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Lecture 3-HT Nonlinear beam dynamics (I)
Motivations: nonlinear magnetic multipoles
Phenomenology of nonlinear motion
Simplified treatment of resonances (stopband concept)
Hamiltonian of the nonlinear betatron motion

Lecture 4-HT Nonlinear beam dynamics (II)
Hamiltonian of the nonlinear betatron motion (cntd)
Resonance driving terms
Tracking
Dynamic Aperture and Frequency Map Analysis
Spectral Lines and resonances
Nonlinear beam dynamics experiments at Diamond



Hamiltonian of nonlinear betatron motion

We define H0 the linear part (dependent only on dipoles and normal quadrupoles)
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and V the nonlinear part dependent on the nonlinear magnetic multipoles 

The Hamiltonian for the nonlinear betatron motion is given by
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Normalisation of the linear part of the Hamiltonian

We define a canonical transformation that reduces the linear part of the Hamiltonian 
to a rotation
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In detail

linear Courant-Snyder invariant

This transformation reduces ellipses in phase space to circles and the motion to a 
rotation along these circles, for linear systems
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Resonance driving terms (I)
The new Hamiltonian reads
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The hjklmp are called resonance driving terms since they generate angle dependent 
terms in the Hamiltonian that are responsible for the resonant motion of the particles 

(i.e. motion on a chain of islands or on a separatrix). 

On the islands the betatron tuned satisfy a resonant condition of the type 

NQx + MQy = p → resonance (N, M) N = j – k and M = l – m

Terms of the type hjjkkp produce detuning with amplitude to the lowest order in the 
multipolar gradient, but they can interfere with other terms in the Hamiltonian to 

create resonances (perturbative theory of betatron motion)

Without angle dependent term the motion will be just an amplitude dependent 
rotation



Non resonant and single resonance Hamiltonian

The dynamics with only detuning terms 
is an amplitude dependent rotation
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The dynamics with angle dependent 
terms exhibits fixed points, island

e.g. for the (4,0) resonance



Resonance driving terms (II)
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The resonant driving terms are integrals over the whole length of the accelerator of 
functions which depend on the s-location of the multipolar magnetic elements
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Each resonance driving term hjklmp contributes to the Fourier coefficient of a well 
precise spectral line

The solution for the stable betatron motion can be written as a quasi periodic signal
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to first order in the 
multipoles strengths



Resonance driving terms from sextupoles
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Let us consider the driving terms generated by a normal sextupole. In the general 
definition of driving term

We substitute the function that give the azimuthal distribution of the normal 
sextupoles along the ring
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generate the following resonant driving terms (see Guignard, Bengtsson)
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exciting the resonances (3, 0) (1, 0) (1, 2) (1, –2)

from V30 j+k = 3; l+m =0



Example: third order resonance with a sextupole
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Consider a linear lattice with a single sextupole kick. The resonance driving terms 
h3000 exciting the third order resonance (3,0) generates the frequency 

xQh 2)( 3000 −=ν

Qx = 0.31
– 2Qx = –0.62 ⇒ 0.38

Qx = 0.33 – 2Qx = –0.66 ⇒ 0.34

Approaching the resonant value Qx = 1/3

the tune spectral line (Qx) and 

the h3000 spectral line (-2Qx) coalesce

Far from the resonant values Qx = p/3 e.g.

the lines Qx and -2Qx are well separated



Resonance driving terms from octupoles
In an analogous way we can see that the normal octupoles in the circular ring
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generate the following resonant driving terms (see Guignard, Bengtsson)
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Resonance compensation
From the analysis of the Fourier expansion of the driving term we can infer simple 
rules to compensate the effect of strongly excited nonlinearities

The aim is to reduce the driving term
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We have to find suitable distribution of nonlinear magnetic elements along the ring, 
i.e. suitable functions Vm,n(s) that reduce or cancel those driving terms which are 
stronger in the uncorrected machine.

Typically two equal sextupoles at 60 degree phase advance apart compensate each 
other, in the (3,0) resonance driving term (and p=0 which is the strongest term)

In an analogous way two equal octupoles at 45 degree phase advance apart 
compensate each other in the (4,0) driving terms

However their effect on all the other resonances has to be assessed!



Can a sextupole excite a 4-th order resonance? (I)

Substituting, ordering the contributions with the same perturbative order we have

Let us consider the nonlinear Hill’s equation for the case of a linear lattice where a 
single sextupole kick is added
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Let us use a perturbative procedure and try to solve this equation by successive 
approximations. The perturbation parameter ε is proportional to the sextupole 
strength k2. We look for a solution of the type:

)()()()( 3
2

2
10 εεε Osxsxxsx +++=

0)( 02
0

2

=+ xsK
ds

xd
)()()( 2

0212
1

2

sxskxsK
ds

xd
=+

)(
)(

1)( 12 sk
s

sK −=
ρ

)()()(2)( 10222
2

2

sxsxskxsK
ds

xd
=+

order zero: ε0 first order: ε1 second order: ε2



Can a sextupole excite a 4-th order resonance? (II) 

The series obtained from the successive approximation are in general 
divergent, however the first term of the series, judiciously chosen, offer a good 
approximation of the nonlinear betatron motion

At each step we are using functions already calculated at the previous steps
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Linear solution

Term generated by the 3rd order 
resonance; linear with k2 (first 
order)

