

# Lecture 17 Applications of Accelerators

Professor Emmanuel Tsesmelis Directorate-General Unit, CERN Department of Physics, University of Oxford

> JAI Accelerator Physics Course 11 March 2015



# Introduction





#### 24 Nobel Prizes in Physics with contribution from Accelerators plus Higgs boson discovery award in 2013



#### Fraction of Nobel Prizes in Physics directly connected to accelerators is ~30%

| Year | Name                                                       | Accelerator-Science Contribution to Nobel Prize-                                                                                                                                                                                                                |
|------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                            | Winning Research                                                                                                                                                                                                                                                |
| 1939 | Ernest O. Lawrence                                         | Lawrence invented the cyclotron at the University of<br>Californian at Berkeley in 1929 [12].                                                                                                                                                                   |
| 1951 | John D. Cockcroft and<br>Ernest T.S. Walton                | Cockcroft and Walton invented their eponymous linear<br>positive-ion accelerator at the Cavendish Laboratory in<br>Cambridge, England, in 1932 [13].                                                                                                            |
| 1952 | Felix Bloch                                                | Bloch used a cyclotron at the Crocker Radiation<br>Laboratory at the University of California at Berkeley<br>in his discovery of the magnetic moment of the neutron<br>in 1940 [14].                                                                            |
| 1957 | Tsung-Dao Lee and Chen Ning<br>Yang                        | Lee and Yang analyzed data on K mesons ( $\theta$ and $\tau$ )<br>from Bevatron experiments at the Lawrence Radiation<br>Laboratory in 1955 [15], which supported their idea in<br>1956 that parity is not conserved in weak interactions<br>[16].              |
| 1959 | Emilio G. Segrè and<br>Owen Chamberlain                    | Segrè and Chamberlain discovered the antiproton in<br>1955 using the Bevatron at the Lawrence Radiation<br>Laboratory [17].                                                                                                                                     |
| 1960 | Donald A. Glaser                                           | Glaser tested his first experimental six-inch bubble<br>chamber in 1955 with high-energy protons produced by<br>the Brookhaven Cosmotron [18].                                                                                                                  |
| 1961 | Robert Hofstadter                                          | Hofstadter carried out electron-scattering experiments<br>on carbon-12 and oxygen-16 in 1959 using the SLAC<br>linac and thereby made discoveries on the structure of<br>nucleons [19].                                                                         |
| 1963 | Maria Goeppert Mayer                                       | Goeppert Mayer analyzed experiments using neutron<br>beams produced by the University of Chicago<br>cyclotron in 1947 to measure the nuclear binding<br>energies of krypton and xenon [20], which led to her<br>discoveries on high magic numbers in 1948 [21]. |
| 1967 | Hans A. Bethe                                              | Bethe analyzed nuclear reactions involving accelerated<br>protons and other nuclei whereby he discovered in<br>1939 how energy is produced in stars [22].                                                                                                       |
| 1968 | Luis W. Alvarez                                            | Alvarez discovered a large number of resonance states<br>using his fifteen-inch hydrogen bubble chamber and<br>high-energy proton beams from the Bevatron at the<br>Lawrence Radiation Laboratory [23].                                                         |
| 1976 | Burton Richter and<br>Samuel C.C. Ting                     | Richter discovered the J/Ψ particle in 1974 using the SPEAR collider at Stanford [24], and Ting discovered the J/Ψ particle independently in 1974 using the Brookhaven Alternating Gradient Synchrotron [25].                                                   |
| 1979 | Sheldon L. Glashow,<br>Abdus Salam, and<br>Steven Weinberg | Glashow, Salam, and Weinberg cited experiments on<br>the bombardment of nuclei with neutrinos at CERN in<br>1973 [26] as confirmation of their prediction of weak<br>neutral currents [27].                                                                     |

