Charge Collection Properties on a Depleted Monolithic Active Pixel Sensor using a HV-SOI process

CERN PH-ADE:

Sonia Fernandez-Perez, Malte Backhaus, Heinz Pernegger, Doug Schaefer

CERN PH-DT:

Marcos Fernandez-Garcia, Christian Gallrapp, Michael Moll

IFAE:

Cristobal Padilla

ACKNOWLEDGMENTS:

T. Hemperek, H. Krueger, T. Kisishita, N. Wermes for useful discussions, M. Cerv, B. Ristic and M. Kocian for their technical support at the test beam

Outline

- Possible application: ATLAS ITK
- Introduction to SOI DMAPS
- Laboratory measurements
 - Radiation hardness to TID up to 700 Mrad
 - Drift, diffusion contributions on silicon bulk
 - Acceptor removal effect
 - eTCT measurements
- Test beam Results

Possible application: ATLAS ITk

- New all silicon Inner Tracker in development for ATLAS in HL-LHC
- Layout in discussion, likely 4-6 pixel layers, 4-6 strip layers

Outer Layers

- Occupancy: 1 MHz/mm²
- TID: 50 Mrad
- NIEL: 1x10¹⁵n_{eq}/cm²
- Area: 10.8 to 20.8 m² of silicon
- → Price + Production Schedule crucial Challenges → Industrial, monolithic

Inner Layers

- Occupancy: 10 MHz/mm²
- TID: 1 Grad
- NIEL: 2x10¹⁶n_{eq}/cm²
- Area: 0.8 m² of silicon
- → Challenges radiation driven → hybrid

→ Investigate Depleted Monolithic Active Pixel Sensors as option for ITk outer pixel

layers

Introduction to Silicon On Insulator (SOI)

 Bulktransistor

- Channel formation in silicon bulk
- Deep wells used for full CMOS technology

Fully Depleted SOI-, transistor

- Ultra-thin transistor body ~O(40 nm)
- Body fully depleted.
- Si Bulk isolated from transistors

Partially Depleted SOI-/ Thick film transistor

- Partially depleted body ~O(several µm)
- Body isolated and floating wrt. bulk.
- Transistors can be shielded from BOX using deep wells
- Full CMOS technology

Motivation for XFAB SOI process

HV / HR CMOS proccesses:

- Electronics (partially) shielded from substrate by well structure
- Large fill factor
 - → short drift distance
 - → high radiation hardness
- Large sensor capacitance + crosstalk (Large well, several well junctions)

30/09/15

Partially depleted XFAB SOI process:

- Electronics isolated from substrate by BOX
- Small charge collecting electrode
 - → But no "competing wells"
- Double wells in transistor body + particular geometry
 - → No back-gate effect and high rad. hard. expected
 - → Full CMOS logic
- Full depletion possible

Designed by T. Hemperek, T. Kisisita and H. Krüger [T. Hemperek et al.: http://dx.doi.org/10.1016/j.nima.2015.02.052]

XTB01 prototype

- XFAB Trench SOI 0.18 µm CMOS low-power 1.8/5.0V
- P-type bulk, 4 metal layers
- Wafer size: 8"
- Relatively high handling wafer resistivity:
 - 100 Ω cm CZ
 - 1 k Ω cm possible
- Currently no back-processing
 - → HV applied from front side
- Size: 5 x 2 mm²
- 3T cell readout

30/09/15

Designed by T. Hemperek, T. Kisisita and H. Krüger

Tested by M. Backhaus, S. Fernandez-Perez, T. Hemperek, T. Kisisita and H. Krüger

Highlights from TID radiation hardness

(S. Fernandez-Perez, doi:10.1016/j.nima.2015.02.066)

- Transistors radiation hardness proven up to 700 Mrad
- NMOS and PMOS with similar response to TID as non SOI technology, esp. IBM 130 nm (FE-I4, ATLAS IBL R/O chip)
 Back Gate effect not observed

- Accumulation layer below BOX forms due to positive charge generation
- Channel from bias grid to charge collecting n-well
- "Leakage current" high after TID

Highlights from Charge collection properties (1 / 3)

(S. Fernandez-Perez, et al. to be submitted by this month)

- → Calibration factor: $K=(11,59 \pm 0,79_{(sys)} \pm 0,01_{(stat)}) \times 10^{-6} \text{ V/e}$
- \rightarrow Depletion depth at 120 V: (33,9 ± 2,7) µm
- → SNR: 22

Highlights from Charge Collection Properties (2/3)

(S. Fernandez-Perez, et al. to be submitted by this month)

By increasing the bias voltage the amount of slow collected hits reduces.

By increasing the bias voltage the amount of fast collected hits increases.

Highlights from Charge Collection Properties (2/3)

(S. Fernandez-Perez, et al. to be submitted by this month)

By increasing the bias voltage the amount of slow collected hits reduces

By increasing the bias voltage the amount of fast collected hits increases.

