## Space Charge

### **ACCELERATOR PHYSICS**

HT 2015

E. J. N. Wilson

## Contents - Space Charge

Thanks to :Karlheinz SCHINDL - CERN/AB

Direct space charge Fields and forces

(Self fields) Defocusing effect of space charge

Incoherent tune shift in a synchrotron

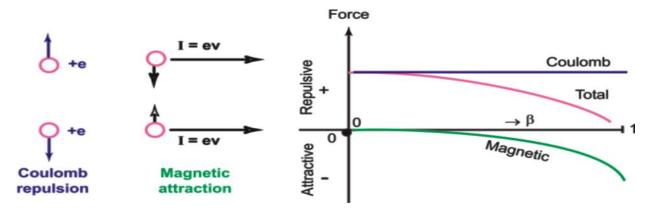
Image fields Image effect on incoherent tune shift

Coherent tune shift "Laslett" coefficients

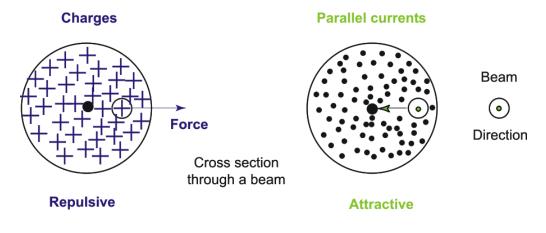
Bunched beams Effect of longitudinal motion

Space-charge limited synchrotrons

How to remove the space-charge limit


A. Hofmann, Tune shifts from self-fields and images, CAS Jyväskylä 1992, CERN 94-01, Vol. 1, p. 329

P.J. Bryant, Betatron frequency shifts due to self and image fields, CAS Aarhus 1986, CERN 87-10, p. 62


K. Schindl, Space charge, Proc. Joint US-CERN-Japan-Russia School on Part.Acc., "Beam Measurement", Montreux, May 1998, World Scientific, 1999, p. 127

# Space Charge Force

#### Two Particles



### Many Particles



Force in beam centre = 0

Force larger near beam edge

## Direct Space Charge - Fields

n...charge density in Cb/m<sup>3</sup>

 $\lambda$ ... constant line charge  $\pi$  a<sup>2</sup> $\eta$ 

I...constant current  $\lambda \beta c = \pi a^2 \eta \beta c$ 

a...beam radius

 $\mathbf{E}_{r}$ 

X

cross section



$$\vec{E} = E_r$$

$$\operatorname{div} \overset{\rightarrow}{E} = \frac{\eta}{\varepsilon_0}$$

#### Magnetic

$$\stackrel{\rightarrow}{B} = B_{\omega}$$

$$\operatorname{curl} \overrightarrow{B} = \mu_0 \overrightarrow{J}$$

Current density (Bcn)

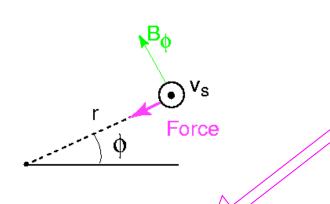
$$\iiint \operatorname{div} \overset{\rightarrow}{E} dV = \iint \overset{\rightarrow}{E} d\overset{\rightarrow}{S}$$

# $\iiint \operatorname{div} \overset{\rightarrow}{E} \overset{\rightarrow}{dV} = \iint \overset{\rightarrow}{E} \overset{\rightarrow}{dS} \qquad \oint \overset{\rightarrow}{B} \overset{\rightarrow}{r} \overset{\rightarrow}{d\phi} = \iint \operatorname{curl} \overset{\rightarrow}{B} \overset{\rightarrow}{dA}$

Apply these integrals over

cylinder radius r length 1

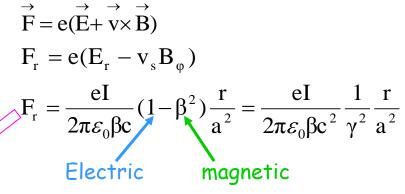
$$r^2 \pi l \frac{\eta}{\varepsilon_0} = E_r 2r\pi 1$$

