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2 High intensity lasers and plasma

State of art e.g. Vulcan Petawatt (VPW), 400 I in 400 fs =
1 PW (compare UK power output ~ 100 GW) focused to
diameter spot ¢ = 5um, — intensity I ~ 10*! Wem™2 (=
1025 Wm~2). The electric field of the laser can be found from
the Poynting vector:

I=ExH=Ex B/up = E*k/cuo
For E = Eycos (kz — wt),
<1>= LEZ/cuq, so By = v/2cpol = 30 11/2 (SI)

For VPW, E ~ 9x 10" Vem ™, of Egonr = 5x107 Vem™1.

The laser potential can easily exceed the atomic potential
which means all materials are plasma at these intensities!

2.1 Field-ionisation

The regime of laser ionisation is set by the Keldysh Parame-
ter. 7y, = (i/2¢,)*/? - the ratio of ionisation to ponderomo-
tive energies.

At low intensities «, > 1, laser ionisation can happen by
a multi-photon effect, over relatively long timescale, For
e S 1, the tunnel regime, the Coulomb potential is reduced
so the bound electrons can rapidly tunnel out of the atomic
potential. In the extreme case, the potential is reduced such
that the electron is no-longer bound - Barrier Suppression
Jonisation (BSI). In this case, ionisation is near instantaneous.
To calculate the BSI field, note for a laser field £y =
Ey cos(ka), the potential is V; = (Fo/k)sin(kz) = Epz
over atomic scales. So the potential energy of electron

Ze>

= -_"(‘m - EE[)E.



The potential is a maximum for:
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and the threshold intensity is given by:

Ipsr = B3 {2me = {m°e3/(22°¢°poc) }ei
4% 10%¢;/eV)4Z* Wem 2

where ¢; is in eV. Some values of Iggr; H: 1.4 % 1014
Wem™2, He: 1.5 % 10'° Wem 2, Het: 8.8 x 10*® Wem™2,
Ne: 8.6 x 104 Wem ™2, Ne®t : 1.4 x 10%° Wom ™2,

3 Motion in laser field

Since  p, = —elgcoswt, py = —eFysinwt/w,
Define  ap = eFo/mecw,
ie. YMely = —agiMeC8in wi,

ag is the “normalised momentum”, or “normalised vector po-
tential”, Numerically:

ag ~ 0.856 (TA%)z,
for I [10"® Wem—2] and A {pm].

ap is a figure of “laser strength”, for g > 1 — rela-
fivistic pulse {i.e. motion becomes relativistic). VPW has
ag ~ 30!

lepe| = agme?, so using £2 = m2ct + 2p?,

E% = (ymc®)? = (me®)? + (apme?)?

=y =+/1+a?

For circular polarisation this is exact. For linear polarisation
time averaging gives,

v=4/1+a3/2.

(NB we’ll find this is wrong later! )

3.1 Pondermotive Force

The energy of the electron is intensity dependent,

U =ymc® = {4/1+ ad/2}mc®.

For low-energy (ag < 1); the kinetic energy is,
T=U—me ~ (a2/Nme® = 2 FE%/dmw?.
which is the non-relativistic ponderomotive potential energy.

As a particle moves away from regions of high-intensity it
can retain some of this energy, how much depends on the
steepness of the gradient. Thus, we can say that there was a
force acting on the particle: ' = —VT,

— F = (*/dm.w?)VE? the potderomotive force.

The relativistic form can be found by taking F' = —VU,

ie. F = {mc)Vry
= (met)V(1 + a2
= (m[2)(1 + a3/2)"/*V{a3/2)
_ (mc?/17) V3

as above but with a -y thrown in for relativity.

