Instabilities I

ACCELERATOR PHYSICS

HT 2015

E. J. N. Wilson

http://cas.web.cern.ch/cas/Loutraki-Proc/PDF-files/I-Schindl/paper2.pdf

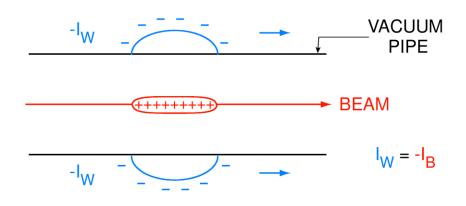
JAI

Lecture 24 - E. Wilson - 2/3/2015 - Slide 1

Instabilities I

- General Comment on Instabilities
- ♦ 2. Negative Mass Instability
- ♦ 3. Driving terms (second cornerstone)
- A cavity-like object is excited
- ♦ 5. Equivalent circuit
- ♦ 6. Above and below resonance
- ♦ 7. Laying the bricks in the wall (row 1)
- **8.** Laying the bricks in the wall (row 2)
- ♦ 9. By analogy with the negative mass

Impedance of the wall



Wall current I_w due to circulating bunch Vacuum pipe not smooth, I_w sees an IMPEDANCE :

> Resistive = in phase. capacitive lags, inductive leads

 $\begin{array}{l} \mbox{Impedance } \mathbf{Z} = \mathbf{Z}_r + \mathbf{i} \mathbf{Z}_i \\ \mbox{Induced voltage } \mathbf{V} \sim \mathbf{I}_w \ \mathbf{Z} = -\mathbf{I}_B \ \mathbf{Z} \end{array}$

V acts back on the beam ⇒ INSTABILITIES INTENSITY DEPENDENT

Test: If Initial Small Perturbation is :

INCREASED? INSTABILITY DECREASED? STABILITY

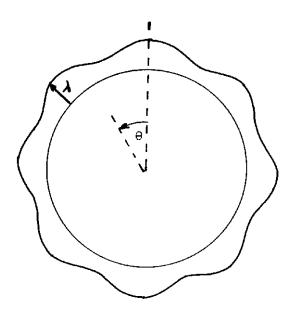
Lecture 24 - E. Wilson - 2/3/2015 - Slide 3

Test on instability

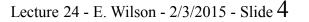
Postulate a simple form for its effect

Test whether such a pattern is self sustaining.

- » examine forces set up by such a pattern
- » if they reinforce its shape it is sure to grow exponentially
- » it starts from some random component of noise.



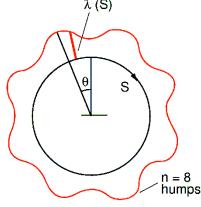
Typical perturbation Local line density of charge around a synchrotron

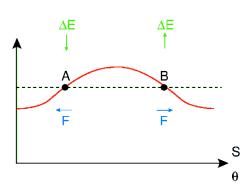


Negative Mass Instability

Un-bunched (=coasting) beam in a proton/ion ring, travels around ring with angular frequency ω_0

Line density $\lambda(s)$ [particles/m] is modulated around the synchrotron

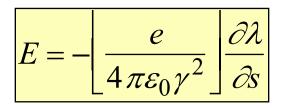




Zooming in one modulation

Line density modulation "**mode**" with n=8 humps

- Azimuthal modulation replotted in Cartesian form.
- A finds itself with a larger charge density behind it than in front of it, pushing it forward.
- Conversely particle B will be decelerated by the mountain of charge in front of it.



Field in a pipe as the beeam passes

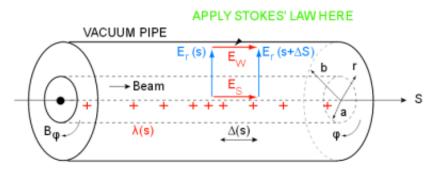


Fig. 3: Electrical (E) and magnetic (B) fields induced into a vacuum pipe (radius b) by a beam (radius a) with longitudinal density modulation $\lambda(s)$

$$E_r = \frac{e\lambda}{2\pi\varepsilon_0} \frac{1}{r} \qquad B_\phi = \frac{\mu_0 e\lambda\beta c}{2\pi} \frac{1}{r} \qquad r \ge a \,,$$

$$E_r = \frac{e\lambda}{2\pi\varepsilon_0} \frac{r}{a^2} \qquad B_\phi = \frac{\mu_0 e\lambda\beta c}{2\pi} \frac{r}{a^2} \qquad r \le a \,.$$
(1)

