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The interplay between string theory and mathematics has brought

significant advances in various branches of both mathematics and

physics. Mirror symmetry is one of the most influential areas.

Today I will be speaking about a more recent developing area of

string math collaboration. It is the study of non-Kähler manifolds

with trivial canonical bundles, called non-Kähler Calabi-Yaus.

For string theory, non-Kähler Calabi-Yaus play an important role as

they appear in supersymmetric flux compactifications. But let me

begin by telling you why mathematicians were interested in

non-Kähler Calabi-Yaus prior to string theory.
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Non-Kähler Calabi-Yaus

After plenty of examples of projective Calabi-Yau manifolds were

constructed, one of the most interesting problems is to understand

its moduli space.

Unlike K3 surface, Calabi-Yau manifolds of dimension ≥ 3 have

different homotopy types. So its moduli space is not connected. In

1984, I made the conjecture that there are only finitely many

topological types of smooth projective Calabi-Yau manifolds for

each dimension. (See e.g., my survey paper: A review of complex

differential geometry. in Proc. Sympos. Pure Math., 52, Part 2.)

In addition, Calabi-Yaus on different components are not unrelated

as seen from the following construction of Clemens and Friedman.
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Suppose Y is a Calabi-Yau threefold containing a collection of

mutually disjoint smooth rational curves. Assume that they have

normal bundles O(−1)⊕O(−1). We can contract these rational

curves and obtain a singular Calabi-Yau threefold X0 with ordinary

double-point singularities.

R. Friedman gave a condition to deform X0 into a smooth complex

manifold Xt with trivial canonical bundle. It is the compact version

of local conifold transition which physicists are familiar with

Y 99K X0 99K Xt
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The resulting Calabi-Yau Xt is in general non-Kähler.

To see this, we take a Calabi-Yau threefold Y with smooth rational

curves Ci so that {Ci} generate H2,2(Y ). For instance, let Y be a

quintic threefold in P4.

By contracting these rational curves, H2,2(Y ) is killed. Then after

smoothing, we end up with a non-Kähler complex manifold which

is diffeomorphic to a k-connected sum of S3 × S3, with k ≥ 2. In

this way, one can construct non-Kähler Calabi-Yaus of topological

type #kS
3 × S3 for arbitrarily large k . Therefore, if we drop the

Kähler condition, we get infinitely many families of non-Kähler

Calabi-Yaus.
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On topology of non-Kähler Calabi-Yaus : More generally, for a

manifold Mg = #g (Sn × Sn), denote its group of orientation

preserving C∞-diffeomorphisms by Diffδ+(Mg ) , when equipped

with the discrete topology.

Conjecture (Morita ‘05)

For a fixed i , H i (BDiffδ+(Mg ),Z) is stable in a range of values of

the ‘genus’ g . In known cases, this means large enough g .

Viewed as a discrete group, BDiffδ+(Mg ) is an Eilenberg-MacLane

space, in fact it is K (MCG g , 1) where MCG g is the mapping class

group of Mg . And there is a natural isomorphism:

H∗(BDiffδ+(Mg ),Z) = H∗(MCGg ,Z).

Take n = 3 for threefolds. By example, we know the value g is

unbounded for non-Kähler Calabi-Yaus.
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Morita ‘05 is consistent with a corollary that follows from the

theorem of Fu-Li-Yau that we shall prove shortly.

We conjecture that:

assuming that Morita ‘05 is correct, this cohomology should play a

role that is universal to all three dimensional Calabi-Yau manifolds

and presumably appears in conformal field theory as well.

hints: In the case of curves Σg or #g (S1 × S1), the above

cohomology classes are related to Chern classes of the Hodge

bundle over Mg defined by Mumford (1983). (Computable by

Kodaira-Spencer theory.)

also: both the Siegel modular group sp(2g ,Z), and the Torelli

group Ig which acts trivially on H3(M,Z), are ⊂ MCGg . In fact,

there is 0 −→ Ig −→ MCGg −→ sp(2g ,Z) −→ 0.
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In 1987, M. Reid put forth an interesting proposal, called Reid’s

fantasy. He speculated that all projective Calabi-Yau threefolds fit

into a single universal moduli space in which families of smooth

Calabi-Yaus of different homotopy types are connected to one

another by the Clemens-Friedman conifold transitions that I just

described.