Neutron irraditated 1 x 10¹³ n_{eq}/cm ⁹⁰Sr -30V at -30°C

The slow collected hits disappear for the irradiated samples

→ Drift and diffusion are observed in the collected charge and can be separated !!

Highlights from Charge Collection Properties (3 /3)

(S. Fernandez-Perez, et al. to be submitted by this month)

The depletion depth increases

linearly to the square root of

voltage, as expected

- Sample at 5 x 10^{13} n_{eq}/cm² collects more charge than sample at 1 x 10^{13} n_{eq}/cm² at same conditions.
- Might be due to acceptor removal effect.
- Acceptor removal effect observed in 10-20 ohm cm
 - → Igor Mandic et al,. in ITK September 2015:

https://indico.cern.ch/event/369608/session/6/contribution/35/attachments/1155045/1659892/

Highlights from eTCT measurements (1 / 2)

(S. Fernandez-Perez, et al. to be submitted this month)

XTB02 prototype

- Leakage decreases by a factor of ten with respect to XTB01
- Breakdown increases to above300V (see more in backup)

Highlights from eTCT measurements (2 / 2)

(S. Fernandez-Perez, et al. to be submitted this month)

Z direction (p-field floating)

- Depletion depth grows in bulk as expected (agrees with source measurements), no in Y direction
- Depletion in lateral direction (Y axis) under investigation

- P-field and p-stop structures influence the charge collecting properties when biasing
 - \rightarrow y direction 5 µm increase for 100V
 - → no change in z direction
- Being investigated with TCAD

SPS Test Beam

- AIDA SBM FE-I4 telescope
- 6 FE-I4 planes with 50 x 250 μm² pixel
- Every second plane is rotated by 90°→ resolution improvement

- Bias voltage was varied for 60-V, 90-V, and 120-V.
- Reconstruction + analysis (Judith) performed.
- Single pixel readout (50 x 50 μm²) with oscilloscope
- Computed residuals and the efficiency for the pixel

30/09/15

SPS Test Beam: First beam particles detected

- High beam rate needed due to small sensitive area
 - → very careful alignment done, focused beam
- Used oscilloscope trigger on hits in XFAB to define ROI in telescope
- Rate in order of 5 10 hits per spill in XFAB, mostly two spills per 36 seconds
 - Took about 10M events to ensure 20.000 events in XFAB

SPS Test Beam: output pulse shape reconstruction R/O

Implemented 3TcellAnalyser (used in sources measurements too)
 → Extract additionally the charge collection time, hit detection time

$$f(t) \begin{cases} t \le to & f = a + m(t - to) \\ t > to & f = a + m(t - to) + b(e^{\frac{t - to}{c}} - 1) \end{cases}$$

b: charge collection (CC)

c: charge collection time (CCT)

t_o: hit detection time

Signal Versus Background

Signal 120V @ room T (Single run, 150.000events)

- Noise is defined as all readout not identified as a hit (fit with a Gaussian)
- Signal: all identified hits using the algorithm on the previous slide (fit with a Landau)
- Signal-to-noise (SNR): 22
- Select DUT hits with V>~0.035 (choice depends on the bias voltage)

Some non-Gaussian tails (likely small signals)

S. Fernandez-Perez - TWEPP 2015

17

DUT efficiency

Efficiency of the DUT with no cuts on the clusters

- Maximum bin efficiency 97 %
- Central part of the pixel is 20% more efficient than outside part → charge sharing
- The pixel collects tracks from neighbor pixels
 - → diffusion contribution: they disappears by cutting on CCT or T₀

DUT efficiency

- Efficiency of the DUT with no cuts on the clusters
- For the 60, 90-V and 120-V, the edges are <u>averaged in rings</u> to increase the statistics

- ✓ The outer pixel efficiency size grows
- ✓ The inner pixel efficiency increases

Outline the approximate pixel size

Example of the Cut on T₀

- Different cuts can be implemented to invalid events.
 - \rightarrow charge collection time (diffusion), T₀
- T_0 should be always at the same time, fixed by the external trigger (600ns)
- Example cut on the T₀ form 550-630 ns

Difference in Residual After T₀ Cut

- Hit to track residual before and after cutting on T₀ of the clusters for the 90-V bias
- T0 cut removes almost all hits with a residual of larger than 100 μm

Projected Efficiency

- Efficiency is projected for the x and y directions
- Gaussian width is wider for the x direction (14.6 μm) than y direction (12.7μm)
 - → n-well is not square (expected 2-μm bigger in one direction 14μm x 10.5μm)

Efficiency Vs Bias Voltage

- · Aligned run by run
- Efficiency is computed for the center 36% and central 80% of the pixel with the T₀ cut.
- Minimum efficiency. We were conservative in the corrections for excluded data

- 97.2% ± 1.3% efficiency at 120V
- The chip stands 200V

Conclusion & Outlook

- XFAB thick film SOI technology extensively investigated on fully monolithic prototype
 - Good electronics radiation hardness
 - No back-gate effect
 - Unexpected high leakage current, intense increase with pos. charge accumulation in the BOX → process change + p-stop / p-field implemented in second prototype
 - Clear ⁵⁵Fe and ⁹⁰Sr spectrum up to 5x10¹⁴ n_{eo}/ cm²
 - Depletion depth grows as expected in depth (sources, eTCT measurements)
 - Possible hints to Acceptor Removal Effect seen → eTCT vs fluence measurements in in coming months in collaboration with I. Mandic et al.
- Test beam studies in unirradiated samples
 - o Central 36% of the chip has an efficiency of around 97% @ 120-V
 - Test beam results confirm excellent charge collection properties observed with radioactive sources and eTCT
 - o Test beam campaigns in irradiated devices in coming months
- XFAB SOI technology shows promising results for depleted monolithic pixel layers in HL-LHC experiments.