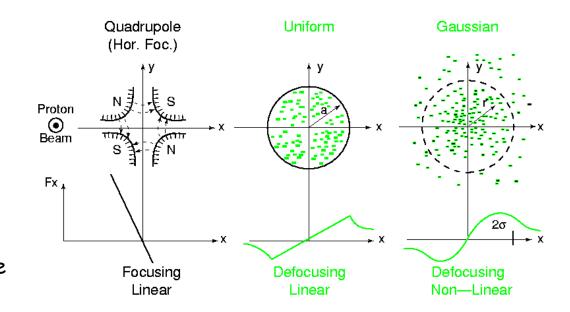

$$E_{r} = \frac{I}{2\pi\varepsilon_{0}\beta c} \frac{r}{a^{2}}$$

cross section radius r

$$B_{\varphi} 2r\pi = \mu_0 r^2 \pi \beta c \eta$$

$$B_{\varphi} = \frac{I}{2\pi\varepsilon_0 c^2} \frac{r}{a^2}$$


### Force on a Test Particle Inside the Beam




$$F_{x} = \frac{eI}{2\pi\varepsilon_{0}\beta c\gamma^{2}a^{2}}x$$

$$F_{y} = \frac{eI}{2\pi\varepsilon_{0}\beta c\gamma^{2}a^{2}}y$$
Space charge force

- □ circular beam
- ☐ uniform charge density
- $\Box F_x$ ,  $F_y$  linear in x, y
- $\Box$  force  $\rightarrow$  0 for  $\gamma \gg 1$  ( $\beta \rightarrow 1$ )
- □ defocusing lens in either plane



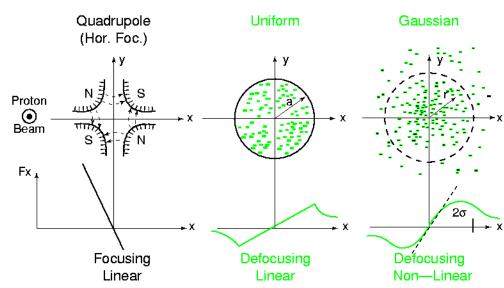


## Space Charge in a Transport Line

$$x'' + K(s)x = 0$$

Transport line with quadrupoles

$$x'' + (K(s) + \underline{K_{SC}(s)})x = 0$$


 $x'' + (K(s) + K_{sc}(s))x = 0$  Transport line with quadrupoles and space charge

$$x'' = \frac{d^2x}{ds^2} = \frac{1}{\beta^2c^2} \frac{d^2x}{dt^2} = \frac{1}{\beta^2c^2} \frac{F_x}{m_0\gamma} = \frac{2r_0I}{ea^2\beta^3\gamma^3c} x \qquad \text{where} \qquad r_0 = \frac{e^2}{4\pi\epsilon_0 m_0c^2}$$

$$x'' + \left(K(s) - \frac{2r_0I}{ea^2\beta^3\gamma^3c}\right)x = 0$$

$$K_{SC}$$

In a transport line, the focusing by quadrupoles is counteracted by space charge, making focusing weaker



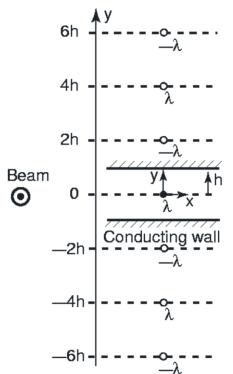
## Incoherent Tune Shift in a Synchrotron

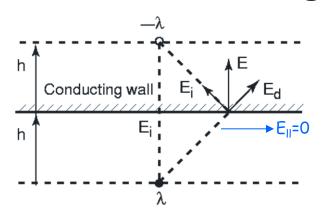
- ☐ Beam not bunched (so no acceleration)
- ☐ Uniform density in the circular x-y cross section (not very realistic)

$$x'' + (K(s) + K_{SC}(s))x = 0$$

$$x'' + (K(s) + K_{SC}(s))x = 0$$
  $\rightarrow$   $Q_{x0}$  (external) +  $\Delta Q_x$  (space charge)