Now to test this proposal, understanding non-Kähler Calabi-Yau

manifolds becomes essential. The first question one can ask is:

what constraint one should put on hermitian metrics on such

non-Kähler Calabi-Yau manifolds, so that these metrics reflect

their geometric and topological structures.
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Balanced Metrics

In 1982, Michelsohn considered a generalization of Kähler metrics

in the following way. Recall that a hermitian metric ω is Kähler if

dω = 0.

This is equivalent to the vanishing of torsion tensor.

Michelsohn analyzed a weaker condition, called balanced, which is

the vanishing of the trace of the torsion tensor. For threefolds, it is

equivalent to

d(ω ∧ ω) = 2ω ∧ dω = 0 (balanced) .
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Every Kähler metric is clearly balanced.

Balanced condition has good properties. It is preserved under

proper holomorphic submersions and also under birational

transformations (Alessandrini-Bassanelli).

Examples of non-Kähler compact balanced manifolds include:

I T 2-bundles over Kähler manifolds constructed by Goldstein

and Prokushkin;

I Natural metrics on twistor spaces of self-dual compact four

manifolds;

I Moishezon spaces.
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With Jixiang Fu and Jun Li (2008), we proved the following

Theorem (Fu-Li-Yau)

Let Y be a smooth Kähler Calabi-Yau threefold and let Y → X0

be a contraction of mutually disjoint rational curves. Suppose X0

can be smoothed to a family of complex manifolds Xt . Then for

sufficiently small t, Xt admit smooth balanced metrics.

Our construction provides balanced metrics on a large class of

threefolds. In particular,

Corollary

There exists a balanced metric on #k(S3 × S3) for any k ≥ 2.
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To really understand Reid’s proposal for Calabi-Yau moduli space,

it is important to define some canonical balanced metric which

would satisfy an additional condition, like the Ricci-flatness

condition for the Kähler Calabi-Yau case.

We would like to have a natural condition, and string theory gives

some suggestions. Physicists have been interested in non-Kähler

manifolds in the context of compactifications with fluxes and

model building.

For heterotic string, the conditions for preserving N = 1

supersymmetry with H-fluxes was written down by Strominger in

1986. Strominger’s system of equations specifies the geometry of a

complex threefold M (with a holomorphic three-form Ω) and in

addition a holomorphic vector bundle V over M.
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Strominger’s System

The hermitian metric ω on the manifold M and the metric h on

the bundle V satisfy the system of differential equations:

(1) d(‖ Ω ‖ω ω ∧ ω) = 0;

(2) F 2,0
h = F 0,2

h = 0, Fh ∧ ω2 = 0;

(3)
√
−1∂∂̄ω = α′

4

[
tr
(
Rω ∧ Rω

)
− tr

(
Fh ∧ Fh

)]
.

The first equation is equivalent to the existence of a (conformally)

balanced metric. The second is the Hermitian-Yang-Mills equations

which is equivalent to V being a poly-stable bundle. The third

equation is the anomaly equation.
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When M is a Kähler manifold and V is the tangent bundle TM ,

the system is solved with h = ω, the Kähler Calabi-Yau metric.

Using a perturbation method, Jun Li and I have constructed

smooth solutions on a class of Kähler Calabi-Yau manifolds with

irreducible solutions for vector bundles with gauge group SU (4)

and SU (5).

Andreas and Garcia-Fernandez have generalized our construction

on Kähler Calabi-Yau manifolds for any stable bundle V satisfying

c2(V ) = c2(M).
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Jixiang Fu and I constructed solutions of Strominger’s system on a

class of non-Kähler Calabi-Yau threefolds.