Backup

Recent results on SOI

Big achievements of SOI community wrt. radiation hardness shown

30/09/15

[Yasuo Arai, Vertex 2013]:

Silicon-On-Insulator Pixel Detector (SOIPIX)

Double BOX SOITEC wafer

Radiation damage in MOSFET

1. Positive charges trapped in the oxide -> parasitic currents

2. Traps in the Si-SiO₂ interface

Bias conditions during irradiation are crucial !!

Threshold voltage shift -NMOS

CHIP #3 – Bias option A

Vg=1.8V; Vd, Vs=0V (NMOS ON)

0.04 0.02 0.00 2.7/0.27 2.0/1.4 -0.02AVth (V) 2.0/0.72 2.0/0.36 -0.044.0/0.18 2.0/0.18 -0.060.5/0.18 -0.082.7/0.27 is EGT **Preliminary** -0.10-0.12 10^{5} 10^{6} 10⁷ 10⁸ 10^{9} Pre-rad TID [rad]

- Shift in a rebound way due to:
 1)gate/STI oxide 2)gate/STI interface traps
- Enclosed NMOS no shift
- -The shift scales with W ->STI dominate
- 0.5/0.18 @700Mrad AVthr=70mV

CHIP #6 – Bias option B

Vg=0V; Vd, Vs =0V (NMOS OFF)

- Almost no gate/STI oxide effect since Vg=0
 -> e/h pairs recombine.
- Due to lack of electrical field, interface traps appear at about 500Mrad instead of after 5Mrad
- 0.5/0.18 @700Mrad Avthr=20mV

Threshold voltage shift - PMOS

For PMOS is not clear which bias condition is worse!! -> ISSUE nowadays

CHIP #3 – Bias option A

Vg=1.8V; Vd, Vs =1.8V (PMOS OFF)

0.15 2.7/0.27 2.0/1.4 0.10 AVth (V) 2.0/0.72 2.0/0.36 **Preliminary** 4.0/0.18 0.05 2.0/0.18 **0.5/0.18** 2.7/0.27 is EGT 0.00 -0.05 10^{5} 10⁸ 10^{6} 10⁷ 10⁹ TID [rad] Pre-rad

CHIP #6 – Bias option B

Vg=0V; Vd, Vs=1.8V (PMOS ON)

- As expected, the threshold voltage of PMOS increases for both bias conditions.
- Shift of same order (for 0.5/0.18 -> 120mV).
 - → Not conclusion about worst bias condition

Highlights from Charge Collection Properties

(S. Fernandez-Perez, et al. to be submitted by this month)

 90 Sr $- 50 \times 50 \mu m^2 \text{ pixel} - 120 \text{V at} - -30 ^{\circ}\text{C}$

Evolution of N_{eff} with fluence

$$N_{\mathit{eff}} = N_{\mathit{eff}\,0} - N_c \cdot (1 - \exp(-c \cdot \Phi_{\mathit{eq}})) + g \cdot \Phi_{\mathit{eq}}$$
 acceptor removal

$$Width(V_{bias}) = Width(0) + \sqrt{\frac{2\varepsilon_0}{e_0 N_{eff}}} V_{bias}$$

Radiation introduced deep

acceptors (stable damage): $g = 0.02 \text{ cm}^{-1}$ (fixed)

Initial concentration

- god fit up to 1e16
- agreement with CCPDv2 (AMS 180 nm, 10 Ohm-cm, measured with active pixels)

Compare measured/calculated

AIDA SBM FE-I4 telescope

Mechanics

- Compact DBM-like mechanics
 - Size 60x20x20 cm³
 - Weight 4 kg
- Two DBM-like telescope arms moveable along Z and Y axis.
- One rotatable arm
- Max. 400 mm spacing between the arms
- 6 single-chip FE-I4B Silicon planar sensors (250x50 um² pitch, ~2x2 cm² active area)

Triggering

- External PMTs
- Internal HitOR functionality in FE-I4s. Hitbus chip for HitOR trigger handling (e.g. trigger issued when a hit is recorded in all planes)
- Triggering on a region of interest in FE-I4

1) The outer pixel efficiency size grows

2) The inner pixel efficiency increases

DUT Efficiency at 90-V

- Comparison with and without T₀ cuts on the clusters for the 90-V bias
- Reduction in hits far from the chip center

No cut on the clusters

Cut on To