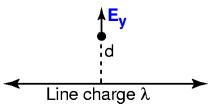
For small "gradient errors"  $k_x$   $\Delta Q_x = \frac{1}{4\pi} \int_{0}^{2R\pi} k_x(s) \beta_x(s) ds = \frac{1}{4\pi} \int_{0}^{2R\pi} K_{SC}(s) \beta_x(s) ds$ 


$$\Delta Q_{x} = -\frac{1}{4\pi} \int_{0}^{2R\pi} \frac{2r_{0}I}{e\beta^{3}\gamma^{3}c} \frac{\beta_{x}(s)}{a^{2}} ds = -\frac{r_{0}RI}{e\beta^{3}\gamma^{3}c} \left\langle \frac{\beta_{x}(s)}{a^{2}(s)} \right\rangle = -\frac{r_{0}RI}{e\beta^{3}\gamma^{3}cE_{x}}$$


$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi E_{x,y} \beta^2 \gamma^3} \qquad \begin{array}{c} \text{using } I = (\text{Ne}\beta c)/(2R\pi) \text{ with } \\ \text{N...number of particles in ring } \\ E_{x,y} \dots \text{emittance containing 100} \end{array}$$

 $E_{x,y}$ ....emittance containing 100% of particles

- □ "Direct" space charge, unbunched beam in a synchrotron
- $\square$  Vanishes for  $\gamma \gg 1$
- ☐ Important for low-energy machines
- $\square$  Independent of machine size  $2\pi R$  for a given N


## Incoherent Tune Shift: Image Effects





"Image charge" -λ to render  $E_{\parallel}$  = 0 on conductive wall

Electric field around a line charge



$$E_{y} = \frac{\lambda}{2\pi\varepsilon_{0}} \frac{1}{d}$$

Image (line) charges created by two parallel conducting plates, distance 2h

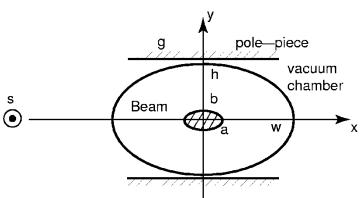
$$E_{i1y} = \frac{\lambda}{2\pi\varepsilon_0} \left( \frac{1}{2h - y} - \frac{1}{2h + y} \right), \quad E_{i2y} = \frac{\lambda}{2\pi\varepsilon_0} \left( \frac{1}{4h + y} - \frac{1}{4h - y} \right)$$

$$E_{\text{in}\,y} = \frac{(-1)^{n+1}\lambda}{2\pi\varepsilon_0} \left(\frac{1}{2nh-y} - \frac{1}{2nh+y}\right) = (-1)^{n+1}\frac{\lambda}{4\pi\varepsilon_0}\frac{y}{n^2h^2} \quad \text{Image Field $E_{\text{in}y}$ generated by the $n$-th pair of line charges}$$

### Image Effect of Parallel Conducting Plates ctd.

- $\square$  vanishes at y=0

- □ large if vacuum chamber small (small h)


$$div\vec{E}_{i}=0=\frac{\partial E_{ix}}{\partial x}+\frac{\partial E_{iy}}{\partial y} \Rightarrow E_{ix}=-\frac{\lambda}{4\pi\epsilon_{0}h^{2}}\frac{\pi^{2}}{12}x \qquad \qquad \text{because between the conducting plates no image charges}$$

$$\begin{split} F_{ix} &= -\frac{e\lambda}{\pi\epsilon_0 h^2} \frac{\pi^2}{48} x \\ F_{iy} &= \frac{e\lambda}{\pi\epsilon_0 h^2} \frac{\pi^2}{48} y \end{split} \quad \begin{array}{l} \text{From these image} \\ \text{forces } F_{ix} \text{ and } F_{iy} \\ \Rightarrow \textbf{K}_{\text{SC}} \Rightarrow \Delta \textbf{Q}_{\text{x,y}} \end{split}$$