These manifolds are T 2-bundles over K3 surfaces constructed by

Goldstein and Prokushkin. As I mentioned earlier, they admit a

balanced metric. In addition, the following metric

ωu = euωK3 +

√
−1

2
θ ∧ θ̄

satisfy the conformally balanced equation in the Strominger’s

system. Here u is any function on K3 surface, θ is the connect

form on the T 2-bundle. Similar ansatz were also considered by

Dasgupta-Rajesh-Sethi and Becker-Becker-Dasgupta-Green earlier.
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Now it is clear that the first two equations in Strominger’s system

can be solved. The last one which couples the two metrics is the

most demanding.

Fu and I analyzed carefully the anomaly equation in this case and

reduced it to the following Monge-Ampère equation:

4(eu − α′

2
fe−u) + 4α′

det ui j̄
det gi j̄

+ µ = 0,

where f and µ are functions on K3 surface satisfying f ≥ 0 and∫
S µω

2
K3 = 0.

We obtained some crucial a priori estimates up to third order in

derivatives and then used the continuity method to solve the

equation.
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As a conclusion, we proved the following existence theorem:

Theorem (Fu-Yau)

Let S be a K3 surface with Calabi-Yau metric ωS . Let ω1 and ω2

be anti-self-dual (1,1)-forms on S such that ω1
2π ,

ω2
2π ∈ H2(S ,Z).

Let M be a T 2-bundle over S constructed (twisted) by ω1 and ω2.

Let E be a stable bundle over S with the gauge group SU(r).

Suppose ω1, ω2 and c2(E ) satisfy the topological constraint

α′(24− c2(E )) = −
(
Q
(ω1

2π

)
+ Q

(ω2

2π

))
.

Then there exists a smooth function u on K3 surface and a

hermitian-Yang-Mills metric h on E such that (M, π∗E , ωu, π
∗h) is

a solution of Strominger’s system.
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Recently, Teng Fei and I found symmetric solutions to the

Strominger system on SL(2,C) (the smoothed conifold) with either

trivial or non-trivial Fh term. Potentially, they may serve as local

models in understanding Strominger system under conifold

transitions. In our work, more general hermitian connections

(Strominger-Bismut connection for instance) other than the Chern

connection on tangent bundle is used to compute the curvature Rω.
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As is clear in heterotic string theory, understanding stable bundles

on Calabi-Yau threefolds is important.

Donagi, Pantev, Bouchard and others have done nice works on

constructing stable bundles on Kähler Calabi-Yau threefolds to

obtain realistic heterotic models of nature.

Andreas and Curio have done analysis on the Chern classes of

stable bundles on Calabi-Yau threefolds, verifying in a number of

cases a proposal of Douglas-Reinbacher-Yau. Recently, Baosen Wu

and I used different construction of stable bundles to obtain refined

results.

19



Stability and DRY

Stability is an important concept in both mathematics and physics.

In the heterotic string, Hermitian-Yang-Mills equation is equivalent

to the conformal invariance of the (0, 2)-nonlinear σ-model. (as

Ricci-flow governs that of the (2, 2) σ-model.)

Often the discussion of stability is accompanied by a discussion of

the moduli space of nice objects.

In the heterotic string, we are interested in holomorphic vector

bundles. Many of these are isolated points of moduli space of

stable sheaves.

Hence, they are special points, ’stuck’ in some sense.
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In physics, there are also objects stuck at special points of moduli

space. BPS blackholes ’fix’ the moduli of Calabi-Yau threefolds at

the horizon to attractor points, via an attractor flow.

In (DRY 2006), we use this observation to motivate new

inequalities for Chern-classes of vector bundles on Calabi-Yau

threefolds. These are not obvious from mathematics.