| 1980 | James W. Cronin and            | Cronin and Fitch concluded in 1964 that CP (charge-<br>parity) symmetry is violated in the decay of partral V |
|------|--------------------------------|---------------------------------------------------------------------------------------------------------------|
|      | Val L. Filch                   | manage based upon their experiments using the                                                                 |
|      |                                | Brookbourn Alternating Gradient Supervision [28]                                                              |
| 1001 | Kai M. Ciashaha                | Si shaha insunta da mush famina minaiala fam                                                                  |
| 1981 | Kai M. Siegbann                | Stegbann invented a weak-focusing principle for                                                               |
|      |                                | betatrons in 1944 with which he made significant                                                              |
|      |                                | [29].                                                                                                         |
| 1983 | William A. Fowler              | Fowler collaborated on and analyzed accelerator-based                                                         |
|      |                                | experiments in 1958 [30], which he used to support his                                                        |
|      |                                | hypothesis on stellar-fusion processes in 1957 [31].                                                          |
| 1984 | Carlo Rubbia and               | Rubbia led a team of physicists who observed the                                                              |
|      | Simon van der Meer             | intermediate vector bosons W and Z in 1983 using                                                              |
|      |                                | CERN's proton-antiproton collider [32], and van der                                                           |
|      |                                | Meer developed much of the instrumentation needed                                                             |
|      |                                | for these experiments [33].                                                                                   |
| 1986 | Ernst Ruska                    | Ruska built the first electron microscope in 1933 based                                                       |
|      |                                | upon a magnetic optical system that provided large                                                            |
| _    |                                | magnification [34].                                                                                           |
| 1988 | Leon M. Lederman,              | Lederman, Schwartz, and Steinberger discovered the                                                            |
|      | Melvin Schwartz, and           | muon neutrino in 1962 using Brookhaven's Alternating                                                          |
|      | Jack Steinberger               | Gradient Synchrotron [35].                                                                                    |
| 1989 | Wolfgang Paul                  | Paul's idea in the early 1950s of building ion traps                                                          |
| 1000 |                                | grew out of accelerator physics [36].                                                                         |
| 1990 | Jerome I. Friedman,            | Friedman, Kendall, and Taylor's experiments in 1974                                                           |
|      | Henry W. Kendall, and          | on deep inelastic scattering of electrons on protons and                                                      |
| 1000 | Richard E. Taylor              | bound neutrons used the SLAC linac [37].                                                                      |
| 1992 | Georges Charpak                | Charpak's development of multiwire proportional                                                               |
|      |                                | chambers in 1970 were made possible by accelerator-                                                           |
| 1005 |                                | based testing at CERN [38].                                                                                   |
| 1995 | Martin L. Perl                 | SPEAD will the [20]                                                                                           |
| 2004 | Devid L Cross Freed W'1 1      | SPEAK conider [39].                                                                                           |
| 2004 | David J. Gross, Frank Wilczek, | Gross, whiczek, and Politzer discovered asymptotic                                                            |
|      |                                | hered on the theory of strong interactions in 1973                                                            |
|      | H. David Politzer              | proton coefficient from the SLAC linac on electron-                                                           |
| 2008 | Makata Kabayashi and           | Vahavashi and Maskawa'a theory of quark mining in                                                             |
| 2008 | Tashihida Maskawa              | 1072 was confirmed by results from the KEKD                                                                   |
|      | i osminue Maskawa              | accelerator at KEK (High Energy Accelerator Decearch                                                          |
|      |                                | Organization) in Tsukuba Ibaraki Prefecture Japan                                                             |
|      |                                | and the PEP II (Positron Electron Project II) at SLAC                                                         |
|      |                                | [41] which showed that quark mixing in the six quark                                                          |
|      |                                | model is the dominant source of broken symmetry [42]                                                          |
| L    |                                | model is the dominant source of broken symmetry [42].                                                         |

A.Chao and E. Haussecker "Impact of Accelerator Science on Physics Research", published in ICFA Newsletter, Dec 2010; & submitted to the Physics in Perspective Journal, Dec 2010.



# ACCELERATORS FOR DISCOVERY SCIENCE



# **The Three Frontiers**



# Colliders – Energy vs. Time



M. Tigner: "Does Accelerator-Based Particle Physics have a Future?" Physics Today, Jan 2001 Vol 54, Nb 1

# The Livingston plot shows a saturation effect!

Practical limit for accelerators at the energy frontier:

Project cost increases as the energy must increase!

Cost per GeV C.M. proton has decreased by factor 10 over last 40 years (not corrected for inflation)!

Not enough: Project cost increased by factor 200!

New technology needed..



### Colliders - 2006

In operationIn construction

Hadrons Leptons Leptons-Hadrons





### Colliders - 2012

In operationIn construction

Hadrons Leptons Leptons-Hadrons





# THE LARGE HADRON COLLIDER

15 thousand million years

# The big Bulk

1 thousand million years

300 thousand years

Co

(ATLAS, CMS...)