4 Single Particle Motion

4.1 Effect of magnetic field of laser
‘We neglected the B field so far;

F :m% =—e(E+ (v xB))
For laser propagating in the 2 direction in an E-field, E =
E, cos (kz — wt)i, Faraday’s law (V x E = —B) gives,
B = J(kF,/w)cos (kz — wt) = JB, cos (kz — wt), where
E; = cBy, in vacuum. So we can write coupled equations for
the particles motion in the em field:

mi, = -—eB,cos(kz—wt)
mi, = 0
mi, = —evyB,cos(kz ~ wt)

(NB we have ignored the By, x v, force on the v, component,
assuming that it is of 2nd order of smallness).
As before, solving for the z componen:

1y = apesin (kz — wt),

and so
v = (eapcE,/me)sin (kz — wt) cos (kz — wt)
= (aBcw/2)sin 2(kz — wt)
—v, = —(adc/4)cos2(kz—wt)+k

Initially v, == 0,v, = 0, then k = (a3c/4), so

vy, = (ode/4)(1 —cos2(kz — wt))
= (aZc/2)(sin? (kz — wt))



These are parabolic tracks with v, = 2, Note that the lon-
gitudinal motion is oc a2, It is the source of the longitudinal
penderomotive force. The motion of the electron is then:

apcw(cos (bz — wt) — 1)
= 0

z = (ag®c/4)t — (ap*c/8)sin 2(kz — wt))

Note that this implies a constant drift with v4 = 1ao?c on top
of a “figure of eight’ motion.

4.2 Full relativistic treatment (Advanced)

For v — ¢, we should have written our equation of motion as:

dp
il A B
7 e(E -+ (v x B))
Since p depends on ~ too. For convenience, rewrite
A
E=—%;hV‘IJ and B=V x A

A is the vector potential. So,
C;—ltj:—e(—%—?—V@-}—(vaxA))

We use the convective derivative for the momentum (since it
is a function of time and space), and also the triple product
identity:

op

dp _Op . _op o
=g tY VP= g, t(VP) v (vxVxp)

The equation of motion becomes,

op
B
A

__e(_W—V<I>+(v><V><A))

+{Vp) v—(vx Vxp)

du

BT

+(Vp) - v—(vxVxu)=—e(-V®)

where we have introduced the canonical momentum u =
p—eA.

Note that (Vp) - v = (p - Vp/my) = Vp*/2my
m2cAV+2 [2mry = me?Vy,

So
%? = (v x V x u) + V{ed® — ymc?)
Taking the curl of the above equation:
W-v=(ux (v x V xu))
which means if V > u = () initially, then it is always thus,
du

i V{e® — yme?)

Assuming we are in (near) vacuum or unperturbed plasma,
we can take ® = 0. Also assuming infinite plane wave means
V1 = 0, and we can write out the components:

du
2 -0

and M = V| yme?
at I

The first tells us that transverse canonical momentum is con-
served {py — eA = 0). Hence if the vector potential is given
by eA = a, then p; = a. The second equation can be dealt
with by transforming to the wave frame i.e. use the quasistatic
approximation, so that % ~ ca%* and of course V|| = g%, 50

Bew| — yme?) _ Oep) - ymc?)
a¢ o
Integrating and noting that - = 1 and p| = 0 initially,

=0

2

ep —yme’ = —me® = epp+me® = ymc®

squaring both sides and using v?m?2¢* = m2c4+c2pﬁ+02pf_,

2cpfimc2 = cta?
$0 py = a*/2me.
So finally we have p, = ag, py = 6y and p, = a2
{where we have normalised all the momenta to mc) and is
true for arbitary polarisation, For linear polatisation, this is
the parabolic dependence obtained before, but more strictly
between transverse and longitudinal momentum aot veloci-
ties. For circular polarisation, this means that there is an arbi-
trary constant longitudinal drift, which is a2 if the particle
started at rest, since @ is now constant,

5 Relativistic Thomson Scattering

One implication is that for a > 1 the motion becomes far
from sinusoidal. Hence the current due to the electron motion
becomes non-linear. This causes harmonices to be produced
in the emission spectrum of the transmitted beam, (see for
example Umstadter, Nature 1998).