Applying Stokes' law which relates a line integral to an integral over the surface enclosed by the line

$$\oint_{LINE} \vec{E} d\vec{\ell} = -\frac{\partial}{\partial t} \int_{SURFACE} \vec{B} d\vec{\sigma} = -\frac{\partial}{\partial t} \Delta s \int_{0}^{b} B_{\phi} dr$$
(2)

and using

$$\frac{\partial \lambda}{\partial t} = \frac{\partial \lambda}{\partial s} \frac{ds}{dt} = \beta c \frac{\partial \lambda}{\partial s}$$
(3)

and

$$g_0 = 1 + 2 \ln \frac{b}{a},$$

one gets for the longitudinal electrical field \boldsymbol{E}_s on the beam axis

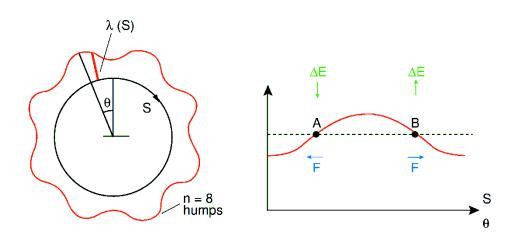
$$E_{s} = -\frac{eg_{0}}{4\pi\varepsilon_{0}} (1-\beta^{2})\frac{\partial\lambda}{\partial s} + E_{w} = -\frac{eg_{0}}{4\pi\varepsilon_{0}} \frac{1}{\gamma^{2}} \frac{\partial\lambda}{\partial s} + E_{w}, \qquad (4)$$

where E_w is the electrical field parallel to the vacuum pipe surface.

For a *perfectly conducting* wall, E_w vanishes, and one is left with

$$E_s = -\frac{eg_0}{4\pi\varepsilon_0} \frac{1}{\gamma^2} \frac{\partial\lambda}{\partial s}, \qquad (5)$$

"Negative Mass" Instability Qualitative



WILL THE HUMPS INCREASE OR ERODE?

The self-force **F** (proportional to $-\partial\lambda/\partial s$)

 $E = -\left\lfloor \frac{e}{4\pi\varepsilon_0\gamma^2} \right\rfloor \frac{\partial\lambda}{\partial s}$

Increases energy of particles in B **Decreases** energy of particles in A

STABLE

 $\gamma < \gamma_t$: if $\Delta E \uparrow$ then $\Delta \omega_0 \uparrow$

A and B move away from the hump eroding the mountain

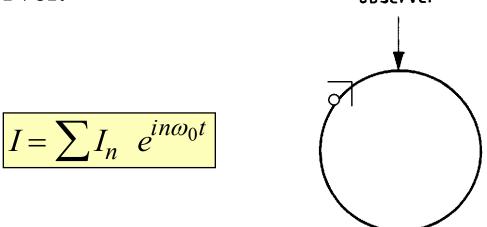
JAI

UNSTABLE

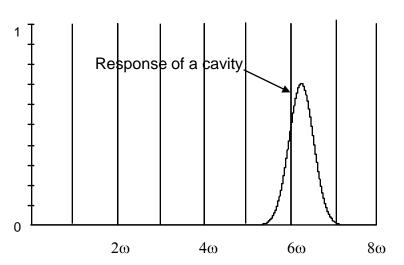
 $\gamma > \gamma_t$: if $\Delta E \uparrow$ then $\Delta \omega_0 \downarrow$ A and B move towards the hump enhancing the mountain

Driving terms (second cornerstone)

 Fourier analysis of a circulating delta function bunch of charge passing an observer.



 Produces a fundamental at the revolution frequency plus all higher harmonics are in equal strength

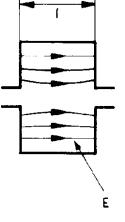


Spectrum from a bunch showing response of an r.f. cavity

A cavity-like object is excited

- Local enlargement in the beam tube which can resonate like a cavity
- Voltage experienced has same form as the current which excites it

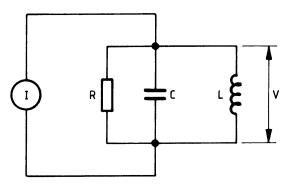
$$I = \hat{I} e^{-i\omega t}$$
$$U = \hat{U} e^{-i\omega t}$$



$$Z = X + iY = \frac{U}{I}$$

- Relates force on particles to the Fourier component of the beam current which excites the force.
- A complex quantity
 - REAL if the voltage and current are in phase
 - IMAGINARY if 90 degrees or "i" between voltage and current (L = +, C = –)

- different from r.f. wave by 90 degrees! Lecture 24 - E. Wilson - 2/3/2015 - Slide 9 AC resonant circuit



$$\omega_r = \frac{1}{\sqrt{LC}}$$
$$Q = R \sqrt{\frac{C}{L}} = \frac{R}{L\omega_r} = RC\omega_r$$

J.A.