3 minutes

10<sup>-5</sup> seconds

10<sup>-10</sup> seconds

10-34 seconds

10<sup>-43</sup> seconds

10<sup>32</sup> degrees

radiation

particles

quark

electron

anti-quark

carrying

heavy particles

the weak force

10<sup>27</sup> degrees

proton

neutron

meson

e helium

lithium

hydrogen

deuterium

10<sup>15</sup> degrees

positron (anti-electron)

10<sup>10</sup> degrees

10<sup>9</sup> degrees

6000 degrees

Electro-weak phase transition

QCD phase transition

(ALICE, ATLAS, CMS...)

# LHC will study the first 10<sup>-10</sup> -10<sup>-5</sup> seconds...

3 degrees K





# Solutions? Standard Mode/



#### Technicolor New (strong) interactions produce EWSB

Extensions of the SM gauge group : Little Higgs / GUTs / ...

For all proposed solutions: new particles should appear at TeV scale or below → territory of the LHC



Schwinger

#### Supersymmetry

New particles at ≈ TeV scale, light Higgs Unification of forces Higgs mass stabilized **No new interactions** 





ambu Kobayashi

Maskawa

Selected NP since 1957 Except P. Higgs

#### Extra Dimensions

New dimensions introduced m<sub>Gravity</sub> ≈ m<sub>elw</sub> ⊃ Hierarchy problem solved <u>New particles at ≈</u> TeV scale

### Successful for ever ??

### The Large Hadron Collider (LHC)

Several thousand billion protons Each with the energy of a fly (7 TeV) 99.9999991% of light speed Orbit 27km ring 11 000 times/second A billion collisions a second

Primary targets:
Origin of mass
Nature of Dark Matter
Primordial Plasma
Matter vs Antimatter



# **CERN Accelerator Complex**



### **Entered a New Era in Fundamental Science**

Start-up of the Large Hadron Collider (LHC), one of the largest and truly global scientific projects ever, is the most exciting turning point in particle physics.







# LHC Lay-out



The LHC is a two-ring superconducting proton-proton collider made of eight 3.3 km long arcs separated by 528 m Long Straight Sections.

While the arcs are nearly identical, the straight sections are very different.



# LHC Main Bending Cryodipole





### **Proton-Proton Collisions at the LHC**





#### Design Energy: 7 + 7 = 14 TeV



- 2808 + 2808 proton bunches separated by 7.5 m
- → collisions every 25 ns
   = 40 MHz crossing rate
  - 10<sup>11</sup> protons per bunch
  - at 10<sup>34/</sup>cm<sup>2</sup>/s ≈ 35 pp interactions per crossing <u>pile-up</u>
- $\rightarrow \approx 10^9$  pp interactions per second !!!

in each collision≈ 1600 charged particles produced

enormous challenge for the detectors and for data collection/storage/analysis

# Why do Things Weigh?

Newton: Weight proportional to Mass

Einstein: Energy related to Mass

Neither explained origin of Mass

Where do the masses come from?

Are masses due to Higgs boson? (the physicists' Holy Grail)

# Higgs Boson



All particles generated at the Big Bang without mass.

Interacting with the Higgs field, particles acquire mass.

Greater the interaction, the greater the mass.

Higgs field fills the whole universe.

British physicist Peter Higgs proposed (1964) the so-called Higgs Boson particle associated with eponymous mechanism & field.

Interaction with the Higgs field



Friction with viscous liquid

#### 4 July 2012

"CERN experiments observe particle consistent with long-sought Higgs boson"





# An impressive history...



# Acknowledgements

- A very wide range of measurements have shown that SM predictions for known physics have been ~spot on.
  - A tribute to a large amount of work done by our theory colleagues along with the results from the other collider experiments at LEP, Tevatron, HERA, b-factories etc.
- And the Higgs cross section WG and all those theorists who prepared the way for today!

[1] S. Glashow, Nucl. Phys. 22 (1961) 579, doi:10.1016/0029-5582(61)90469-2.

[2] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264, doi:10.1103/PhysRevLett.19.1264.

[3] A. Salam, Weak and electromagnetic interactions, in: N. Svartholm (Ed.), Elementary Particle Physics: Relativistic Groups and Analyticity, Proceedings of the Eighth Nobel Symposium, Almquvist and Wiskell, 1968, p. 367.

#### Electroweak Theory

[4] F. Englert, R. Brout, Phys. Rev. Lett. 13 (1964) 321, doi:10.1103/ PhysRevLett.13.321.