Y8s = a

'7182:&2/2

& v=+1+2+78 =1 +a? +a/d
—y=1+a%/2

(NB how we wrote the value of - incorrectly before when we
ignored the longitudinal component) so:
B = of(1+a"/2)
B, = a’z/(2 + a’2)



6 Relativistic Self-Focusing

The relativistic motion has an effect on the refractive index of

the plasma,
w2 1/2
= ]_ —_ —

where we used the ‘relativistic mass increase’ to modify the
plasma frequency. For a simple picture of self-focusing, con-
sider two rays, one travelling along the axis of the laser beam,
and the other travelling the natural divergence angle of the
beam @ = \/2wg, where wy is the beam radius at focus. The
path difference between the two rays over a Rayleigh length
2R i8, 5

.. SL=2z(l-cosf)~ Ze

— zr g% = 5
Sw§

Now the difference in optical path lengths due to the intensity
dependent refractive index, can be written as

(1) Ur9)...

= (ninner - 'r]a'u.te'r')

dz =

Assuming that the outer path is vnatfected, and that in-
tensities are sufficiently small that we can write 7 =

2 1/2
(1—— OT;))?—,Z,M—Q) , and for sufficiently low densities,

we expand the brackets to get dz = 2z, (wl/2w®)a =
2 (w2 /4w?)(0? /2), where we have used the value of 7 calcu-
lated in the last section. Equating this to the geometric path
difference found above;

2
A N
42 2
2
where after some cancelling: a®w? = (i—T) = )\f,. Hence

relativistic self-focusing leads to a spot size wo ~ Ap.
Rewriting a in terms of F, we get

o Artmict [ u?
w —_— ——
07 2 w2
P

Noting that E? = 2ugcl the RHS is thus & P - the laser

power. So,
27%m2et [ w? Tgr
ez \wz ) = Per
Clipe Wy Tlo
where P,, = 21 GW. Hence there is a power (not inten-

sity) threshold for relativistic self-focusing to occur. More
rigourous calculations finds P ~ 17 GW

P

3
8w

E2

’P:I']r’wg:

7 Laser wakefield

Remember to derive electron plasma wave generation we
start with the equation of motion, the continuity equation and

Gauss’s law

[%‘: (u- V)] —e(B-+ux B)

an
BT-FV'(’I’LU)—U

V- -E=pleo = —e{n. —ny)/en

The non-linear force terms can be grouped by noting that B =
V x A, and that to first order u = (e/m)A (which is the
conservation of canonical momentum), So,

—m{u-V)u—e(u x B)
~ —(e?/m) [(A V)A + (A x (V x A)]
= (¢*/2m)V 42
B |
= ~2~mc2Vm2
Thus the non-linear terms together combine to make the pon-
deromotive force. Considering variations from eqm. values,
ie. ne = ng + 1y, ny = ng (and noting that eqm. value of
y and B are 0). So linearising the longitudinal components
become,

Hu 1

_:_E - 2 2

m@t el + mc Va
8’.@1 Su
-———+ g = =0
QE—-—en/e
e 1/ €0

We take the derivative wrt x for the first eqn. and wrt ¢ for the
2nd,

8 du 8E 1 ,0%2
Moot~ ‘oz 127 52
180 8 du
no 02 Oz Ot

B
'% = —E’."b1/€0

so that we can substitute eqn.2 and 3 for the first two terms in
eqn.l:

*ny 5 1 6%
52 + {(&°no/eom)m 3" 53
oy + wing = ln C o’
Az el T T g2

A wave eciuation driven by the gradient of the ponderomotive
force (o< Ga?/6z).

