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Instabilities II 
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An imaginative leap 

 Put in the volts induced by the beam in the 
cavity instad of the volts imposed from 
outside 

 

 

 

 i    reflects the fact that, unlike the RF wave 
the volts induced by a resistive load cross 
zero 90 degrees after the passage of the 
particle 

 This bypasses much analysis and gives the 
right formula for the frequency shift. 
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The effect of frequency shift 

Remember that a force driving an oscillator 
may be written on the right hand side: 

 

 

Alternatively it can be assimilated into the 
frequency 

 

 

where: 

 

 

 

 if       is positive  and Z pure imaginary 
(reactive)            is real and there is just a 
change in frequency. 

 if Z has a resistive component this gives an 
imaginary part to 

 Imaginary frequencies can signal exponential 
growth  
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Square root of a complex Z 

 Be careful to first multiply Z by i and then 
take the square root 

 

 There will be a locus in (X,Y) space where the 
imaginary part is constant which will be a 
contour of constant growth rate 

 Suppose the solution to the differential 
equation is  

 

 

 

  We must solve for constant 
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Contours of constant growth 

 Changing the growth 
rate parameter we 
have a set of parabolas 

X  2 Y /   2
/  2

rise /1  :rategrowth 
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Landau damping – the idea 

 Two oscillators excited together become 
incoherent and give zero centre of charge 
motion after a number of turns comparable 
to the reciprocal of their frequency difference 
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Landau Damping – the maths 

N particles (oscillators), each resonating at a 
frequency between  1 and 2  with a density g() 

g()d  1
1

2



Response X of an individual oscillator 
with frequency  to an external 
excitation with  
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Coherent response of the beam obtained by summing 
up the single-particle responses of the n oscillators 

normalization 

External excitation is 
inside the frequency 
range of the oscillators 
The integral has  a  
pole at  
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External excitation 
is outside the 
frequency range of 
the oscillators 

No damping 

Landau damping 

See Schindl p9  

for more about 

this 

integration 
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Stability diagram 

Keil Schnell stability criterion: 

2
22

0

FWHHo p

p

I

cFm

n

Z














Lecture 25 - E. Wilson - 2/4/2015 - Slide 9 

Single Bunch + Resonator: “Robinson” 
Instability 

A single bunch rotates 
in longitudinal phase 

plane with s:  

its phase and energy 
E also vary with s  

“Dipole” mode or 
“Rigid Bunch” mode 

Bunch sees resonator impedance at r  0 

Whenever E>0: 

•  increases (below transition) 
• sees larger real impedance R+ 

• more energy taken from beam 

 STABILIZATION 

Whenever E>0: 

•  decreases (above transition) 
• sees smaller real impedance R+ 

• less energy taken from beam 

 INSTABILITY 

<r

>r 

UNSTABLE                                  STABLE 

 see Schindl p 10 
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Longitudinal Instabilities with Many Bunches 

2
n

M
, 0  n  M1 M modes 

 Fields induced in resonator remain long enough to 
influence subsequent bunches 
 Assume M = 4 bunches performing synchrotron 
oscillations 

 Four possible phase shifts between four bunches 

 M bunches: phase shift of coupled-bunch mode n: 

Coupled-Bunch 
Modes n 

More in Schindl  pp. 14-17 
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Growth rate of multi-bunch 
transverse instability in the FCC hh 
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Longitudinal Microwave Instability 

• High-frequency density 
modulation along the bunch 
• wave length « bunch length 
(frequencies 0.1-1 GHz) 
• Fast growth rates – even leptons 
concerned  

• Generated by  “BROAD-BAND”             
IMPEDANCE 
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All elements in a ring 
are “lumped” into a 
low-Q resonator 
yielding the 
impedance  
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“Impedance”  of a  
synchrotron in  

•This inductive impedance is caused mainly by  
  discontinuities in the beam pipe  
• If high, the machine is prone to instabilities 
• Typically 20…50  for old machines 
• < 1 for modern synchrotrons 

More in Schindl  pp. 16-18 
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 1. A short cut to solving the instability 

 2. An imaginative leap 

 3. The effect of frequency shift 

 4. Square root of a complex Z 

 5. Contours of constant growth 

 6. Landau damping 

 7. Stability diagram 

 8. Robinson instability 

 9. Coupled bunch modes 

 10    Microwave instability 

Summary of Instabilities II 