#### Electroweak Symmetry<sup>[5]</sup> P.W. Higgs, Phys. Lett. 12 (1964) 132, doi:10.1016/0031-9163(64)91136-9. [6] P.W. Higgs, Phys. Rev. Lett. 13 (1964) 508, doi:10.1103/PhysRevLett.13.508.

- [7] G. Guralnik, C. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13 (1964) 585. doi:10.1103/PhysRevLett.13.585.
- [8] P.W. Higgs, Phys. Rev. 145 (1966) 1156, doi:10.1103/PhysRev.145.1156.
- [9] T.W.B. Kibble, Phys. Rev. 155 (1967) 1554, doi:10.1103/PhysRev.155.1554.

Breaking

### The Highlight of a Remarkable Year 2012 💬



http://www.elsevier.com/locate/physletb



JULY 7TH-13TH 2012

In praise of charter schools Britain's banking scandal spreads Volkswagen overtakes the rest A power struggle at the Vatican When Lonesome George met Nora

# A giant leap for science

Economist com

#### Finding the Higgs boson

### **Nobel Prize in Physics 2013**



The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

# **The HL-LHC Project**



New IR-quads Nb<sub>3</sub>Sn (inner triplets)

- New 11 T Nb<sub>3</sub>Sn (short) dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection

#### Major intervention on more than 1.2 km of the LHC



# ACCELERATOR TECHNOLOGY TRANSFER



# **Accelerators Worldwide**

The number of accelerators worldwide exceed 20000



- High-energy accelerators
- Synchrotron radiation X-ray sources
- Radiotherapy
- Biomedical research
- Industrial processing
- Ion implanters, surface modification
- Market for medical and industrial accelerators exceeds \$3.5 billion.
   All products that are processed, treated, or inspected by particle beams have a collective annual value of more than \$500 billion [1]

[1] http://www.acceleratorsamerica.org/

Accelerators are not only for high-energy physics



### Accelerators can drive next-generation reactors (ADSR) that burn non-fissile fuel, such as thorium



International Fusion Material Irradiation Facility (IFMIF)



MYRRHA: Multi-purpose hybrid research reactor for high-tech applications, conceived as an accelerator driven system





- Accelerator-Driven Subcritical System (ADS)
  - External source of neutrons to drive sub-critical reactor loaded with non-fissile fuel such as <sup>232</sup>Th.
  - Neutrons produced by highpower proton beam through spallation, breeding <sup>233</sup>U causing it to fission.
  - Cannot support self-sustaining chain reaction.
  - <sup>232</sup>Th is widely-available natural resource.
  - Released thermal power is 100 times that of beam energy.
  - Turning off the accelerator stops the fission reaction.



Linx

Th cycle produces much less long-lived radioactive waste (e.g. Pu).

Enough Th is available to sustain such systems for 10 centuries.





#### ADS & Radioactive Waste Transmutation

- ADS neutrons interact with surrounding fuel material containing separated long-lived isotopes.
  - Transmute these isotopes into shorterlived products.





- International Thermonuclear Experimental Reactor (ITER)
  - Ion beams to be part of plasma heating techniques for fusion
    - Provide high current drive efficiency required magnetic confinement fusion facilities.
    - Required tens of A of ion current at 1 MeV kinetic energy.





### **Accelerators for the Environment**

- CLOUD experiment at the CERN PS
  - Experiment using cloud chamber to study possible link between cosmic- rays and cloud formation.
    - Studies suggest that cosmicrays may have an influence on the amount of cloud cover through the formation of new aerosols (tiny particles suspended in the air that seed cloud droplets).
  - Understanding the underlying microphysics in controlled laboratory conditions is a key to unraveling the connection between cosmic-rays, clouds and climate.
  - First time high-energy physics accelerator used to study atmospheric and climate science.



#### Medical Application as an Example of Particle Physic Spin-off Combining Physics, ICT, Biology and Medicine to fight cancer



Accelerating particle beams ~30'000 accelerators worldwide ~17'000 used for medicine

#### Hadron Therapy



>100'000 patients treated worldwide (45 facilities)>50'000 patients treated in Europe (14 facilities)

Leadership in Ion Beam Therapy now in Europe and Japan



**Detecting particles** 



Clinical trial in Portugal, France and Italy for new breast imaging system (ClearPEM)





Brain Metabolism in Alzheimer's Disease: PET Scan





A correction a

Mixing mains Bacasa



# **Accelerators for Medical Use**

- Production of radionuclides with (low-energy) cyclotrons
  - Imaging
  - Therapy
- Electron linacs for conventional radiation therapy.
- Medium-energy cyclotrons and synchrotrons for hadron therapy with protons (250 MeV) or light ion beams (400 MeV/u 12C-ions).