7.1 The quasistatic approximation

To solve the above equation transform to a frame in which
everything looks stationary, by vsing the transformations of
¢ = z - ct and 7 = ¢. The first variable is just the phase term



of the moving driver for the wakefield - assuming it is trav-
elling at the speed ¢ which is the casc we are most mterested
in. In this case,

D _%0 oro_ 0.0 8
8t otdE 6t Or g 9r " g
and é’_ 86 o 2

dr Bz 8!;“ o¢

where the time derivative in the first term is ignored, since
time variations are assumed to be small in the frame in which
the pulse is stationary (compared to the spatial motions), And
80

&2 5 02 4% o

o~ M Pz T @

Using the quasistatic approximation, our wave equation be-
COomes:

&n,y - 1 g2

2 1 2. 2
c 852 -+ wyhy = E’rLoC 862
82n1 1 820,2
Be T = g

By making use of the quasistatic form of Poisson’s (Gauss’s
Law);

% OB e
92 A e
The wave equation can also be written in terms of F and ¢.
BZE 2 9 o 8(12
5z +kiF = *-uk s ime /e)——
2
gff +E2¢ = mkg(mcz/e)a

Where in all of the ‘fast’ variations have been ignored by
implicit use of the ponderomotive force. A second order
ODE, which has a simple solution if we have a laser envelope
a(é) = apsin(b) (for 0 < &€ < w/b and zero otherwise),
where 1/b is the pulse length. The ponderomotive force
then goes like &{(ad sin®(b€))/9¢ = 2ba3 cos(b€) sin(b¢) =
baf sin(2b€), which is resonant if 2b = k,, and means the
pulse is on for only 0 < £ < 27 /k,, after that the pondero-
motive term becomes zero, and a non-dissipating wakefield is
left behind.

From the expressions above we use the one for the F-field
since it contains the expression for the ponderomotive force,
Hence at resonance,

82

S BB = —gRAm o) (ke 2ol sin(hyg)

= xsin(kyE)
where % is the constant term. The solution is (taking the
plasma initially at rest),

A (sin (kp&) — cos (kp€) kpt)
ky?

B@)= -

which when the laser pulse passes (§ = 27/k,)} has the value,
me\ mad maw,\ Tl wad
E=k, T _ ( ?\ T 0
( € ) 4 e ) 4 = Eo=r 4

A full relativistic treatment for square pulses gives £ =
Eya/{1+ a2)'/2. Hence for very relativistic intensities, the
E field only increases o ag.

7.2 Wavebreaking

Note that the maximum electric field that a wakefield can sup-
portis when n = ny, and from Gauss’ law, then the maximum
electric field is given by;

Eoas = — (é) f nosin(kyt) dé

[egedy)
— Emam = nge/kaD = ( p)

Hence the wakefield generated by a laser pulse of aq = 1 is
as big as it gets. At higher intensity, the wavebreaks, charge
sheets can cross, and electrons can overshoot their oscillation
and are accelerated unidirectionally.

7.3 Acceleration

For a field of £ = (mewp/e)sin(kyz — wyt), we can re-
move the time dependence by boosting into the stationary
frame of the plasma wave (vy = wy/kp). Remembering to
include the relativistic length increase in the stationary frame
E' = (mewp/e) sin{kyz'/+). The potential is then given by
¢ = (v kpe) cos(kye' /1) = (yme?/e) coskya /7).
Note that due to the shape of the potential, (hills and troughs)
it is most likely that the particle gains energy only in a trough.
So there is only energy gain in %4 of the wave. Hence the max-
imum enetgy an electron can gain falling down this potential
(from & = 0105 = 7/2ky) > W' = [e e L
yme?, and momentum is p’ = ~vymeS. But the Lorentz, trans-
form

W =~(E'+ pep')

which for 3 — 1 gives

=7’'me* (1 + %)

Winaz = 2v2mc?

Since the phase velocity of a laser driven wave is equal to the
laser group velocity, so v, = {w/w,), a sufficiently under-
dense plasma (w < wy) ensures high gain.

Note also that the acceleration length in the wave frame is
L & ~),/4 where we have remembered the pulse length-
ening in the waves rest frame. The time for a particle of
v’ ~ ¢ to travel this distance is given by ¢ as v\, /4e, which
in the lab frame would be longer by + due to time dilation,
ie. t' ~ ~4%)\p/de, which corresponds to a lab distance of
L 7 ~2), /4. These distances are typically small due to the
huge fields supported by plasmas, for example an electron can
be accelerated to about 1 GeV at a density of 1 - 1018 ¢cm—3
in a distance of around 1 cm.