$$\Delta Q_{x} = -\frac{2r_{0}IR\langle\beta_{x}\rangle}{ec\beta^{3}\gamma} \left( \frac{1}{2\langle a^{2}\rangle\gamma^{2}} - \frac{\pi^{2}}{48h^{2}} \right)$$
tune shift direct image
$$\Delta Q_{y} = -\frac{2r_{0}IR\langle\beta_{y}\rangle}{ec\beta^{3}\gamma} \left( \frac{1}{2\langle b^{2}\rangle\gamma^{2}} + \frac{\pi^{2}}{48h^{2}} \right)$$

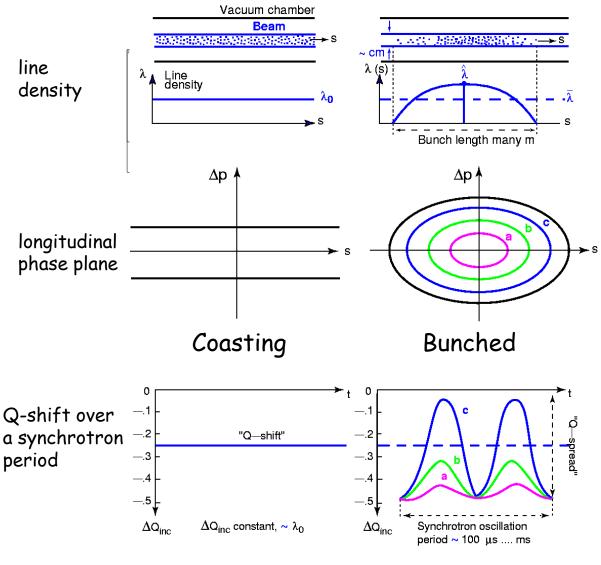
- $\square$  Image effects do not vanish for large  $\gamma$ , thus not negligible for electron machines
- □ Electrical image effects normally focusing in horizontal, defocusing in vertical plane
- ☐ Image effects also due to ferromagnetic boundary (e.g. synchrotron magnets)

### The "Laslett" \* Coefficients



$$\Delta Q_{y,inc} = -\frac{Nr_0 \langle \beta_y \rangle}{\beta^2 \gamma \pi} \left( \frac{\epsilon_0^y}{b^2 \gamma^2} + \frac{\epsilon_1^y}{h^2} + \beta^2 \frac{\epsilon_2^y}{g^2} \right)$$

direct electr. magnet.


$$\Delta Q_{y,coh} = -\frac{Nr_0 \left\langle \beta_y \right\rangle}{\beta^2 \gamma \pi} \left( \begin{array}{ccc} & \text{Image} & \text{Image} \\ & \frac{\xi_1^y}{h^2} + \beta^2 \frac{\xi_2^y}{g^2} \end{array} \right)$$

Uniform, elliptical beam in an elliptical beam pipe. Similar formulae for  $\Delta Q_x$  In general,  $\Delta Q_y > \Delta Q_x$ 

\*L.J. Laslett, 1963

| Laslett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Circular            | Elliptical           | Parallel plates       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-----------------------|
| coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (a=b, w=h)          | (e.g. $w = 2h$ )     | (h/w = 0)             |
| $\varepsilon_0^{\mathbf{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2                 | $\frac{b^2}{a(a+b)}$ |                       |
| $\varepsilon_0^{\mathbf{y}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2                 | $\frac{b}{a+b}$      |                       |
| $\varepsilon_1^{\mathrm{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | -0.172               | -0.206                |
| $\varepsilon_1^{\mathrm{y}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | 0.172                | 0.206                 |
| ξ <sub>1</sub> <sup>x</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2                 | 0.083                | $0 \frac{\pi^2/4}{2}$ |
| $egin{array}{c} arepsilon_1^{\mathrm{x}} & arepsilon_1^{\mathrm{y}} & arepsilon_1^{\mathrm{x}} & arepsilon_1^{\mathrm{x}} & arepsilon_1^{\mathrm{x}} & arepsilon_2^{\mathrm{x}} & are$ | 1/2                 | 0.55                 | $0.617(\pi^2/16)^8$   |
| $\varepsilon_2^{\mathrm{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-0.411(-\pi^2/24)$ | -0.411               | -0.411                |
| $\varepsilon_2^{\mathrm{y}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.411(\pi^2/24)$   | 0.411                | 0.411                 |
| $\xi_2^{\mathrm{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                   | 0                    | 0                     |
| $\xi_2^{\mathrm{y}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.617(\pi^2/16)$   | 0.617                | 0.617                 |