More concretely, we use the ‘mirror’ attractor equation:

2Re(C Ω̂) = ~v(E )

Here Ω̂ = eB+iω ∈ H2∗(X ) and BPS charge is given by Mukai

vector ~v(E ) = Tr(eF (∇E )
√

Td(TM)). The constant C is an

‘integration constant’ for the flow.
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We can always twist the bundles so that c1(E ) = 0. Then the

‘mirror’ attractor equations can be solved up to a constant

parameter.

Crucially, we introduce an ample class H (a divisor class).

H2 =
1

r

(
c2(E )− r

24
c2(TM)

)
The DRY inequality is a consequence of the Hodge-type inequality

for ample classes (for M irreducible and complete), curve classes

from decomposing H2.

For example, for not necessarily distinct ample classes Hi ,

i = 1, 2, 3, we have (H1H2H3)3 ≥ H3
1H

3
2H

3
3

Then taking H1 = H2 = H and an arbitrary ample class H3 = J,

|c3(E )| ≤ (H)3 =⇒ (c3(E ))2 ∼ (H3)2(J)3 < (H2 · J)3
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To undo the twist on E , in the definition of the ample class H just

replace c2(E ) with the ‘discriminant’: ∆ = 1
2r (2rc2 − (r − 1)c2

1 ).

By the usual inequality ∆ · ωn−2 > 0 for stable bundle.

Finally, the DRY inequality can be stated for the above data as:

Conjecture (Douglas-Reinbacher-Yau)

If the stated data satisfy:
∣∣c3

1 + 3r(r ch3 − ch2 c1)(E )
∣∣ < r3H3,

then there exists a reflexive sheaf with the specified integral classes

as Chern classes, stable with respect to some ample class J.

Especially, there exist such stable sheaves for any given J.

The Hodge type inequality allows us to remove the class H from

the above inequality, obtaining an inequality for the Chern classes

of E alone, which involves the polarization J.
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Bundle Chern Classes

Some results on the Chern classes of both existing bundle

constructions and some new constructions for bundles were

reported in joint work with Peng Gao and Yang-Hui He

(arXiv:1403.1268).

Using a generalized Hartshorne-Serre construction, we can

construct higher rank (r ≥ 3) bundles (reflexive sheaves) whose

second Chern class equals c2(TM). Satisfying anomaly condition

automatically.

For this to work, c2(TM)’s dual class needs to be an effective curve

class [C]. Satisfied for elliptically fibered CY 3-folds, but not

generally since Calabi-Yau 3-folds are not uniruled.
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This bundle is a deformation of the semi-stable sheaf O⊕r−1M ⊕ IC .

Similar in construction to Fu-Li-Yau. Stability can be proved using

the recent work of Wu-Yau.

By construction, c1(E ) = 0, and c2(E ) = [C ]. The third Chern

class is allowed to vary, as is the genus of a space curve in P3. In

the simplest construction, c3(E ) = 2g − 2.

In comparison, the spectral cover construction does not give

bundles with c2(E ) = c2(TM). Our construction satisfies this

constraint, but often yields reflexive sheaves. This depends very

much on the curve C .

If c2(E ) = c2(TM) is relaxed, multiple curve classes can be used to

refine this construction. Also we have constructed a similar class of

bundles for non-Kähler Calabi-Yaus with Wu (later in this talk).
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Our interest in the Chern classes were partly motivated by the

Douglas-Reinbacher-Yau (DRY) proposal.

Using existing bundles (Monads, spectral cover, polystable etc.)

data, we find their Chern classes satisfy the DRY inequalities. Said

differently, a stable bundle exists whenever DRY claims it should

based on Chern classes numerical relations. This is a nontrivial

check, but limited in rank of E (focus on r = 3, 4, 5).

Desirable to understand relation with similar inequalities motivated

by Bridgeland stability. There are additional structures in type II

string, compared to Heterotic. But we can invoke duality. This is

on going work with P. Gao.
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Interesting numerical patterns emerge (for r = 3, 4, 5) from the

data of spectral cover bundles on elliptic fibered Calabi-Yau

threefolds.

