Simulation of Digital Pixel Readout Chip Architectures with the RD53 SystemVerilog-UVM Verification Environment **Using Monte Carlo Physics Data**

Elia Conti¹, Sara Marconi^{1,2,3}, Jorgen Christiansen¹, Pisana Placidi^{2,3}, Tomasz Hemperek⁴

CERN – Geneva, SWITZERLAND

1NFN – Section of Perugia, ITALY

3. DI – University of Perugia, ITALY

4. SiLab – University of Bonn, GERMANY

Pixel hit amplitude distribution (ATLAS data)

I. INTRODUCTION: VEPIX53 FRAMEWORK

- A flexible simulation and verification platform is being developed within the RD53 collaboration using the SystemVerilog hardware description and verification language and the Universal Verification Methodology (UVM) library.
- Such an environment, called VEPIX53 (Verification Environment for RD53 PIXel chips) is seen as a valuable development tool for the next generation hybrid pixel readout chips that will be used in the foreseen Phase 2 pixel upgrades at the LHC [1].
- Main goals:
 - flexible generation of input stimuli
 - automated verification functions
 - simulation at increasingly refined level as design progress

IV. SIMULATION RESULTS

a. Statistics on input hits

Information extracted from data sets through VEPIX53 simulations (independent from DUT):

- Hit amplitude distribution per pixel
- Monitored hit rate on full matrix

Pixel hit amplitude distribution (CMS data)

V. CONCLUSIONS AND FUTURE WORK

- Simulation framework with Monte Carlo data is vital for design optimization; quantities currently under investigation are correctly monitored.
- 2x2 and 4x4 regions are more efficient than single pixel in terms of memory

III. DIFFERENT KINDS OF INPUT STIMULI

Internally generated hits

External Monte Carlo simulation data

CMS: ROOT/ASCII files produced by workflow based on CMSSW

- Pixel size: 25x100 µm² / 50x50 µm²
- Sensor thickness: 150 µm
- Pileup: 140
- Layer: 1 \rightarrow center/edges of detector
- Digitizer threshold: 1500 e⁻
- **ATLAS**: text files extracted from Analysis Object Data (xAOD) generated with the ATLAS simulation chain
- Pixel size: 50x50 µm²
- Sensor thickness: 150 µm
- Pileup: none (integration over phi)
- Layer: $0-3 \rightarrow$ center/edges of detector
- Digitizer threshold: 500 e⁻

utilization and the distributed latency counters architecture is more convenient than the zero-suppressed FIFO one in terms of dead time.

- Double column simulation shows that double column bus is largely sufficient if running at 40 MHz.
- Extensive architecture simulation has started; validation of Monte Carlo data through sanity checks to be finalized.
- Behavioral results to be completed with RTL (implementation-oriented).
- Other arbitration schemes and complete architectures (e.g Transfer While Wait) will be implemented and simulated.

Acknowledgments

The authors would like to thank Ernesto Migliore (INFN Turin, Italy) for providing CMS data and Rebecca Carney (LBNL, California) for providing ATLAS data.

References

[1] S. Marconi, E. Conti, P. Placidi, J. Christiansen and T. Hemperek, "The RD53 collaboration's SystemVerilog-UVM simulation framework and its general applicability to design of advanced pixel readout chips," Journal of Instrumentation, vol. 9, no. 10, p. P10005, 2014.

Contact person: ELIA CONTI, *elia.conti@cern.ch*

[2] FE-I4 Collaboration, "The FE-I4A Integrated Circuit Guide," Version 11.3, CERN (2011).

Topical Workshop on Electronics for Particle Physics – September 28-October 2, 2015, Lisbon, Portugal.