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Summary of last lecture — Instabilities I

¢ 1.
° 2.
¢ 3.
¢ 4.
®5S.
¢ 6.
* 7.
¢ 3.
*9.

General Comment on Instabilities
Negative Mass Instability

Driving terms (second cornerstone)
A cavity-like object is excited
Equivalent circuit

Above and below resonance

Laying the bricks in the wall (row 1)
Laying the bricks in the wall (row 2)
By analogy with the negative mass
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Instabilities 11

¢ 1.
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¢ 3.
* 4.
5.
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* 7.
¢ 8.
*9.
¢ 10

A short cut to solving the instability
An imaginative leap

The effect of frequency shift
Square root of a complex Z
Contours of constant growth
Landau damping

Stability diagram

Robinson instability

Coupled bunch modes

Microwave instability
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A short cut to solving the instability

¢ From theory of synchrotron motion:
¢ Recall the effect of a voltage of a cavity

d E0ﬂ27/¢ o i _
dt{ 2t :|+VO(S|n $—sin g, ) =

¢ Assume the particles have initially a small
phase excursion about ¢s =0

{ S/ 7}¢+evo¢ 0

2renf
or
p+0, °¢=0
where
2 _{ nhv J 2
s = 9) @
2k By

is the synchrotron frequency and w,is the
revolution frequency.
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An imaginative leap

BE

CL2 ”EO,BZQ/ ’

¢ Put in the volts induced by the beam in the
cavity instad of the volts imposed from
outside

V h= —inZl,

h=>n=w/ w,

¢ i reflects the fact that, unlike the RF wave
the volts induced by a resistive load cross
zero 90 degrees after the passage of the
particle

¢ This bypasses much analysis and gives the
right formula for the frequency shift.

77505”[0
2’ E
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The effect of frequency shift

¢ Remember that a force driving an oscillator
may be written on the right hand side:

¢. +Q02¢ — F(t)

¢ Alternatively it can be assimilated into the
frequency

$+(2,+A4Q2Y ¢=0

770)5”[0
2f°E

(AQ) = —i{ Jz ==i£7

eif 77 is positivezand Z. pure imaginary
(reactive) A(Q)is real and there is just a
change in frequency.

¢ if Z has a resistive component this gives an
imaginary part to ViZ

¢ Imaginary frequencies can signal exponential
growth
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Square root of a complex Z

¢ Be careful to first multiply Z by i and then
take the square root Ji7 = Ji(X +iY)

¢ There will be a locus in (X,Y) space where the
imaginary part is constant which will be a
contour of constant growth rate

¢ Suppose the solution to the differential
equation is

¢: ¢0 e—iQt — ¢O e—i(a+i,8)t

£

cY = - B > 2
2p) ~ X =28V E+ 1 & h
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Contours of constant growth

\Xzzﬂ\/Y/§+ﬂ2/§2|

growthrate: f=1/7_

rise

¢ Changing the growth
rate parameter 3 we
have a set of parabolas
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Landau damping — the idea

¢ Two oscillators excited together become
incoherent and give zero centre of charge
motion after a number of turns comparable
to the reciprocal of their frequency difference
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Landau Damping - the maths

9(€2)

normalization
QZ
o jg(Q) dQ =1

Q, Q, Q

N particles (oscillators), each resonating at a
frequency between Q; and Q, with a density g(Q)

1 - 1 :
X = ot — ot
Qo © (Q-0)Q+o0) °
H_J

Response X of an individual oscillator 5
with frequency Q to an external °
excitation with ®

Coherent response of the beam obtained by summing
up the single-particle responses of the n oscillators

o [wimo External excitation
: is outside the ) dg(Q)
; oo frequency range of N Q21 40 ¢
L N\ oelatrs - the oscillators S= | dQ-e'®
B o 20) (O

\E Q Q2 0 Ql
é No damping

External excitation is
inside the frequency
range of the oscillators
__, Vheintegral has a

pole at Q=®

See Schindl p9 3
for more about NN

this \(
integration Landau dampinb
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Stability diagram