We graph the Chern numbers (|c2(TM)− c2(E )|, c3(E )) for

spectral cover bundles.

Vertical axis is c3(E ).

Horizontal axis is |c2(TM)− c2(E )| =
√

a2
F + WB ·WB > 0, where

the integer aF and class WB are defined w.r.t. elliptic fibration as

follows, c2(TX )− c2(V ) = (WB , aF ).

WB := 12c1(TB)− η, aF := c2(TB) + 11c1(TB)2 − cF (F · σ).

Here F and σ are respectively the fiber class and the zero-section.

If the spectral cover divisor is of degree n over B, for E to be

stable, it is required that η − nc1(TB) is effective curve in B and

the linear system |η| is base point free.
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For the graph, a total 42352 points are used, each corresponding

to a distinct spectral cover bundle.

Figure: Rank r = 3, 4, 5 respectively.

Base are blow-ups of Hirzebruch surfaces, B = F̂r=0,...,3, data all

mixed together. Regularity of the pattern suggests these bundles

possibly form a web connected by extremal-like transitions

involving both the bundle E and the CY threefold M. It is

desirable to further investigate this class of bundles.
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New Bundles for String Compactification

In string compactification, the number of “generations” of particles

is 1
2 |χ|, where χ is the Euler number of the Calabi-Yau threefold.

As 3 generations are observed in nature, we were particularly

interested in searching for Calabi-Yau threefolds with χ = 6.

In 1985, I constructed the first explicit example of projective

Calabi-Yau threefold with Euler number |χ| = 6. (Symposium on

anomalies, geometry, topology, 395–406, World Sci., Singapore,

1985)
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Now I describe a new construction of Calabi-Yau threefolds M

together with SU(5) stable bundles V satisfying constraints:

(1) c1(V ) = 0;

(2) c2(V ) = c2(M);

(3) c3(V ) = 6.

The manifold M is constructed as a K3-fibered Calabi-Yau, Kähler

or non-Kähler. This pair of Calabi-Yau and stable bundle satisfies

three generation requirement in a realistic Heterotic superstring

compactification model. Apparently this is the first example of

such bundles which are not related to the tangent bundle of the

Calabi-Yau manifold in an obvious way.
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We construct Calabi-Yau threefolds M as double covers of twistor

spaces. For this, we recall several basic facts on twistor spaces.

For a self-dual four-manifold M4, there is a twistor space Tw(M4).

It is an S2-fibration over M4 with a natural complex structure. In

the compact case, the twistor space is Kähler if and only if M4 is a

standard sphere or P2 with Fubini-Study metric.

When M4 = nP2, the connected sum of n copies of P2s, Lebrun

wrote down an explicit conformal structure. The corresponding

twistor space Tw(nP2) is Moishezon. For n > 4 and a general

self-dual structure on nP2, the associated twistor space has

algebraic dimension 0.
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To construct M, we choose two smooth anti-canonical divisors X1

and X2 in Tw(nP2) intersecting along a smooth curve C . The

double cover of Tw(nP2) branched along the union X1 ∪ X2 is a

singular Calabi-Yau threefolds. A crepant resolution gives a

smooth Calabi-Yau threefold which is non-Kähler when n is large.

It is convenient to use an equivalent point of view. We first blowup

the curve C to get a K3-fibration over P1. Then we take double

cover branched over two disjoint smooth fibers. We arrive at the

same manifold constructed above. It is a K3-fibered Calabi-Yau

threefold. (See figures below for the example of P3 = Tw(S4).)
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Figure: Double cover along fibers
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From the construction of M

M
f−→ ˜Tw(nP2)

π−→ Tw(nP2)

we can write down an explicit balanced metric on M.

For the natural balanced metric ω0 on Tw(nP2), we can find

positive (1, 1)-form ω on M so that

ω2 = C · (f ∗π∗ω2
0) + c1(L, h)2

for a sufficiently large constant C > 0. Here L is a suitable line

bundle over M with a hermitian metric h which is positive on the

ramification divisor of π ◦ f : M → Tw(nP2).

