it is not crucial to achieve good top-tagging1144

performance in experiments.1145
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Fig. 44 Comparison of BDT combination of tagger performance at different pT using the anti-kT R=0.8 algorithm; the tagger
inputs are set to the optimum value for pT = 1.5 − 1.6 TeV.
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Fig. 45 Comparison of top mass performance of different taggers at different R in the pT = 1500 − 1600 GeV bin; the tagger
inputs are set to the optimum value for R = 1.2.
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Fig. 46 Comparison of tagger and jet shape performance at different radius at pT = 1.5-1.6 TeV; the tagger inputs are set to
the optimum value for R = 1.2.
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Fig. 47 Comparison of single-variable top-tagging performance in the pT = 1−1.1 GeV bin using the anti-kT, R=0.8 algorithm;
the inputs for each tagger are optimized for the εsig = 0.3 − 0.35 bin.
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Fig. 48 The BDT combinations in the pT = 1 − 1.1 TeV bin using the anti-kT R=0.8 algorithm. Taggers are combined with

the following shape observables: τ(β=1)
21 + τ

(β=1)
32 , C(β=1)

2 +C
(β=1)
3 , ΓQjet, and all of the above (denoted “shape”). The inputs

for each tagger are optimized for the εsig = 0.3 − 0.35 bin.
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8 Summary & Conclusions1146

This report discussed the correlations between observ-1147

ables and looked forward to jet substructure at Run II1148

of the LHC at 14 TeV center-of-mass collisions eneer-1149

gies.1150

Acknowledgements1151

We thank the Department of Physics at the University1152

of Arizona and for hosting the conference at the Little1153

America Hotel. We also thank Harvard University for1154

hosting the event samples used in this report. This work1155

was made possible in part by the facilities of the Shared1156

Hierarchical Academic Research Computing Network1157

(SHARCNET) and Compute/Calcul Canada. We also1158

thank Hallie Bolonkin for the BOOST2013 poster de-1159

sign and Jackson Boelts’ ART465 class (fall 2012) at1160

the University of Arizona School of Arts VisCom pro-1161

gram. (NEED TO ASK PETER LOCH FOR MORE1162

ACKNOWLEDGEMENTS)1163

References1164

1. A. Abdesselam, E. B. Kuutmann, U. Bitenc,1165

G. Brooijmans, J. Butterworth, et al., Boosted objects: A1166

Probe of beyond the Standard Model physics, Eur.Phys.J.1167

C71 (2011) 1661, [arXiv:1012.5412].1168

2. A. Altheimer, S. Arora, L. Asquith, G. Brooijmans,1169

J. Butterworth, et al., Jet Substructure at the Tevatron and1170

LHC: New results, new tools, new benchmarks, J.Phys. G391171

(2012) 063001, [arXiv:1201.0008].1172

3. A. Altheimer, A. Arce, L. Asquith, J. Backus Mayes,1173

E. Bergeaas Kuutmann, et al., Boosted objects and jet1174

substructure at the LHC, arXiv:1311.2708.1175

4. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag,1176

E. von Toerne, and H. Voss, TMVA: Toolkit for1177

Multivariate Data Analysis, PoS ACAT (2007) 040,1178

[physics/0703039].1179

5. C. Anders, C. Bernaciak, G. Kasieczka, T. Plehn, and1180

T. Schell, Benchmarking an Even Better HEPTopTagger,1181

Phys.Rev. D89 (2014) 074047, [arXiv:1312.1504].1182

http://xxx.lanl.gov/abs/1012.5412
http://xxx.lanl.gov/abs/1201.0008
http://xxx.lanl.gov/abs/1311.2708
http://xxx.lanl.gov/abs/physics/0703039
http://xxx.lanl.gov/abs/1312.1504

	Introduction
	Monte Carlo Samples and Event Selection
	Jet Algorithms and Substructure Observables
	Multivariate Analysis Techniques
	Quark-Gluon Discrimination
	Boosted W-Tagging
	Top Tagging
	Summary & Conclusions