Terms generated by the 4th order 
and 2nd order resonance; 
quadratic with k2 (second order)
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Can a sextupole excite a 4-th order resonance? (III)

Tracking particles close to the resonant tune value, starting at the same tune 
distance from the resonance, show that a sextupole can excite all higher order 

resonances. The islands width is smaller for higher orders, i.e. the corresponding 
resonances are weaker

The equations can be solved numerically. The phase space plots of the motion of 
a charged particle in a lattice with a single thin sextupole are given by

Q = 1/3 +0.005
smaller scales in plot

Tiny dynamic aperture

Q = 1/4 +0.005

Q = 1/5 +0.005 Q = 1/6 +0.005



Tracking (I)
Most accelerator codes have tracking capabilities: MAD, MADX, Tracy-II, elegant, 
AT, BETA, transport, …

Typically one defines a set of initial coordinates for a particle to be tracked for a 
given number of turns.

The tracking program “pushes” the particle through the magnetic elements. Each 
magnetic element transforms the initial coordinates according to a given 
integration rule which depends on the program used, e.g. transport (in MAD)
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Tracking (II)

Elements described by thin lens kicks and drifts are always symplectic: long 
elements are usually sliced in many sections.

)( if xMx = M is symplectic transformation

The well-known Runge-Kutta integrators are not symplectic. Likewise the truncated 
Taylor map is not symplectic. They are good for transfer line but they should not be 
used for circular machine in long term tracking analysis
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If the integrator is not symplectic 
one may found artificial damping 

or excitation effect

A Hamiltonian system is symplectic, i.e. the map which defines the evolution is 
symplectic (volumes of phase space are preserved by the symplectic map)
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Frequency Map Analysis
The Frequency Map Analysis is a technique introduced in Accelerator Physics form 
Celestial Mechanics (Laskar).

It allows the identification of dangerous non linear resonances during design and 
operation. Strongly excited resonances can destroy the Dynamic Aperture.

To each point in the (x, y) aperture there 
corresponds a point in the (Qx, Qy) plane

The colour code gives a measure of the 
stability of the particle (blu = stable; red = 
unstable)

The indicator for the stability is given by 
the variation of the betatron tune during 
the evolution: i.e. tracking N turns we 
compute the tune from the first N/2 and 
the second N/2
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Frequency Map Measurement (I)
The measurement of the Frequency Map requires a set of two independent kickers 
to excite betatron oscillations in the horizontal and vertical planes of motion;

The Beam Position Monitors (BPMs) must have turn-by-turn capabilities (at least one 
!) in order to be able to measure the tunes from the induced betatron oscillations;

The betatron tune is generally the frequency corresponding to the maximum 
amplitude in the spectrum;



Frequency Map Measurement (II)
A example of betatron oscillations recorded after a kick in the vertical plane at 
diamond. 

256 turns are recored: the time signals of many kicks is superimposed to check the 
reproducibility of the kick and of the oscillations, small variation in the betatron tunes 
are detected (2e-4).



ALS measured ALS model

FM measurement at the Advanced Light Source

Advanced Light Source

Energy = 1.5 – 1. 9 GeV

Circumference 198.6 m

Two single turn pinger H and V (600 ns)

Turn by Turn BPMs

40 electron bunches – 10 mA 

Used LOCO to set the linear lattice and 
restore super-periodicity (12–fold)

3Qx + 2Qz

4Qx + Qz

Very good comparison machine – model !
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Dynamic Aperture: SOLEIL’s example

Black–model; Blue–loss rate; Red unstable Black–model;  Colours measured

SOLEIL bare lattice at zero chromaticity

From magnetic measurements: 
Dipole: fringe field, gradient error, edge tilt errors

Coupling errors (random rotation of quadrupoles)
No quadrupole fringe fields

Systematic multipole errors
Dipole: up to 14-poles
Quadrupoles: up to 28-poles
Sextupoles: up to 54-poles
Correctors (steerers): up to 22-poles 
Secondary coils in sext. strong 10-pole term

Tracking includes



Phase space orbit analysis
Using a kicker and two BPMs with a known phase advance we can reconstruct the 
orbit in phase space. Typically if the BPMs are at 90 degrees with the same β one 
can recover x and x’ and plot the phase space

Diamond horizontal phase 
space close to the 5th order 

resonance (2000 turns)

The damping in amplitude is 
not simply due to radiative 
damping but mainly to the 

fact that the centre of charge 
of the bunch is undergoing 

filamentation in phase space 
(decoherence)



Frequency spectrum measured at all BPMs at 
Diamond

• excite the beam diagonally

• measure tbt data at all BPMs

• colour plots of the FFT

frequency / revolution frequency
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QX = 0.22 H tune in H

Qy = 0.36 V tune in V

All the other important lines 
are linear combination of 

the tunes Qx and Qy

m Qx + n Qy

All Diamond BPMs have turn-by-turn capabilities



FFT as a function of the kicker strength

Qy seen in the H plane: (1,1) resonance
2Qy seen in the H plane: (1,2) resonance2Qx seen in the H plane: (3,0) resonance

Qx seen in the V plane: (1,1) resonance

Detuning with amplitude and next to leading 
frequencies from turn-by-turn data

The information in the spectral lines can be used to compensate the resonant 
driving terms and improve the dynamic aperture of the ring
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