34



Now we describe the construction of stable bundle V over M. To

illustrate, we consider the simplest case of Calabi-Yau constructed

above for n = 0, i.e., M is a smooth model of the double cover of

P3 = Tw(S4).

We compute the Chern classes of M as follows:

1. c1(M) = 0;

2. c2(M) = f ∗π∗`+ f ∗α;

3. c3(M) = −168.

Here ` is the line class of P3, α is the curves class in P̃3 of proper

transform of C under blowup. α = [C̃1] = [C̃2]. (See figure.)
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We first construct a polystable V0 as a direct sum

V0 = V2 ⊕ V3

so that V2 is a rank 2 stable bundle with

1. ∧2V2
∼= OM ;

2. c2(V2) = 6f ∗π∗`;

3. c3(V2) = 0,

and V3 is a rank 3 stable bundle with

1. ∧3V3
∼= OM ;

2. c2(V3) = f ∗α;

3. c3(V3) = 6.
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We define V2 as the pull back of an instanton bundle over P3 with

c2 = 6`.

Recall that for any collection of mutually disjoint k + 1 lines in P3,

there is a rank 2 stable bundle V2(k) fitting into

0 −→ OP3(−1) −→ V2(k) −→ I(1) −→ 0,

where I is the ideal sheaf of the union of these k + 1 lines.

It is easy to verify that c1(V2(k)) = 0 and c2(V2(k)) = k`. In fact,

V2(k) correspond to the ’t Hooft instantons on S4 by twistor

construction.
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For V3, we need to use the following construction:

Theorem (Wu-Yau)

Let M → P1 be a K3-fibered Calabi-Yau threefold. Let {Yi} be

disjoint reduced and irreducible curves in distinct fibers of M.

Suppose g(Yi ) ≥ 1. Then there exists a rank 3 stable bundle W

over M with

1. ∧3W ∼= OM ;

2. c2(W ) =
∑

[Yi ];

3. c3(W ) =
∑

(2g(Yi )− 2).
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To apply this theorem to our situation, we need to find curves

{Yi} ⊂ M satisfying conditions

1.
∑

[Yi ] = f ∗α;

2.
∑

(2g(Yi )− 2) = 6.

This is achieved by applying the following theorem of Mori:

Theorem (Mori)

There exists a non-singular curve of degree d > 0 and genus g ≥ 0

on a non-singular quartic surface in P3 if and only if (1)

g = d2

8 + 1 or (2) g < d2

8 and (d , g) 6= (5, 3).
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Back to the construction of Calabi-Yau M, we choose particular

K3 surfaces X1 and X2 in P3 according to this theorem.

Explicitly, the pairs (d , g) = (4, 1) and (d , g) = (8, 4) satisfy the

assumption therein, there exists X1 and X2 which contains curves

Y ′1 and Y ′2 of such pairs of degree and genus respectively.

Notice that PicP3 ∼= Z, f is a double cover, and α is the proper

transform of C , a degree 16 curve in P3. We let Y1 be the proper

transform of 6Y ′1 and Y2 be the proper transform of Y ′2. Then

Y1 ∪ Y2 satisfies the requirement.
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With this polystable bundle V0, we apply some sophisticated

deformation theory of vector bundles to deduce that it can be

deformed to a stable bundle V .

It is easy to see from the argument that we can also construct

stable bundles with other values of c3, say c3 = 12 for instance. In

that case, we hope to find a free Z2 action on certain M so that

the resulting quotient is a Calabi-Yau with fundamental group Z2,

and with a stable bundle with c3 = 6. By choosing a Wilson line,

we can break down to the standard model gauge group.
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Having talked about complex balanced manifolds and Strominger’s

system, now we ask the following question: is there a mirror dual

of a complex balanced manifold in string theory that is symplectic

and generally non-Kähler?