Elementary relations

Differential equation for voltage and current

$$\ddot{V} + \frac{\omega_r}{Q}\dot{V} + \omega_r^2 V = \omega_r \frac{R}{Q}\dot{I}$$

Solution:

$$V = V_0 e^{-\alpha t} \sin \left[\omega_r \sqrt{1 - \frac{1}{4Q^2}} t + \mu \right]$$

Above and below resonance

$$V = V_0 e^{-\alpha t} \omega s \left[\omega_r \sqrt{1 - \frac{1}{4Q^2}} t + \mu \right]$$

Damping rate

$$\alpha = \frac{\omega_r}{2Q}$$

Books on AC circuit theory will show that if

$$I = \hat{I} e^{i\omega t}$$

Impedance seen by the generator is:

$$Z(\omega) = R \left[\frac{1 - iQ\left(\frac{\omega^2 - \omega_r^2}{\omega\omega_r}\right)}{1 + Q^2\left(\frac{\omega^2 - \omega_r^2}{\omega\omega_r}\right)^2} \right].$$

- When ω is below resonance, the reactive component is inductive or positive
- After crossing zero it becomes negative and capacitive when the driving frequency is above the natural resonance of the oscillator.

Laying the bricks in the wall (row 1)

Instead of the line density λ, the beam current I which we write as

$$I = I_0 + I_1 e^{i(n\theta - \Omega t)}$$

- n is the number of humps
- ω, angular frequency felt by an antenna in the wall
- dI/ds drives instability (like resistive wall)
- we can ignore constant current and write:

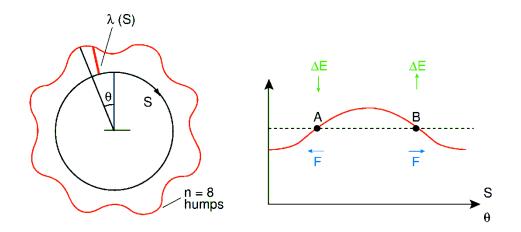
$$\frac{dI}{ds} = \frac{1}{R} \cdot \frac{dI}{d\theta} = \frac{in}{R} I_1 e^{i(n\theta - \Omega t)}$$
Rearranging this:

$$I_1 e^{i(n\theta - \Omega t)} = \frac{R}{in \, ds}$$

A cavity-like object presents an impedance, X+ *iY*, at this frequency-hence the V/turn (at zero azimuth):

$$(X+iY)I_1 e^{-\Omega t} = R\left(\frac{X+iY}{in}\right)\frac{dI}{ds}$$
$$= -\frac{iR}{n}(X+iY)\frac{dI}{ds} = \frac{R}{n}(Y-iX)\frac{dI}{ds} .$$

Remember the negative mass



Where the field from the beam itself was

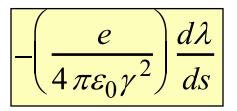
$$E = -\left\lfloor \frac{e}{4\pi\varepsilon_0\gamma^2} \right\rfloor \frac{\partial\lambda}{\partial s}$$

Laying the bricks in the wall (row 2)

Accelerating voltage:

$$V = \frac{R}{n}(Y - iX)\frac{dI}{ds} \; .$$

Compare with the acceleration for negative mass instability which was:



Thus we have the same effect as the negative mass

Above transition.- Instability when Y is negative, i.e. capacitive.

Inductive impedance causes instability below transition

SUMMARY

We have calculated the slope of a harmonic of I

Multiplying by Z gives a voltage

Effect is like negative mass

Lecture 24 - E. Wilson - 2/3/2015 - Slide 14

Summary

- I. General Comment on Instabilities
- ♦ 2. Negative Mass Instability
- ♦ 3. Driving terms (second cornerstone)
- A cavity-like object is excited
- Equivalent circuit
- ♦ 6. Above and below resonance
- ♦ 7. Laying the bricks in the wall (row 1)
- ♦ 8. Laying the bricks in the wall (row 2)
- ♦ 9. By analogy with the negative mass