### Bunched Beam in a Synchrotron



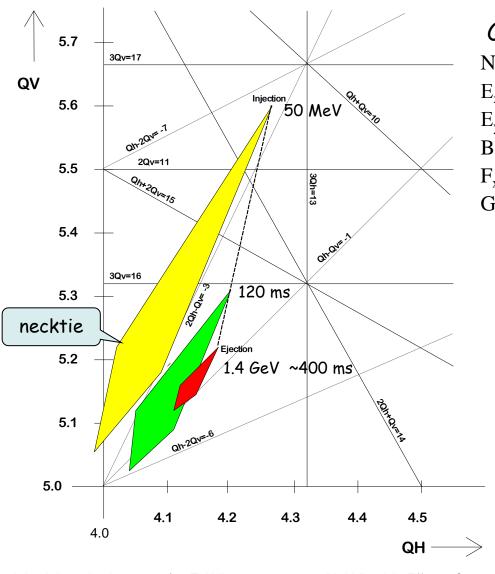
What's different with bunched beams?

- Q-shift much larger in bunch centre than in tails
- $\square$  Q-shift changes periodically with  $\omega_s$
- □ peak Q-shift much larger than for unbunched beam with same N (number of particles in the ring)
- □ Q-shift ⇒ Q-spread over the bunch

### Incoherent $\Delta Q$ : A Practical Formula

$$\begin{split} \Delta Q_y = -\frac{r_0}{\pi} \left(\frac{q^2}{A}\right) & \frac{N}{\beta^2 \gamma^3} \frac{F_y G_y}{B_f} \left\langle \frac{\beta_y}{b(a+b)} \right\rangle & \left\langle \frac{\beta_y}{b(a+b)} \right\rangle = \left\langle \frac{\beta_y}{b^2 \left(1 + \frac{a}{b}\right)} \right\rangle \approx \frac{1}{E_y \left(1 + \sqrt{\frac{E_x Q_y}{E_y Q_x}}\right)} \\ \Delta Q_{x,y} = -\frac{r_0}{\pi} \left(\frac{q^2}{A}\right) & \frac{N}{\beta^2 \gamma^3} \frac{F_{x,y} G_{x,y}}{B_f} & \frac{1}{E_{x,y} \left(1 + \sqrt{\frac{E_{y,x} Q_{x,y}}{E_{y,y} Q_y,x}}\right)} \end{split}$$

q/A..... charge/mass number of ions (1 for protons, e.g. 6/16 for  $_{16}O^{6+}$ )


 $\mathbf{F}_{\mathbf{x},\mathbf{y}}$ ....."Form factor" derived from Laslett's image coefficients  $\epsilon_1{}^x$ ,  $\epsilon_1{}^y$ ,  $\epsilon_2{}^x$ ,  $\epsilon_2{}^y$  (F  $\approx 1$  if dominated by direct space charge)

 $G_{x,y}$ ......Form factor depending on particle distribution in x,y. In general,  $1 < G \le 2$  Uniform G=1 ( $E_{x,y}$  100% emittance)

Gaussian G=2 ( $E_{x,y}$  95% emittance)

 ${f B_f}$ ...... "Bunching Factor": average/peak line density  ${f B_f}={\lambda\over\hat{\lambda}}={f I\over\hat{I}}$ 