8 Solid interaction

8.1 Critical density

Consider n electrons quivering with v = 1+ /2, hence the
total (density of) kinetic energy of the quivering electrons is
T = n{a®/2)mec?. Equating this to the energy density in the
Taser field

(1/2)eE? = (1/2)eo(mew fe)?a® = na?me? /2
oM’

Ner =
€

This tells us that above this density there is not enough en-
ergy in the laser beam to keep the electrons quivering, and
the field strength is quickly attenuated. This is the critical
density that you will have seen derived usually from the dis-
persion relation. At relativistic intensities the relativistic mass
dependence means that 1., is given by:

ymegw?

Pop = —
e

and so one might be able to reach to higher densities within
a target due to relativistic effects, In any case for a typical
laser (\ = 1 pm), the critical density is &~ 1 - 10*' cm™.
Since solid densities are typically 2 1+ 10% em™? a laser
will always be stopped by normal solid targets.

8.2 Ilenisation

Modelling ionisation of solids is mote difficult than for atoms,
due to the effect of the surface finish, and different resistiv-
ities of materials, but occurs at lower intensity. Metals will
be ionised when the (non-relativistic) ponderomotive poten-
tial equals the work function (typically 4 eV as for Al and
Cu) — @ = e2E2/(2muw?), which cotresponds to 7 ~ 10
Wem™2. In practise ionisation can happen at much lower in-
tensities, sometimes below 10'° Wem 2, This can be a prob-
lem for investigating high intensity interactions with solid
densities, since if there is any prepulse, then the high intensity
laser interacts first with the underdense plasma blown off by
the prepulse.

8.3 High intensity absorption

In the coronal plasma around a solid target, the absorption
mechanisms present at lower intensities can still be effective.
In particular resonance absorption and Raman instabilities
have a greater growth rate, and so can produce hot electrons
effectively. Collisional absorption though tends to be less im-
portant since at high quiver velocities, the collision frequency
(oc v—%) drops drastically. However for sufficiently clean and
shott, or intense and long pulses, the interaction can almost
be with a step function (of density). In the former case, this
is due to the lack of time for the plasma to expand, whereas
in the latter case, it is due to steepening of the density pro-
file by the light pressure. This can lead to new absorption
mechanisms.

8.3.1 Brunel acceleration

Consider a laser incident at angle on a step function density
with P-polarisation (i.e. some of the laser field directed into
the target), The laser can pull out an electron sheet, until the
E-field of the sheet equals the normal component of the &
field of the laser. ie.

B, = Ersinf

where 8 is the angle made by the incoming beam to the nor-
mal to the target. This arrangement is like a capacitor, and
so the number of electrons required to make this field is
E = o/¢p. Equating the two fields gives, ¢ = egEr sin B
The areal density of the electrons is thus 3 = ¢ Fg sin 0/e.
Once the field of the laser decreases, this induced field, causes

‘the electrons to return to the target with the energy that they

obtained from the quiver of the laser field ", the return veloc-
ity is,
el
9y = vrsinf = —sinf
mw

The energy absotbed into the target per laser cycle is
Smw3/2, and the rate of energy absorption (power) is

(7)

M

Since the power per unit area = I = E7 cosf/2uqc, the
fractional absorption is:

gin® @ el
Ircosh \maw )
For large angles and high intensities, this mechanism be-
comes appreciable (and the above expression needs to add

relativistic corrections). Also reflected light can increase the
maximum electric field that expels electrons.

