Instabilities II

ACCELERATOR PHYSICS

HT 2015

E. J. N. Wilson

http://cas.web.cern.ch/cas/Loutraki-Proc/PDF-files/I-Schindl/paper2.pdf

Lecture 25 - E. Wilson - $2/4/2015$ - Slide 1

An imaginative leap

 $\varOmega_{\!S}^2$ $\frac{2}{s} =$ ηhV_0 $2 \pi E_0 \beta^2$ γ \vert $\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$ \mathcal{L} \int_0^∞ 2

 Put in the volts induced by the beam in the cavity instad of the volts imposed from outside

 $V_0 h \Rightarrow -i n Z I_0$

 $h \Rightarrow n = \omega / \omega_0$

- *i* **reflects the fact that, unlike the RF wave the volts induced by a resistive load cross zero 90 degrees after the passage of the particle**
- **This bypasses much analysis and gives the right formula for the frequency shift.**

$$
(\Delta \Omega)^2 = -i \left[\frac{\eta \omega_0^2 n I_0}{2 \pi \beta^2 E} \right] Z = i \xi Z
$$

The effect of frequency shift

 Remember that a force driving an oscillator may be written on the right hand side:

$$
\left|\ddot{\phi} + \varOmega_0^2 \phi = F(t)\right|
$$

 Alternatively it can be assimilated into the frequency

$$
\ddot{\phi} + (\varOmega_0 + \varDelta \varOmega)^2 \phi = 0
$$

where:

$$
(\Delta \Omega)^2 = -i \left[\frac{\eta \omega_0^2 n I_0}{2 \pi \beta^2 E} \right] Z = -i \xi Z
$$

- \bullet if η is positive and Z pure imaginary (reactive) $\Delta(\Omega)^2$ is real and there is just a **change in frequency.** y it can be assin

y it can be assin
 $+\left(\Omega_0 + \Delta\Omega\right)^2 \phi =$
 $=-i\left[\frac{\eta \omega_0^2 n I_0}{2 \pi \beta^2 E}\right]Z$

tive and Z pure
 $(\Omega)^2$ is real and

equency.

sistive compone

art to \sqrt{iZ}
- **if Z has a resistive component this gives an imaginary part to** \sqrt{iZ}
- **Imaginary frequencies can signal exponential growth**

Square root of a complex Z

- **Be careful to first multiply** *Z* **by** *i* **and then take the square root** $\sqrt{iZ} = \sqrt{i(X + iY)}$
- ◆ There will be a locus in (X,Y) space where the **imaginary part is constant which will be a contour of constant growth rate**
- **Suppose the solution to the differential equation is**

$$
\phi = \phi_0 \quad e^{-i\Omega t} = \phi_0 \quad e^{-i(\alpha + i\beta)t}
$$

$$
= \phi_0 \quad e^{+\beta t} \quad e^{-i\alpha t}
$$

Contours of constant growth

 $X = 2\beta\sqrt{Y/\xi + \beta^2}$ $/ \xi^2$ 2

growth rate: $\beta = 1/\tau_{rise}$

 Changing the growth rate parameter we have a set of parabolas

 $J.A.$

Lecture 25 - E. Wilson - $2/4/2015$ - Slide 5

 Two oscillators excited together become incoherent and give zero centre of charge motion after a number of turns comparable to the reciprocal of their frequency difference

Landau Damping – the maths

N particles (oscillators), each **resonating** at a frequency between Ω_1 and Ω_2 with a density $g(\Omega)$

$$
X = \frac{1}{\Omega^2 - \omega^2} e^{i\omega t} = \frac{1}{(\Omega - \omega)(\Omega + \omega)} e^{i\omega t}
$$

Response **X** of an individual oscillator with frequency Ω to an external excitation with $\sim 2\Omega_0$

Coherent response of the beam obtained by summing up the single-particle responses of the n oscillators

Stability diagram

Keil Schnell stability criterion:

$$
\left|\frac{Z}{n}\right| \leq \frac{Fm_0c^2\beta^2\gamma\eta}{I_o} \left(\frac{\Delta p}{p}\right)_{FWHH}^2
$$

J.A.I

Lecture 25 - E. Wilson - $\frac{2}{4}/\frac{2015}{5}$ - Slide $\frac{8}{5}$

Single Bunch + Resonator: "Robinson" Instability

"Dipole" mode or "Rigid Bunch" mode

A single bunch rotates in longitudinal phase plane with $\omega_{\rm s}$: its **phase** ϕ and **energy** ΔE also vary with ω _s

Bunch sees **resonator impedance** at $\omega_r \approx \omega_0$

Lecture 25 - E. Wilson - $2/4/2015$ - Slide 9

Longitudinal Instabilities with Many Bunches

 Fields induced in resonator remain long enough to influence subsequent bunches

 \Box Assume M = 4 bunches performing synchrotron oscillations

 Four possible phase shifts between **four bunches M bunches: phase shift** of coupled-bunch mode **n**:

$$
2\pi \frac{n}{M}
$$
, $0 \le n \le M - 1 \Rightarrow M$ modes
More in Schmidt pp. 14-17

 $\rm{J~A}$.

Lecture 25 - E. Wilson - $\frac{2}{4}/\frac{2015}{5}$ - Slide 10

Growth rate of multi-bunch transverse instability in the FCC hh

J.A.I

Lecture 25 - E. Wilson - $2/4/2015$ - Slide 11

Longitudinal Microwave Instability

All elements in a ring are "lumped" into a low-Q resonator yielding the impedance

"Impedance" of a

synchrotron in Ω

$$
Z(\omega) = R_s \frac{1 - iQ \frac{\omega^2 - \omega_r^2}{\omega \omega_r}}{1 + \left(Q \frac{\omega^2 - \omega_r^2}{\omega \omega_r}\right)^2} \qquad Q \approx 1
$$
 GHz

For small ω and

$$
Q = \frac{R_s}{\omega_r L}
$$

$$
Z(\omega) \approx i \frac{R_s \omega}{Q \omega_r} = i \frac{R_s \omega}{Q \omega_c} \frac{\omega_0}{\omega_r} = i \frac{R_s}{Q} \frac{\omega_0 n}{\omega_r}
$$

$$
\left|\frac{Z}{n}\right|_0 = L\omega_0
$$

- •This **inductive impedance** is caused mainly by **discontinuities** in the beam pipe
- If **high**, the machine is **prone to instabilities**

 $J.A.I$

- Typically $20...50 \Omega$ for old machines
- **< 1** for **modern** synchrotrons

More in Schindl pp. 16-18
Lecture 25 - E. Wilson - 2/4/2015 - Slide 12 **More in Schindl**

Summary of Instabilities II

- **1. A short cut to solving the instability**
- **2. An imaginative leap**
- ◆ 3. The effect of frequency shift
- ◆ 4. Square root of a complex **Z**
- **5. Contours of constant growth**
- **6. Landau damping**
- **7. Stability diagram**
- **8. Robinson instability**
- **9. Coupled bunch modes**
- **10 Microwave instability**

 JAI