## A Space-Charge Limited Accelerator



CERN PS Booster Synchrotron

 $N = 10^{13} \text{ protons}$ 

 $E_x^* = 80 \mu \text{rad m} [4 \beta \gamma \sigma_x^2/\beta_x] \text{ hor. emittance}$ 

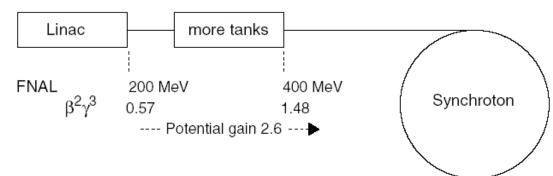
 $E_v^* = 27 \mu rad m$  vertical emittance

$$B_{\rm f} = 0.58$$

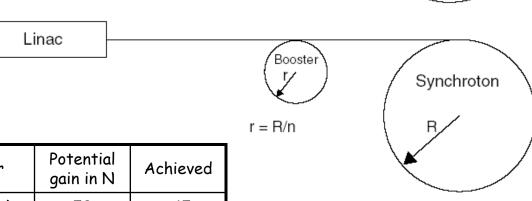
$$F_{x,y} = 1$$

$$G_x/G_y = 1.3/1.5$$

- □ Direct space charge tune spread ~0.55 at injection, covering 2<sup>nd</sup> and 3<sup>rd</sup> order stop-bands
- $\Box$  "necktie"-shaped tune spread shrinks rapidly due to the  $1/\beta^2\gamma^3$  dependence
- ☐ Enables the working point to be moved rapidly to an area clear of strong stop-bands


## How to Remove the Space-Charge Limit?

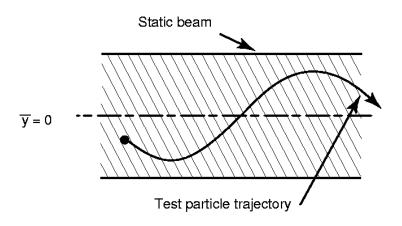
Direct space charge  $\Delta Q_{y} \approx \frac{N}{E_{y}\beta^{2}\gamma^{3}}\frac{\hat{I}}{\bar{I}}$ 


**Problem:** A large proton synchrotron is limited in N because  $\Delta Q_y$  reaches 0.3 ... 0.5 when filling the (vertical) acceptance.

Solution: Increase N by raising the injection energy and thus  $\beta^2\gamma^3$  while keeping to the same  $\Delta Q$ . Ways to do this:

Make a longer (higher-energy) Linac (by adding tanks as has been done in Fermilab)



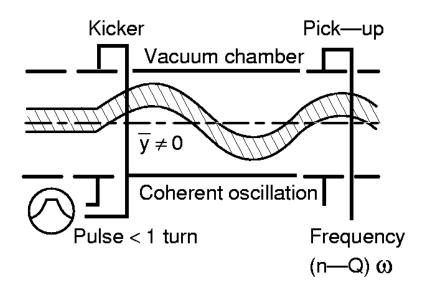

Add a small "Booster"
synchrotron of radius r = R/n
with n the number of
batches (BNL) or rings (CERN)



|         | Linac<br>(MeV) | Booster<br>(GeV) | n=R/r      | Potential<br>gain in N | Achieved |
|---------|----------------|------------------|------------|------------------------|----------|
| CERN PS | 50             | 1                | 4(rings)   | 59                     | ~15      |
| BNL AGS | 200            | 1.5              | 4(batches) | 26                     | ~8       |

### Incoherent and Coherent Motion

#### Incoherent motion

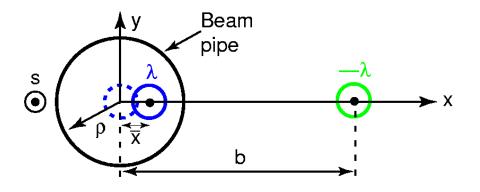



Test particle in a beam whose centre of mass does not move

The beam environment does not "see" any motion

Each particle features its individual amplitude and phase

#### Coherent motion




The centre of mass moves doing betatron oscillation as a whole

The beam environment (e.g. a position monitor "sees" the "coherent motion")