INDUGTIVE
Im

Landau damping here

RESISTIVE

contolrs of |ﬂ.’H’BB.E|m
growth rate Im (AQ)

CAPACITIVE

¢ Keil Schnell stability criterion:

/

n

| p

o

< FmOCZIBZVU(Apj 2
FWHH
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Single Bunch + Resonator: “"Robinson”
Instability

LONGITUDINAL

AE wf/ PHASE PLANE “Dipole" mode or
K}}\ "Rigid Bunch" mode

}L o(ort)
SEEN ON A smgle. bur!ch rotates
Charge o  ASCOPE in longitudinal phase
density 1P (SYNCHRONOUS ) _
DETECTOR) plane with o
\ its phase ¢ and energy
0 oort) AE also vary with o,

Bunch sees resonator impedance at ®, = ®,

T<"% Y>"%

Z. () Z ()
UNSTABLE UNSTABLE

Beam frequefcx Resonanmv\ /ee SChlIldl p 10

o <0,

Whenever AE>0. Whenever’ AE>0:

« ® increases (below transition) -« o decrdases (above transition)
* sees larger real impedance R, - sees smaller real impedance R,
*more energy taken from beam - less gnergy taken from beam
» STABILIZATION > INSTABILITY

/

®> 74
UNSTABLE STABLE
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Longitudinal Instabilities with Many Bunches

O Fields induced in resonator remain long enough to
influence subsequent bunches

0 Assume M = 4 bunches performing synchrotron
oscillations

Coupled-Bunch
Modes n

AE
L O Q O O All bunches in phase
¢
m N N\ N R
‘ Phase shift between
) O O O omivermms
L4
— 2

O O O
O QO OO

[ Four possible phase shifts between four bunches

a

oY)
a

[ M bunches: phase shift of coupled-bunch mode n:

2n1\—I:[,OSnSM—1:> M modes

More in Schindl pp. 14-17
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Growth rate of multi-bunch
transverse instability in the FCC hh

10*

—— DELPHI
= Sacherer

= 10 turns damping

— 50 turns damping

=
o
w

— 100 turns damping

10 turl{s

120 turns |
100 turns |

Growth rate [1/s]
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N
-
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Longitudinal Microwave Instability

« High-frequency density

2(0) modulation along the bunch
T /c’%\ - wave length « bunch length
» ¢ (frequencies 0.1-1 GHz)
R p— "« Fast growth rates - even leptons
concerned
}zo wrrow-Generated by “BROAD-BAND”
RESONA BSE
INDUCTIVE DANCE
1 Zr
\ . RESISTIVE
T RN
~r | = l e m. o
15 -0 \‘\‘ —05 ”’,’ 0.5 1.0 "‘-u-—tl.'s‘ GHz T
CAPACITIVE
. . 2 2
All elements in a ring 1—iQ¥ —©r o
are "lumped” into a Z(w)=R OOy Q~
low-Q resonator s o2 —02)> o, ~1GHz
yielding the I+ Q= .
impedance -
R
For small ® and Q=—
o, L

r

R.o .R{ o/o, .R, oyn
“Impedance” of a  Zo)xi——=i—b—L=j—=2

I_
: Qo, C o/ o, Q o,
synchrotron in Q r

*This inductive impedance is caused mainly by

/ discontinuities in the beam pipe
—| = Lo, * If high, the machine is prone to instabilities
Nig - Typically 20...50 Q for old machines

« <1 Q for modern synchrotrons

More in Schindl ?g) 16-18 @
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Summary of Instabilities 11

¢ 1.
¢ 2.
¢ 3.
* 4.
5.
¢ 6.
* 7.
¢ 8.
*9.
¢ 10

A short cut to solving the instability
An imaginative leap

The effect of frequency shift
Square root of a complex Z
Contours of constant growth
Landau damping

Stability diagram

Robinson instability

Coupled bunch modes

Microwave instability
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