High intensity laser matter interaction

15th January 2015 Zulfikar Najmudin

High Intensity Lasers

Eield-ionisation

High intensity lasers

State of art e.g. Vulcan Petawatt, 400 J in 400 fs = 1 PW (cf. UK power output ~ 100 GW) focused to diameter spot $\phi = 5 \mu m$, intensity $I \sim 1 \cdot 10^{21} \text{ Wcm}^{-2} (= 1 \cdot 10^{25} \text{ Wm}^{-2})$

NB for VulcanPW, $\mathbf{E} \sim 9 \times 10^{11} \text{ Vcm}^{-1}$, $cf \ 5 \times 10^7 \text{ Vcm}^{-1} = \mathbf{E}_{\text{Bohr}}$

so a_0 is "normalised momentum", or "normalised vector potential",

numerically $a_0 \simeq 0.856 (I\lambda^2)^{\frac{1}{2}}$ $\overline{2}$

Some phase space trajectories

$$
p_x = a_x
$$
, $p_y = a_y$ and $p_z = \frac{1}{2}a_z^2$

Trajectory of relativistic electrons

Relativistic self-focusing

Plasma Propagation

$$
\nabla^2 \mathbf{E} - \frac{\eta^2}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0
$$
 density
\n
$$
\eta_R \simeq 1 - \frac{\omega_p^2}{2\omega^2} \frac{n(r)}{n_0 \gamma_r} \simeq 1 - \frac{\omega_p^2}{2\omega^2} \left(1 + \frac{\delta n}{n_0} - \frac{a^2}{2}\right)
$$

\nwhere we used $\gamma = \sqrt{1 + a_0^2}$

For a gaussian pulse of beam width *R*

. $P_{cr} \simeq 17 \left(n_e / n_{cr} \right)$ GW

P. Sprangle et al, PRL, **59**, 202 (1987)

Plasma Propagation

Relativistic self-focusing

we start with the equation of motion, the continuity equation and Gauss's law

$$
m\left[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right] = -e(\mathbf{E} + \mathbf{u} \times \mathbf{B})
$$

$$
\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = 0
$$

$$
\nabla \cdot \mathbf{E} = \rho/\epsilon_0 = -e(n_e - n_i)/\epsilon_0
$$

The non-linear force terms can be grouped by noting that $\mathbf{B} = \nabla \times \mathbf{A}$, and that to first order $\mathbf{u} = (e/m)\mathbf{A}$ (which is the conservation of canonical momentum). So,

$$
-m(\mathbf{u} \cdot \nabla)\mathbf{u} - e(\mathbf{u} \times \mathbf{B}) \simeq -(e^2/m)[(\mathbf{A} \cdot \nabla)\mathbf{A} + (\mathbf{A} \times (\nabla \times \mathbf{A})]
$$

= $(e^2/2m)\nabla A^2$
= $\frac{1}{2}mc^2\nabla a^2$

Thus the non-linear terms together combine to make the ponderomotive force, by use of a vector relation.

Solving (in 1D):

 $n_e = n_0(1 + \beta)$ Assuming beta $\ll 1$, $n_1 \ll n_0$

Have coupled equations in *E* and β to solve

small amplitude oscillations

small amplitude oscillations

small amplitude oscillations

Energy gain

The maximum electric field that a wakefield can support is when $n = n_0$, and from Gauss's law, then the maximum electric field is given by;

$$
E_m = -\left(\frac{e}{\epsilon_0}\right) \int n_0 \sin(k_p \xi) \quad \to \quad E_{max} = n_0 e / k_p \epsilon_0 = \left(\frac{mc\omega_p}{e}\right)
$$

For $a_0 \rightarrow 1$, electrons can overrun the wave oscillation and become injected into a acceleration phase.

For a field of $E = (mc\omega_p/e)\sin(k_px - w_pt)$ in wave frame (Lorentz lengthened),

$$
E' = (mc\omega_p/e)\sin(k_p x'/\gamma)
$$

the potential is

$$
\phi' = (\gamma mc\omega_p / k_p e) \cos(k_p x' / \gamma) = (\gamma mc^2 / e) \cos(k_p x' / \gamma)
$$

Energy gain in only $1/4$ of wave,

$$
\rightarrow W' = [e\phi]_{x=0}^{x=\pi\gamma/2k_p} = \gamma mc^2
$$

and the momentum is $\sim p' = \gamma m \beta$ But the Lorentz transform

$$
W = \gamma (E' + \beta c p') = \gamma^2 mc^2 (1 + \beta^2)
$$

which for $\beta \rightarrow 1$ gives

 $W_{max} = 2\gamma^2 mc^2$

NB the length over which this acceleration happens is $\gamma^2 \lambda_p$

Wakefield simulation

