#### Qualification of the CMS Phase 1 Upgrade HF Front-end Electronics

#### **Andrew Whitbeck**

Fermi National Accelerator Laboratory

On behalf of the CMS Collaboration

Topical Workshop on Electronics for Particle Physics, 2015

## Upgrade Motivation



- Forward hadron calorimeter:
  - steel absorber and quartz fiber to produce cerenkov light
  - Photo Multiplier Tubes (PMTs)
- Anomalous signals from particles incident on PMT windows or PMT housing producing large isolated signals



- 50 ns strategy was to move anomalous signals to the empty BX
  - unable to mitigate these effects in 25 ns operation

## Upgrade Overview

Fermilab

- New PMTs installed with thinner windows to reduce cerenkov light — installed during LS1
- PMT electronics will be replaced to convert from single to dual anode readout
  - asymmetry in redundant readings provide handle for PMT window events
- All new frontend electronics
  - to handle larger number of channel
  - pulse timing for distinguishing early anomalous signals
  - improved hardware for control system



### Frontend Overview



- Next Generation Clock & Control Module (ngCCM) distributes clock, fast synchronization signals & slow control signals
- QIE cards contain digitizing ASICs, serializing/formatting FPGAs & optical transmitters
- Calibration module distributes LED light into photodetectors for monitoring





#### QIE card





## QIE card components

- Fermilab
- FEAST-MP DC-DC converters for voltage regulation
- Versatile link transmitters high speed, rad. hard



- Microsemi Bridge
- Microsemi IGLOO2
- QIE10 ASIC

#### Charge Integrator & Encoder (QIE)



- 10th generation ASIC well suited for calorimeter readout ( 350 nm SiGe )
- Provides deadtimeless charge integration & digitization at ~40 MHz pipelined with 4 identical integrators
- 8 bit ADC code (-3 fC to -330 pC) with ~1% resolution implemented using 4 ranges of varying sensitivity and a pseudo-logarithmic ADC



• 6 bit TDC code (500 ps resolution) for measuring arrival time of pulses

## Single chip testing

- ~4000 QIE chips needed for HF production
- Chips tested with automatic robot and custom board with clam shell mount ~3k chips tested per week
  - chips automatically sorted based on test results
- functionality testing yielded 85% of chips
- Testing showed low variability from manufacturing — <5% for all tests</li>



| QIE10             | Efficiency | Remaining<br>Yield |
|-------------------|------------|--------------------|
| Original          |            | 10076              |
| Hard Failures     | 97.2%      | 9790               |
| Voltages          | 98.9%      | 9680               |
| Register Tests    | 97.2%      | 9462               |
| LVDS Output       | 95.4%      | 9043               |
| Misc              | 97.7%      | 8980               |
| Pedestal Tests    | 96.8%      | 8800               |
| ADC Functionality | 91.6%      | 8180               |
| TDC Functionality | 98.6%      | 8173               |
|                   |            |                    |
| TOTAL             | 81.1%      | 8173               |



# IGLOO2 FPGA

- Provides clocks to 12 QIEs with programmable phase adjustment
- Captures data from 12 QIEs (received from 8 DDR outputs for each QIE)

BER of serialized data < 1e-12

- Uses TDC discriminator from QIE to computes 4-bit trailing-edge TDC
- Formats & serializes data with native 5 Gbps SERDES (8b10b encoding)



BER for serialized data at input to VTTx modules



rmilab



ref. versus phase adjusted QIE clock

## Optical data links

- CERN developed VTTx transmitters used for data link to backend
  - links are operated at 5.0 Gbps asynchronously from the LHC clock eliminates need for a high performance jitter cleaning circuit
  - data comes at 4.8 Gbps pad words inserted to fill data stream
- Large optical power margin between VTTx & PPOD



## Communication

- Microsemi Bridge used monitoring & configuring QIE card
- Receives I<sup>2</sup>C commands from ngCCM over backplane
- Multiplexes I<sup>2</sup>C lines to various devices (VTTxs, IGLOO2s, UniqueID chip, temperature sensors)



#### Clock & control module



#### FEAST-MP DC-DC Versatile Link transceiver Microsemi IGLOO2



## Clock & control module



- Receives clock and control data from next-generation Front End Controller (ngFEC), implemented with FC7 and GLIB
  - uses Gigabit Transceiver (GBT) protocol implemented with an IGLOO2 & VTRx @ 4.8 Gbps
    - large bandwidth allows for constant error checking with a PRBS on the link
- Distributes LHC clock & slow control data to each frontend module
  - Individual I<sup>2</sup>C lines are used to communicate with the various slots
- Remote programming of IGLOO2 FPGAs on QIE cards
- Additional VTRX and a VTTx provide a redundant control path



#### System level diagram





#### Integration & acceptance testing

- commissioning frontend with backend electronics (µHTR & ngFEC)
  - GBT/I<sup>2</sup>C communication extensively validated with write-verify tests for each frontend register
  - data readout validation:
    - pattern tests, monitoring invalid 8b10b codes, checking for pedestal stability, and internal charge injection
- Suite of tests will be performed on a each of the 180 QIE cards to qualify them
  - check pedestals, TDC functionality, control link, and data link integrity
  - Use calibration system to take LED data for validating/ characterizing QIE response to fast analog signals
  - All channels will be calibrated with dedicated charge injection hardware for scanning through a wide range of DC currents



ermilab

pulse from QIE internal charge injection

## QIE calibration



- QIE response measured with well-calibrated DC current source
- Charge injector will be controlled via a commercial external 16-bit DAC
  - dynamic range of 50 fC to -60 pC
  - random noise ~2 ADC
- Measure response with a piece-wise linear function for each cap-ID and each range separately separately
  - including prior knowledge about the structure of the flash ADC we get 32 constants per chip



## Summary



- Design of new frontend electronics for CMS HF upgrade has been presented
  - new digitizing ASIC improves noise rejection
  - high speed optical transmitters provide increased bandwidth for higher channel density
  - faster optical transceivers allow for more reliable control links and facilitate faster monitoring & configuring
- Qualification testing plans are finalized & work is ongoing at CERN
- Electronics are expected to be installed at the end of this year & used in 2016 data taking

17





## Backup