EoE?J S'Hl3 4

P, = Ymv?/2r = y

gin? 9

P, /I=
o/ 29 (:039&0

8.3.2 J x B heating

Tn the preceding discussion we neglected the forward motion
of the electrons, which is important at high intensity, Forward
going electrons can also be injected into a target at sufficient
depth to be liberated from the influence of the laser field. The
j x B mechanism is otherwise the same as Brunel heating,
and both are sometimes termed as vacuum heating (since it is
hot particles from outside the surface that are ejected into the
target at high velocity). Since the j x B force propels elec-
trons into the target twice in any laser cycle, electron bunches
spaced by c/2w are generated. The existence of these bunches
can be inferred by the detection of transition radiation when
these bunches exit the rear of a thin solid target, at a charac-
teristic frequency of 2w (along with the w signature of Brunel
heated electrons). Unlike Branel heating, j x I heating is
equally effective for either S or P polarisation. Hence the lack
of sensitivity on the polarisation in high intensity laser solid
interaction due to the increasing effect of j x B heating,

In any case at high intensity, a tail of electrons is observed



whose energy varies as (IA*)1/2 not I)\? suggesting that
though absorption is high, the energy is quickly redistributed
to other electrons,

8.4 Light pressure

The pressure due to a light beam of N photons each of mo-
mentum p being absorbed on a surface is given by,

Pp=F[A= NAp/AAt = nycpAALJAAL = TpCp

where ny, is the density of the photons, But we can also write
the intensity (energy per unit time per unit area), as,

I = nphwe = nyhk = nyp

Hence P, = I/c. Note for reflected photons it would be
twice this value. So for example for Vulcan PW, I = 1. 104
Wem™2, P = 3- 1018 Pa = 300 Gbar,

8.5

We can include this light pressure in the fluid equations of
motion, rewriting continuity and force equations,

Bp I

Hole boring shock

B T 7 P =0
dpu  Gpu® D
— D —— — P =
e + gy +3m(Z e+ Pr)=10

In a frame in which the shock is stationary, then the time
derivatives become zero, so the equations become,

pu = const,
put =Py =1/c

From the second equation we get directly,
u = (I/pc)"’?

for Vulcan PW, I = 1. 10*! Wem™2, and an Al target of
2.7-10% kgm=? gives u = 0.01c or about 3 zm/ps.

The energy of the protons associated with this shock is 60
keV, By ‘bouncing’ stationary ions of the shock front, it is
possible to gain jon energies in excess of 2Ugock, i.6. &2 4x
the energy. However this is still much smaller than the ener-
gies found in these interaction energies {protons ~ 50 MeV cf
next section). Of course redncing density could lead to more
energetic ions.

8.6 Radiation pressure acceleration

However if whole foil is thin enough (d < ¢/wp), then all
electrons can be pushed forward and then foil can move as a
single body;

dv
pdAg =JA/c

Assuming constant acceleration & = I/pcd, and so v =
I7/ped. For VuleanPW (7 = 1 x 1025 Wem™2) and then
v can become relativistic in only ~ 100’s fs. However this
requires that the foil is not strongly heated (and so exploding)
before main pulse arrives. Circular polarisation can help turn
off § x B heating.

9 Jon acceleration

The quiver velocity of ions in a laser field is given by
Vose/C = ZeE/Mcew = (Zm/M)ag. Even for protons this
is ~ 2000 less than for electrons, hence v,4¢/c — 1 only
for intensities 7 > 1 - 10%* Wem 2,

However tons can be accelerated more efficiently by the space
charge forces produced by energetic electrons, The hot elec-
trons produced in high intensity interaction have a tempera-
ture on the order of the ponderomotive potential 7%, A De-
bye sheath forms on the back surface which has a potential
U o kpTy. As the sheath expands, so ions can experience
this field for longer, and so gain energies greater than kgd},.
The sheath field can be calculated by balance with the hot
electron pressure gradient,

EJPh Bn;,,
=2 = Ty
Tine dr By
So the field is & ~ T}, /Ly, where Ly, = ny/(8np/8z). The
continuity and force equation for the ions are

8’.‘?,1' a
E—F%(mw) ﬁO
s |y 20 _ Ze
ot Yer T M

Putting in the F field generated by the hot electrons and as-
suming quasi-neutrality ry, ~ Zn;,

