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Summary of last lecture – Instabilities I 

 1. General Comment on Instabilities 

 2. Negative Mass Instability 

 3. Driving terms  (second cornerstone) 

 4. A cavity-like object is excited 

 5. Equivalent circuit 

 6. Above and below resonance 

 7. Laying the bricks in the wall (row 1) 

 8. Laying the bricks in the wall (row 2) 

 9. By analogy with the negative mass 
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 1. A short cut to solving the instability 

 2. An imaginative leap 

 3. The effect of frequency shift 

 4. Square root of a complex Z 

 5. Contours of constant growth 

 6. Landau damping 

 7. Stability diagram 

 8. Robinson instability 

 9. Coupled bunch modes 

 10    Microwave instability 

Instabilities II 
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A short cut to solving the instability 

 From theory of synchrotron motion: 

Recall the effect of a voltage of a cavity  

 

 

 

Assume the particles have initially a small 
phase excursion about s = 0 
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is the synchrotron frequency and     is the 
revolution frequency. 
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An imaginative leap 

 Put in the volts induced by the beam in the 
cavity instad of the volts imposed from 
outside 

 

 

 

 i    reflects the fact that, unlike the RF wave 
the volts induced by a resistive load cross 
zero 90 degrees after the passage of the 
particle 

 This bypasses much analysis and gives the 
right formula for the frequency shift. 
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The effect of frequency shift 

Remember that a force driving an oscillator 
may be written on the right hand side: 

 

 

Alternatively it can be assimilated into the 
frequency 

 

 

where: 

 

 

 

 if       is positive  and Z pure imaginary 
(reactive)            is real and there is just a 
change in frequency. 

 if Z has a resistive component this gives an 
imaginary part to 

 Imaginary frequencies can signal exponential 
growth  
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Square root of a complex Z 

 Be careful to first multiply Z by i and then 
take the square root 

 

 There will be a locus in (X,Y) space where the 
imaginary part is constant which will be a 
contour of constant growth rate 

 Suppose the solution to the differential 
equation is  
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Contours of constant growth 

 Changing the growth 
rate parameter we 
have a set of parabolas 

X  2 Y /   2
/  2

rise /1  :rategrowth 
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Landau damping – the idea 

 Two oscillators excited together become 
incoherent and give zero centre of charge 
motion after a number of turns comparable 
to the reciprocal of their frequency difference 
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Landau Damping – the maths 

N particles (oscillators), each resonating at a 
frequency between  1 and 2  with a density g() 

g()d  1
1

2



Response X of an individual oscillator 
with frequency  to an external 
excitation with  
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Coherent response of the beam obtained by summing 
up the single-particle responses of the n oscillators 

normalization 

External excitation is 
inside the frequency 
range of the oscillators 
The integral has  a  
pole at  
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External excitation 
is outside the 
frequency range of 
the oscillators 

No damping 

Landau damping 

See Schindl p9  

for more about 

this 

integration 
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Stability diagram 

Keil Schnell stability criterion: 
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Single Bunch + Resonator: “Robinson” 
Instability 

A single bunch rotates 
in longitudinal phase 

plane with s:  

its phase and energy 
E also vary with s  

“Dipole” mode or 
“Rigid Bunch” mode 

Bunch sees resonator impedance at r  0 

Whenever E>0: 

•  increases (below transition) 
• sees larger real impedance R+ 

• more energy taken from beam 

 STABILIZATION 

Whenever E>0: 

•  decreases (above transition) 
• sees smaller real impedance R+ 

• less energy taken from beam 

 INSTABILITY 

<r

>r 

UNSTABLE                                  STABLE 

 see Schindl p 10 
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Longitudinal Instabilities with Many Bunches 

2
n

M
, 0  n  M1 M modes 

 Fields induced in resonator remain long enough to 
influence subsequent bunches 
 Assume M = 4 bunches performing synchrotron 
oscillations 

 Four possible phase shifts between four bunches 

 M bunches: phase shift of coupled-bunch mode n: 

Coupled-Bunch 
Modes n 

More in Schindl  pp. 14-17 
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Growth rate of multi-bunch 
transverse instability in the FCC hh 
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Longitudinal Microwave Instability 

• High-frequency density 
modulation along the bunch 
• wave length « bunch length 
(frequencies 0.1-1 GHz) 
• Fast growth rates – even leptons 
concerned  

• Generated by  “BROAD-BAND”             
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“Impedance”  of a  
synchrotron in  

•This inductive impedance is caused mainly by  
  discontinuities in the beam pipe  
• If high, the machine is prone to instabilities 
• Typically 20…50  for old machines 
• < 1 for modern synchrotrons 

More in Schindl  pp. 16-18 
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 1. A short cut to solving the instability 

 2. An imaginative leap 

 3. The effect of frequency shift 

 4. Square root of a complex Z 

 5. Contours of constant growth 

 6. Landau damping 

 7. Stability diagram 

 8. Robinson instability 

 9. Coupled bunch modes 

 10    Microwave instability 

Summary of Instabilities II 


