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An imaginative leap

BE

CL2 ”EO,BZQ/ ’

¢ Put in the volts induced by the beam in the
cavity instad of the volts imposed from
outside

V h= —inZl,

h=>n=w/ w,

¢ i reflects the fact that, unlike the RF wave
the volts induced by a resistive load cross
zero 90 degrees after the passage of the
particle

¢ This bypasses much analysis and gives the
right formula for the frequency shift.
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The effect of frequency shift

¢ Remember that a force driving an oscillator
may be written on the right hand side:

¢. +Q02¢ — F(t)

¢ Alternatively it can be assimilated into the
frequency

$+(2,+A4Q2Y ¢=0
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(AQ) = —i{ Jz ==i£7

eif 77 is positivezand Z. pure imaginary
(reactive) A(Q)is real and there is just a
change in frequency.

¢ if Z has a resistive component this gives an
imaginary part to ViZ

¢ Imaginary frequencies can signal exponential
growth
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Square root of a complex Z

¢ Be careful to first multiply Z by i and then
take the square root Ji7 = Ji(X +iY)

¢ There will be a locus in (X,Y) space where the
imaginary part is constant which will be a
contour of constant growth rate

¢ Suppose the solution to the differential
equation is

¢: ¢0 e—iQt — ¢O e—i(a+i,8)t

£

cY = - B > 2
2p) ~ X =28V E+ 1 & h
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Contours of constant growth

\Xzzﬂ\/Y/§+ﬂ2/§2|

growthrate: f=1/7_

rise

¢ Changing the growth
rate parameter 3 we
have a set of parabolas
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Landau damping — the idea

¢ Two oscillators excited together become
incoherent and give zero centre of charge
motion after a number of turns comparable
to the reciprocal of their frequency difference
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Landau Damping - the maths

9(€2)

normalization
QZ
o jg(Q) dQ =1

Q, Q, Q

N particles (oscillators), each resonating at a
frequency between Q; and Q, with a density g(Q)

1 - 1 :
X = ot — ot
Qo © (Q-0)Q+o0) °
H_J

Response X of an individual oscillator 5
with frequency Q to an external °
excitation with ®

Coherent response of the beam obtained by summing
up the single-particle responses of the n oscillators

o [wimo External excitation
: is outside the ) dg(Q)
; oo frequency range of N Q21 40 ¢
L N\ oelatrs - the oscillators S= | dQ-e'®
B o 20) (O

\E Q Q2 0 Ql
é No damping

External excitation is

See Schindl P9 inside the frequency
range of the oscillators

for more about o __, Vheintegral has a

this \( T pole at Q=®
Integration . Landau dampinb
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Stability diagram

INDUGTIVE
Im

Landau damping here

RESISTIVE

contolrs of |ﬂ.’H’BB.E|m
growth rate Im (AQ)

CAPACITIVE

¢ Keil Schnell stability criterion:
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Single Bunch + Resonator: “"Robinson”
Instability

LONGITUDINAL

AE wf/ PHASE PLANE “Dipole" mode or
K}}\ "Rigid Bunch" mode

}L o(ort)
SEEN ON A smgle. bur!ch rotates
Charge o  ASCOPE in longitudinal phase
density 1P (SYNCHRONOUS ) _
DETECTOR) plane with o
\ its phase ¢ and energy
0 oort) AE also vary with o,

Bunch sees resonator impedance at ®, = ®,

T<"% Y>"%

Z. () Z ()
UNSTABLE UNSTABLE

Beam frequefcx Resonanmv\ /ee SChlIldl p 10

o <0,

Whenever AE>0. Whenever’ AE>0:

« ® increases (below transition) -« o decrdases (above transition)
* sees larger real impedance R, - sees smaller real impedance R,
*more energy taken from beam - less gnergy taken from beam
» STABILIZATION > INSTABILITY

/

®> 74
UNSTABLE STABLE
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Longitudinal Instabilities with Many Bunches

O Fields induced in resonator remain long enough to
influence subsequent bunches

0 Assume M = 4 bunches performing synchrotron
oscillations

Coupled-Bunch
Modes n

AE
L O Q O O All bunches in phase
¢
m N N\ N R
‘ Phase shift between
) O O O omivermms
L4
— 2

O O O
O QO OO

[ Four possible phase shifts between four bunches

a

oY)
a

[ M bunches: phase shift of coupled-bunch mode n:

2n1\—I:[,OSnSM—1:> M modes

More in Schindl pp. 14-17
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Growth rate of multi-bunch
transverse instability in the FCC hh

10*

—— DELPHI
= Sacherer

= 10 turns damping

— 50 turns damping

=
o
w

— 100 turns damping

10 turl{s

120 turns |
100 turns |

Growth rate [1/s]
|_I
ONI

N
-
'-x

0 E E i
10 5 10 15 20 25 30 35 40
half-gap [mm]

Lecture 25 - E. Wilson - 2/4/2015 - Slide 1 1



Longitudinal Microwave Instability

« High-frequency density

2(0) modulation along the bunch
T /c’%\ - wave length « bunch length
» ¢ (frequencies 0.1-1 GHz)
R p— "« Fast growth rates - even leptons
concerned
}zo wrrow-Generated by “BROAD-BAND”
RESONA BSE
INDUCTIVE DANCE
1 Zr
\ . RESISTIVE
T RN
~r | = l e m. o
15 -0 \‘\‘ —05 ”’,’ 0.5 1.0 "‘-u-—tl.'s‘ GHz T
CAPACITIVE
. . 2 2
All elements in a ring 1—iQ¥ —©r o
are "lumped” into a Z(w)=R OOy Q~
low-Q resonator s o2 —02)> o, ~1GHz
yielding the I+ Q= .
impedance -
R
For small ® and Q=—
o, L

r

R.o .R{ o/o, .R, oyn
“Impedance” of a  Zo)xi——=i—b—L=j—=2

I_
: Qo, C o/ o, Q o,
synchrotron in Q r

*This inductive impedance is caused mainly by

/ discontinuities in the beam pipe
—| = Lo, * If high, the machine is prone to instabilities
Nig - Typically 20...50 Q for old machines

« <1 Q for modern synchrotrons

More in Schindl H) 16-18 @
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Summary of Instabilities 11

¢ 1.
¢ 2.
¢ 3.
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A short cut to solving the instability
An imaginative leap

The effect of frequency shift
Square root of a complex Z
Contours of constant growth
Landau damping

Stability diagram

Robinson instability

Coupled bunch modes

Microwave instability
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