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High intensity lasers
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The evolution of Power of small diameter laser systems

State of art e.g. Vulcan Petawatt, 400 J in 400 fs = 1 PW
(cf. UK power output ⌅ 100 GW)
focused to diameter spot ⌅ = 5µm,
intensity I ⌅ 1 · 1021 Wcm�2 (= 1 · 1025 Wm�2)

Poynting vector: I = E⇤H = E⇤B/µ0 = E2k̂/cµ0

For E = E0 cos ⇧t, < I >= 1
2E2

0/cµ0, so E0 =
⌃

2cµ0I

NB for VulcanPW, E ⌅ 9⇤ 1011 Vcm�1, cf 5⇤ 107 Vcm�1 = EBohr

Since ṗx = �eE0 cos ⇧t, px = �eE0 cos ⇧t/⇧,
Define a0 = eE0/mec⇧,
i.e. �vx = �a0c cos ⇧t,

so a0 is “normalised momentum”, or “normalised vector potential”,

numerically a0 ⇧ 0.856(I⇥2) 1
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Some phase space trajectories
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Trajectory of relativistic electrons
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Relativistic self-focusing



Plasma Propagation
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For a gaussian pulse of beam width R

Pcr ' 17 (ne/ncr)GW

P. Sprangle et al, PRL, 59, 202 (1987)



Plasma Propagation
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Relativistic self-focusing



Wakefield generation

we start with the equation of motion, the continuity equation and Gauss’s law

m

�
⌅u
⌅t

+ (u ·⇧)u
⇥

= �e(E + u⇤B)

⌅n

⌅t
+⇧ · (nu) = 0

⇧ · E = ⇥/�0 = �e(ne � ni)/�0

The non-linear force terms can be grouped by noting that B = ⇧⇤A, and that
to first order u = (e/m)A (which is the conservation of canonical momentum).
So,

�m(u ·⇧)u� e(u⇤B) ⌅ �(e2/m) [(A ·⇧)A + (A⇤ (⇧⇤A)]
= (e2/2m)⇧A2

=
1
2
mc2⇧a2

Thus the non-linear terms together combine to make the ponderomotive force,
by use of a vector relation.

laser field

plasma wave

Ponderomotive force
Fp ∝∇(Elaser)
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Wakefield generation
Solving (in 1D):

So ne = n0(1 + �)

Have coupled equations in E and β to solve

Assuming  beta ≪ 1, n1 ≪ n0

@E

@⇣
= �n1 (Gauss’ Law)

n1 = n0� (Continuity)

@�

@⇣
= eE � @(a2)

@⇣
(Motion)
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Wakefield generation

E
max

/E0 ⇠ a0
2/(1 + a0

2)1/2



small amplitude oscillations



small amplitude oscillations



small amplitude oscillations



Energy gain
The maximum electric field that a wakefield can support is when n = n0, and
from Gauss’s law, then the maximum electric field is given by;

Em = �
⇤

e

⇤0

⌅ ⇧
n0sin(kp⇧) ⇤ Emax = n0e/kp⇤0 =

�mc⌥p

e

⇥

For a0 ⇤ 1, electrons can overrun the wave oscillation and become injected
into a acceleration phase.

For a field of E = (mc⌥p/e) sin(kpx � wpt) in wave frame (Lorentz length-
ened),

E� = (mc⌥p/e) sin(kpx
�/⇥)

the potential is

⌃� = (⇥mc⌥p/kpe) cos(kpx
�/⇥) = (⇥mc2/e) cos(kpx

�/⇥)

Energy gain in only 1/4 of wave,

⇤W � = [e⌃]x=⇥�/2kp

x=0 = ⇥mc2

and the momentum is ⇥ p� = ⇥m� But the Lorentz transform

W = ⇥(E� + �cp�) = ⇥2mc2(1 + �2)

which for � ⇤ 1 gives
Wmax = 2⇥2mc2

NB the length over which this acceleration happens is ⇥2⌅p
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Wakefield simulation