# **Accelerators for Medicine**

### Medical Therapy

- X-rays have been used for decades to destroy tumours.
- For deep-seated tumours and/or minimizing dose in surrounding healthy tissue use hadrons (protons, light ions).
- Accelerator-based hadrontherapy facilities.



Accelerator cancer therapy



Loma Linda Proton Treatment Centre Constructed at FNAL



# **Accelerators for Medicine**

#### Photons, Protons and Light Ions



# The Clatterbridge Centre for Oncology



Established 1989 – 60 MeV protons

First hospital-based proton therapy – more than 1400 patients with ocular melanoma

# Radiotherapy with lons





### CERN

#### Centers for HADRON Therapy in operation end of 2010



Worldwide: 30 centres (4 have C-ions): ~ 65'000 patients Europe: 9 centres (with C-ions at GSI and Heidelberg): ~ 16'000 patients



# **Accelerators for Medicine**

### Medical Imaging

- Radioisotopes have become vital components in medicine.
  - Produced at reactors or accelerators.
- Positron Emission Tomography (PET)
  - Requires positron emitter
     <sup>18</sup>F
- <sup>99</sup>Mo / <sup>99</sup>mTc
  - 100 kW of 200 MeV protons impinging on depleted U target produce neutrons.
  - Neutrons targeted on lowenriched U thus producing <sup>99</sup>Mo.



Bone scans indicating increased <sup>99m</sup>Tc intake due to cancer growth





# Neutrons & X-rays



Protein structure revealed with help of light sources

**ISIS** and **Diamond** neutron and X-ray sources Harwell, UK





Neutron and X-ray imaging essential for studies of proteins and advanced materials.







2-d material (graphene)



# **Accelerators for Synchrotron Light**





# **X-ray Diffraction**



Max von Laue 1914 Nobel Prize: 'For his discovery of the diffraction of X-rays by crystals'



Constructive interference: 2 d sin $\theta$  = n  $\lambda$ 

# **X-ray Diffraction Today**







# **Accelerator X-ray Sources**



### Synchrotron Source of X-rays



Diamond Light Source, Harwell Science and Innovation Campus, UK



# **Diamond Beamlines**





# Accelerators for Synchrotron Light

#### Protein Structures

- Proteins are biological molecules involved in almost every cellular process.
- The protein is produced, crystallised and illuminated by X-rays. The interactions between the X-rays and the crystal form a pattern that can be analysed to deduce the protein structure.
- Over 45,000 structures have been solved by the worldwide synchrotron community.





The trimer of the Lassa nucleoprotein, part of the Lassa virus

### Protein Structure Revealed by Light Sources









#### **HIV glycoprotein**

mosquito immune system

#### yeast enzyme

### 4<sup>th</sup> Generation Light Source – Free Electron Laser 💬



#### 4<sup>th</sup> Generation Light Source -

X-ray FEL-

LCLS at SLAC

Injector/Linac 600m e accelerator (SLAC)

Electron Beam Dump: 40m facility to separate e and x-ray beams (SLAC)

Front End Enclosure 40m facility for photon beam diagnostics (LLNL)

Undulator Hall:170m tunnel housing undulators (ANL)

e Beam Transport: 227m above ground facility to transport electron beam (SLAC)

Near Experimental Hall: 3 experimental hutches, prep areas, and shops (SLAC/LLNL)

> X-Ray Transport & Diagnostic Tunnel 210m tunnel to transport photon beams (LLNL)

Far Experimental Hall 46 cavern with 3 experimental hutches and prep areas (SLAC/LLNL)









### **Accelerators for Neutron Science**

- Penetrate deep inside materials since they are deflected only from the nuclei of atoms.
- Statistical observation of deflected neutrons at various positions after the sample can be used to find the structure of a material.
- Loss or gain of energy by neutrons can reveal the dynamic behaviour of parts of a sample, for example dynamic processes of molecules in motion.



ISIS Spallation Facility (800 MeV) at RAL + new European Spallation Source (ESS) in Lund



# Ion Beam Implantation

- Ion implantation in semiconductor manufacture
- Typical semiconductor fabrication: 140 operations, 70 involving ion implantation at specific sites in crystal
- Ions accelerated to modest energies
   Depth of implant controlled by ion beam energy: typically 2 → 600 keV

# Ion Beam Implantation Products









Fundamental knowledge

Donald E. Stokes