Qualification of the CMS Phase 1 Upgrade HF Front-end Electronics

Andrew Whitbeck

Fermi National Accelerator Laboratory

On behalf of the CMS Collaboration

Topical Workshop on Electronics for Particle Physics, 2015
Upgrade Motivation

• Forward hadron calorimeter:
 • *steel absorber* and *quartz fiber* to produce *cerenkov light*
 • *Photo Multiplier Tubes (PMTs)*

• Anomalous signals from particles incident on PMT windows or PMT housing producing large isolated signals

• 50 ns strategy was to move anomalous signals to the empty BX
 • unable to mitigate these effects in 25 ns operation
Upgrade Overview

- New PMTs installed with thinner windows to reduce cerenkov light — installed during LS1
- PMT electronics will be replaced to convert from single to dual anode readout
 - asymmetry in redundant readings provide handle for PMT window events
- **All new frontend electronics**
 - to handle larger number of channel
 - pulse timing for distinguishing early anomalous signals
 - improved hardware for control system
Frontend Overview

- Next Generation Clock & Control Module (ngCCM) - *distributes clock, fast synchronization signals & slow control signals*

- QIE cards - *contain digitizing ASICs, serializing/formatting FPGAs & optical transmitters*

- Calibration module - *distributes LED light into photodetectors for monitoring*

6U euro-style crate w/ custom backplane
QIE card components

- **FEAST-MP DC-DC** converters for voltage regulation
- **Versatile link** transmitters - high speed, rad. hard

- Microsemi Bridge
- Microsemi IGLOO2
- QIE10 ASIC
• 10th generation ASIC well suited for calorimeter readout (350 nm SiGe)

• Provides deadtimeless charge integration & digitization at ~40 MHz pipelined with 4 identical integrators

• 8 bit ADC code (-3 fC to -330 pC) with ~1% resolution implemented using 4 ranges of varying sensitivity and a pseudo-logarithmic ADC

• 6 bit TDC code (500 ps resolution) for measuring arrival time of pulses
Single chip testing

• ~4000 QIE chips needed for HF production

• Chips tested with automatic robot and custom board with clam shell mount
 ~3k chips tested per week

 • chips automatically sorted based on test results

• functionality testing yielded 85% of chips

• Testing showed low variability from manufacturing — <5% for all tests

<table>
<thead>
<tr>
<th>QIE10</th>
<th>Efficiency</th>
<th>Remaining Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td></td>
<td>10076</td>
</tr>
<tr>
<td>Hard Failures</td>
<td>97.2%</td>
<td>9790</td>
</tr>
<tr>
<td>Voltages</td>
<td>98.9%</td>
<td>9680</td>
</tr>
<tr>
<td>Register Tests</td>
<td>97.2%</td>
<td>9462</td>
</tr>
<tr>
<td>LVDS Output</td>
<td>95.4%</td>
<td>9043</td>
</tr>
<tr>
<td>Misc</td>
<td>97.7%</td>
<td>8980</td>
</tr>
<tr>
<td>Pedestal Tests</td>
<td>96.8%</td>
<td>8800</td>
</tr>
<tr>
<td>ADC Functionality</td>
<td>91.6%</td>
<td>8180</td>
</tr>
<tr>
<td>TDC Functionality</td>
<td>98.6%</td>
<td>8173</td>
</tr>
<tr>
<td>TOTAL</td>
<td>81.1%</td>
<td>8173</td>
</tr>
</tbody>
</table>
IGLOO2 FPGA

- Provides clocks to 12 QIEs with programmable phase adjustment
- Captures data from 12 QIEs (received from 8 DDR outputs for each QIE)
- Uses TDC discriminator from QIE to computes 4-bit trailing-edge TDC
- Formats & serializes data with native **5 Gbps SERDES** (8b10b encoding)
- BER of serialized data < 1e-12
Optical data links

• CERN developed VTTx transmitters used for data link to backend

 • links are operated at 5.0 Gbps asynchronously from the LHC clock
 eliminates need for a high performance jitter cleaning circuit

 • data comes at 4.8 Gbps
 pad words inserted to fill data stream

• Large optical power margin between VTTx & PPOD

![Graph showing optical power margin study of optical data links (counting invalid codes)](image)
Communication

• Microsemi Bridge used monitoring & configuring QIE card

• Receives I²C commands from ngCCM over backplane

• Multiplexes I²C lines to various devices (VTTxs, IGLOO2s, UniqueID chip, temperature sensors)

• Provides functionality for writing to 24 QIE shift registers
Clock & control module

FEAST-MP DC-DC
Versatile Link transceiver
Microsemi IGLOO2
Clock & control module

• Receives clock and control data from next-generation Front End Controller (ngFEC), implemented with FC7 and GLIB

• uses Gigabit Transceiver (GBT) protocol implemented with an IGLOO2 & VTRx @ 4.8 Gbps
 • large bandwidth allows for constant error checking with a PRBS on the link

• Distributes LHC clock & slow control data to each frontend module
 • Individual I²C lines are used to communicate with the various slots

• Remote programming of IGLOO2 FPGAs on QIE cards

• Additional VTRX and a VTTx provide a redundant control path
Integration & acceptance testing

- commissioning frontend with backend electronics (μHTR & ngFEC)
 - GBT/I²C communication extensively validated with write-verify tests for each frontend register

- data readout validation:
 - pattern tests, monitoring invalid 8b10b codes, checking for pedestal stability, and internal charge injection

- Suite of tests will be performed on each of the 180 QIE cards to qualify them
 - check pedestals, TDC functionality, control link, and data link integrity
 - Use calibration system to take LED data for validating/characterizing QIE response to fast analog signals
 - All channels will be calibrated with dedicated charge injection hardware for scanning through a wide range of DC currents

![Pedestal vs Channel](image)

![Average Charge](image)

![Average ADC](image)
QIE calibration

• QIE response measured with well-calibrated DC current source

• Charge injector will be controlled via a commercial external 16-bit DAC

 • dynamic range of 50 fC to -60 pC

 • random noise ~2 ADC

• Measure response with a piece-wise linear function for each cap-ID and each range separately

 • including prior knowledge about the structure of the flash ADC we get 32 constants per chip
Summary

• Design of new frontend electronics for CMS HF upgrade has been presented
 • new digitizing ASIC improves noise rejection
 • high speed optical transmitters provide increased bandwidth for higher channel density
 • faster optical transceivers allow for more reliable control links and facilitate faster monitoring & configuring
• Qualification testing plans are finalized & work is ongoing at CERN
• Electronics are expected to be installed at the end of this year & used in 2016 data taking