Such a symplectic mirror will not be found in heterotic string. All

supersymmetric solutions satisfy the Strominger system in heterotic

string. So the mirror dual of a complex balanced manifold with

bundle should be another complex balanced manifold with bundle.

It turns out the answer can be found in type II string theories. As I

will describe shortly, the equations for non-Kähler Calabi-Yau in

type II string also give new insights into the natural cohomologies

on non-Kähler manifolds.
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Type II Strings: Non-Kähler Calabi-Yau Mirrors

In type II string theory, supersymmetric compactifications

preserving a SU(3) structure have been studied by many people in

the last ten years. Since we are interested in non-Kähler

geometries of compact manifolds, any supersymmetric solution will

have orientifold sources. The type of sources help determine the

type of non-Kähler manifolds. I will describe the supersymmetric

equations written in a form very similar to that in

Grana-Minasian-Petrini-Tomasiello (2005) and Tomasiello (2007).

My description below is from joint work with Li-Sheng Tseng.
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Complex Balanced Geometry in Type IIB

The supersymmetric equations that involve complex balanced

threefolds is found in type IIB theory in the presence of orientifold

5-branes (and possibly also D5-branes). These branes are wrapped

over holomorphic curves. In this case, the conditions on the

hermitian (1, 1)-form ω and (3, 0)-form Ω can be written as

dΩ = 0 (complex integrability)

d(ω ∧ ω) = 0 (balanced)

2i ∂∂̄(ef ω) = ρB (source)

where ρB is the sum of Poincaré dual currents of the holomorphic

curves that the five-brane sources wrap around, and f is a

distribution that satisfies

i Ω ∧ Ω̄ = 8 e−f ω3/3! .
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The balanced and source equations are interesting in that they

look somewhat similar to the Maxwell equations. If one notes that

∗ω = ω2/2 (where the ∗ is with respect to the compatible

hermitian metric), then the equations can be expressed up to a

conformal factor as

d(ω2/2) = 0

2i ∂∂̄ ∗ (ω2/2) = ρB

Now this is somewhat expected as the five-brane sources are

associated with a three-form field strength F3 which is hidden in

the source equation. These two equations however do tell us

something more.
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Recall the Maxwell case. The equations in four-dimensions are

d F2 = 0 ,

d ∗ F2 = ρe ,

where ρe is the Poincaré dual current of some electric charge

configuration.

Now, if we consider the deformation F2 → F2 + δF2 with the

source fixed, that is δρe = 0 , this leads to

d(δF2) = d ∗ (δF2) = 0 ,

which is the harmonic condition for a degree two form in de Rham

cohomology. So clearly, the de Rham cohomology is naturally

associated with Maxwell’s equations.
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For type IIB complex balanced equations, we can also deform

ω2 → ω2 + δω2. Now if we impose that the source currents and

the conformal factor remains fixed, then we have the conditions

d(δω2) = ∂∂̄ ∗ (δω2) = 0 ,

which turn out to be the harmonic condition for a (2,2)-element of

the Bott-Chern cohomology:

Hp,q
BC =

ker d ∩ Ap,q

im ∂∂̄ ∩ Ap,q
.

This cohomology was introduced by Bott-Chern and Aeppli in the

mid-1960s.

The string equations thus points to the Bott-Chern cohomology as

the natural one to use for studying complex balanced manifolds.

Note when the manifold is Kähler, the ∂∂̄-lemma holds and the

Bott-Chern and Dolbeault cohomology are in fact isomorphic.
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Symplectic Mirror Dual Equations in Type IIA

The mirror dual to the complex balanced manifold is found in type

IIA string. Roughly, the type IIA equations can be obtained from

the IIB equations, by first replacing ω2/2 with (Re e i ω) and then

exchanging e i ω with Ω.

d(ω2/2) = 0 ⇔ d(Re e i ω) = 0 ←→ d Re Ω = 0

Thus, d Re Ω = 0 is the condition that is suggested by string for

symplectic conifold transition.