61)1- 81)1'

L VA %_
8t Y

M n, 8z

5 1 Ony
- ==
T Oz

where we denote the ion expansion speed as ¢, =
(ZT,/M)*/2. There exists a self-similar solution,

Uy = ¢ + 3/t
nq = ng exp{—x/cst)

The solution does has a set-back of being infinite in extent.
This can be resolved by truncating the density profile at the
point that the density scale length equals the local Debye
length, (where the sheath prevents further electron escape).

i

LT
m\ = Cstf = )\d(mf} where

5 (:E ): EngT 1/2_ Cg Tig 2
G = et  wpin \ng(zs)




Using the self-similar solutions,

= ¢ (1 +In (nfTE;f)>)
o (o (om222Y)

= e[l 4 21n (wpioty)] = ces

Vmax

where o is thus a multiplier accounting for the expansion of
the front. The energy of the ions is given by £ M7, (since
these energies are still non-relativistic for ions). So,

Winaz = Cﬁ2k’BT/2

Typically c is only of the order of a few, and so the energies
are on the order of Tho;

Note that energetic ions can be found on both the rear as well
as the front surface of solid targets. This is because the hot
electrons generated on the front surface of a high intensity
interaction will be transported (almost collisionlessly) to the
back surface, where the same sheath expansion occurs. In-
deed the ions from the rear surface can actually have better
qualities, since the extra distance can allow smoothing of the
hot electron flux from the rear surface (resulting in a more
uniform acceleration). These ion beams, being quasineutral,
have very high quality compared to other sources of energetic
ions (though large energy spread usually).

10 Electron transport

If one assumes that all of the absorbed intensity from a short
pulse laser is converted into a beam of encrgetic electrons
travelling into the target, then one can calculate the current
due to this beam. Unfortunately the magnetic energy of the
beam would be several orders of magnitude greater than the
energy in the electron beam itself. Hence one cannot trans-
port an unneutralised current in a solid. Instead a current from
the cold background must oppose the hot current of electrons.
Though the hot electrons are not particularly collisional, the
return current is, and this can severely restrict the energy
transport of hot electrons into a solid target.

The transport of electrons is given by np = Aexp(¢/ksT)
where ¢ is the inhibiting potential. So B = —Tw(Vna/na)-
Using the continuity equation and noting that the hot electron
current is determined by the cold resisitivity jo = —jn = o £,
This gives a non-linear diffusion equation,

any, o1y,
4 L= =0
ot v { eny, } v

which has a solution,

2
v = g [ —Z
b hT'L x+ Ry,

where the constants were given as,

-3
T Th, a -1
o i () ()
100 fs \ 100 keV 108 Qm~—1!
% 1.4.10%em™?

_ Th, 2 o _1
Bn = (IODkeV) (106 Qm*l)Iw 3 pm

which means even for modest intensities e.g. I1a = 1, Tj =
100 keV, the inhibition distance is ~ 3 pm. Normal colli-
sional stopping distance for the same energy > 70 um, hence
the importance of collective stopping.

11 Magnetic fields

Generation of magnetic fields in blow-off plasmas has been
observed for a long time, and is generally due to the elec-
trothermal term. i.e. for a quasistatic plasma

eE = VP =VnkT

. V x VnkyT
o ne

VxE

OB  Vnx VT

ot
Fields as large as 30 MG have been seen in the blow-off
plasma from high intensity laser matter interaction. However
the very large currents produced at the surface of a high inten-
sity laser solid interaction can produce even larger magnetic
fields. For electrons which are ponderomotively accelerated
into a solid target (by j x B oc VI heating). So 7 = newv, o
nV I, and so using Ampere’s law, V2B o« Vn x VI, whichis
in the opposite direction to the thermoelectric magnetic field.
These fields can be huge, and fields in excess of 700 MG have
been observed by cut-off of harmonics generated at the sur-
face of the laser-solid interaction.
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