On top of the coherent motion, each particles has still its individual one

### Coherent Tune Shift, Round Beam Pipe



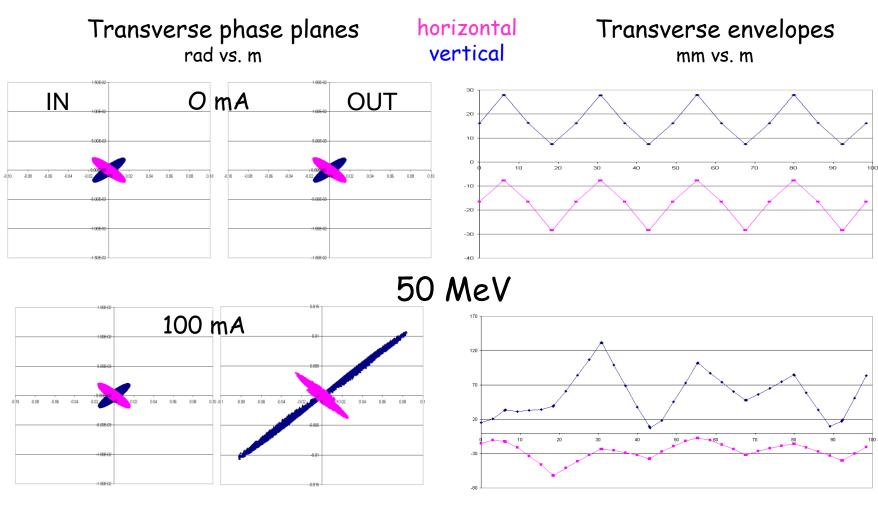
$$\overline{X}$$
...hor. beam position (centre of mass) a...beam radius  $\rho$ ...beam pipe radius ( $\rho$  » a)

$$b\overline{x} = \rho^2$$
 (mirror charge on a circle)

$$E_{ix}(\overline{x}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{b - \overline{x}} \approx \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{b} = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{\rho^2} \overline{x}$$

$$F_{ix}(\overline{x}) = \frac{e\lambda}{2\pi\varepsilon_0} \frac{1}{\rho^2} \overline{x}$$

$$\Box \text{ force linear in } \overline{x}$$


- ☐ same in vertical plane (y) due to symmetry
- ☐ force positive hence defocusing in both planes

$$\Delta Q_{x,y\,coh} = -\frac{r_0 R \langle \beta_{x,y} \rangle I}{ec\beta^3 \gamma \, \rho^2} = -\frac{r_0 \langle \beta_{x,y} \rangle}{2\pi\beta^2} \frac{N}{\gamma \, \rho^2}$$
Coherent tune shift, round pipe in negative (defocusing) both planes in only weak dependence on  $\gamma$ 

### Coherent tune shift, round pipe

- $\hfill \Delta Q_{coh}$  always negative

## High Intensity Proton Beam in a FODO Line



Courtesy of Alessandra Lombardi/ CERN, 8/04

### Summary

"Direct" space charge generated by the self-field of the beam

- > acts on incoherent motion but has no effect on coherent (dipolar) motion
- > proportional to beam intensity
- > defocusing in both transverse planes
- > scales with  $1/\gamma^3 \Rightarrow$  barely noticeable in high-energy hadron and low-energy lepton machines

Image effects due to mirror charges induced in the vacuum envelope

- > proportional to beam intensity
- > scales with  $1/\gamma \Rightarrow$  not negligible for high- $\gamma$  beams and machines
- > give rise to a further change in the incoherent motion, but focusing in one plane, defocusing in the other plane
- > modify the transverse coherent motion (coherent Q-change)

Bunched beams: Space-charge defocusing depends on the particle's position in the bunch leading to a Q-spread (rather than a shift)

- > Direct space charge is a hard limit on intensity/emittance ratio
- > can be overcome by a higher-energy injector ==