This condition is part of the type IIA supersymmetric conditions in

the presence of orientifold (and D-) six-branes wrapping special

Lagrangian submanifolds:
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The type IIA equations that are mirrored to the IIB complex

balanced system are

dω = 0 , (symplectic)

d Re Ω = 0 , (almost complex)

∂+∂− ∗ (e−f Re Ω) = ρA , (source)

where ρA is the Poincaré dual of the wrapped special Lagrangian

submanifolds. ∂+ and ∂− are linear symplectic operators that can

be thought of as the symplectic analogues of the Dolbeault

operators, ∂ and ∂̄. Tseng and I introduced them recently, so let

me describe them a little bit more.
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(∂+, ∂−) appear from a symplectic decomposition of the exterior

derivative

d = ∂+ + ω ∧ ∂− .

∂+ raises the degree of a differential form by one, and ∂− lowers

the degree by one. They are defined with the property

∂± : Pk → Pk±1 ,

where Pk is the space of primitive k-form. (A primitive form is one

that vanishes after being contracted with ω−1.) And like their

complex counterparts,

(∂+)2 = (∂−)2 = 0 ,

and effectively, they also anticommute with each other.
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With the linear symplectic operators, (∂+, ∂−), we can write down

an interesting elliptic complex.

Proposition (Tseng-Yau)

On a symplectic manifold of dimension d = 2n, the following

differential complex is elliptic.

0
∂+−−−−→ P0 ∂+−−−−→ . . .

∂+−−−−→ Pn−1 ∂+−−−−→ Pny∂+∂−

0
∂−←−−−− P0 ∂−←−−−− . . .

∂−←−−−− Pn−1 ∂−←−−−− Pn

Associated with this elliptic complex are four different

finite-dimensional cohomologies which gives new symplectic

invariants for non-Kähler manifolds.
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Symplectic cohomologies (Tseng-Yau):

Symplectic (X , ω) Complex (X , J)

PHs
∂±

=
ker ∂± ∩ Ps

im ∂± ∩ Ps

ker ∂̄ ∩ Ap,q

im ∂̄ ∩ Ap,q
(Dolbeault)

PHs
∂+∂−

=
ker ∂+∂− ∩ Ps

(im ∂++ im ∂−) ∩ Ps

ker ∂∂̄ ∩ Ap,q

(im ∂ + im ∂̄) ∩ Ap,q
(Aeppli)

PHs
∂++∂−

=
ker d ∩ Ps

im ∂+∂− ∩ Ps

ker d ∩ Ap,q

im ∂∂̄ ∩ Ap,q
(Bott-Chern, Aeppli)

The middle-degree cohomology

PHn
∂++∂−=

ker d ∩ Pn

im ∂+∂− ∩ Pn

turns out to appear in type IIA string.
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For consider the deformation: Ω −→ Re Ω + δRe Ω with δρA = 0

and conformal factor remaining invariant. Then the δRe Ω satisfy

d(δRe Ω) = 0 , ∂+∂− ∗ (δRe Ω) = 0 ,

which is the harmonic condition of the primitive PHn
∂++∂−

cohomology.

In fact, a subspace of the linearized deformation of the type IIA

symplectic system can be parametrized by the cohomology

δΩ ∈ PH3
∂++∂− ∩ A

2,1 .
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Non-Kähler geometry on six-dimensional manifolds will have a lot

activities in the near future. These geometries can have relations

with four- and three-dimensional manifolds. One can construct

non-Kähler six-manifolds by the twistor construction. The twistor

space of a self dual four-manifolds has a complex structure, and

the twistor space of a hyperbolic four-manifold has a symplectic

structure. The S3 bundle over a hyperbolic three-manifold is also

complex. (Fine-Panov have given examples of the hyperbolic

constructions.) There should also be interesting dualities relating

complex and symplectic structures on non-Kähler six-manifolds.

The major guiding influence will be string theory.
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