High-Performance Analog-to-Digital Converters: Evolution and Trends

Pedro Figueiredo

pmff@synopsys.com

Topical Workshop on Electronics for Particle Physics 2015
28th September 2015
Outline

- ADC performance: Evolution
- ADC architectures: Relationships, Speed, Performance
- Technology Scaling: Difficulties and Opportunities
- Synopsys digitally calibrated Pipeline and SAR ADCs
The Analog-to-Digital Converter

- Translates an **analog input signal** into its binary coded representation (**N bit**), at a certain **rate** (**fs**)
Evolution of ADC performance

- Data from Prof. Murmann’s Survey [1]

Conversion Energy vs SNDR

Energy Efficiency improves 2x [2]:
- Low/Medium Resolution: every ~1.6 yrs
- High Resolution: every ~5.4 yrs
Evolution of ADC performance

- Walden’s FOM = $P/(2^{\text{ENOB}} \cdot \text{fs})$

Assumptions:
1 extra bit \rightarrow P increases $2 \times$
Power scales linearly with fs

Best FOM: 10/12b 40kS/s-4MS/s low VDD

6-8b >1 GSPS ADCs
Lower power efficiency
Evolution of ADC performance

- Power per conversion-step as a function of f_s

Many more high frequency ADCs (though max reported f_s increased only $\sim 2x$)

But still a significant number of publications in this frequency range

Record FOM values
- Wireless Sensor Networks
- Internet of Things

1 fJ/conv.step

FOMw=1 pJ/conv-step
FOMw=100 fJ/conv-step
FOMw=10 fJ/conv-step
FOMw=1 fJ/conv-step

ISSCC 1997-2004
VLSI 1997-2004
ISSCC 2005-2014
VLSI 2005-2013
Evolution of ADC performance

- Some of Synopsys ADC implementations

Ref. ADC: 10 bit 80 MS/s Pipeline ADC

12 bit 200 MS/s Pipeline ADC with digital calibration

12 bit 80 MS/s SAR ADC with digital calibration

Estimate

Technology [nm]
ADC architectures typically presented as different and (somewhat) unrelated alternative solutions...
• ... each with its own pros and cons ...
• ... each best suited to certain resolution and f_s

Here we will focus on fundamental operations and how they are related [3]
Single and Multi-bit ADCs

- ADC fundamental operations: **sampling** and **quantization**

- Single bit ADC:

- Multi-bit ADC:

Conversion Process:
Search the DAC output that best approaches the sampled input...

... i.e. minimize the residue ...
SAR ADC

- **SAR ADC** is the direct implementation of the elementary multi-bit architecture

- Very efficient:
 - Re-uses same hardware in each cycle
 - Necessary number of cycles grows linearly with resolution: N cycles for N bits
 - Performance limited by DAC nonlinearity

![SAR ADC Diagram]
If DAC provides several outputs simultaneously: possible to search several codes in parallel

- Different codes are searched by different paths
- **Faster**: N/N_C cycles to complete a conversion
- Number of parallel paths: 2^{N_C}
- Differences between them degrade performance
- Examples: 2 and 3 bit per cycle SAR ADCs [4,5]
Speed Increase: **Parallelization** in the code-search process

- Taking this parallelization to the limit: $N_C = N$
- All codes are searched simultaneously

Flash ADC
Another possibility is pipelining:

- Quantization process is divided in several steps that occur in a pipelined fashion:
 - Typically, quantizers have low resolution \rightarrow low parallelization in the code search process
- At a given clock cycle, the ADC is quantizing several different samples
Speed Increase: Pipelining

- **Pipelined ADCs**: Practical considerations lead to the structure shown below.
- Each stage constituted by:
 - Quantizer
 - Residue calculator/amplifier block – MDAC
 - Residue: error signal corresponding to what is left to quantize
Speed Increase: Pipelining

- Quantizer specifications are relaxed (low resolution)

- MDAC non-idealities limit performance
 - Gain error of S/H, DAC and residue amplifier limit overall linearity
 - In practice this translates into stringent gain specifications of the amplifier implementing the MDAC
Non-linearity of the DAC(s) limits performance

Additionally:

- Use of **Pipelining** → Residue Amplification → Relaxed Quantizers

 → Performance limited by amplification blocks

- Use of **Parallelization in the code search process** → Quantizer only ADCs → Many parallel paths

 → Performance limited by differences between parallel paths (offsets)

SAR ADCs use none of the above: **limited only by DAC non-linearity**
Parallelization: in time domain

- Another **parallelization** possibility is **time-interleaving**
- Different samples processed by independent paths
 - Differences of **offset**, **gain**, **sampling instants** degrade performance
- Unit ADCs use the parallelization/pipelining techniques previously discussed
- N_{ch} ADCs \rightarrow f_s increases N_{ch} times

Example: 6b 90GS/s ADC with 64 unit SAR ADCs [6]
ADC implementations in advanced technologies

- Technology Scaling – the bad
 - Reduction of g_m/g_{ds}
 - Headroom limitations caused by VDD reduction
 - Bad CMOS switches
 - Higher variability
 - Transistor properties and matching more and more dependent on surroundings
 - Higher interconnect delays

- ... and the good
 - Faster devices
 - Digital processing is increasingly powerful, cheap and low power - available to overcome limitations in the analog sub-blocks of ADCs
ADCs with residue calculation/amplification

- Typical 1.5b MDAC circuit
 - ϕ_1: Sampling ϕ_2: Residue Amplification

- Negative feedback around a high-gain amplifier sets residue amplification gain very accurately
- Increasingly difficult to attain high gain in nanoscale technologies
- Class A amplifiers not power efficient
Techniques to improve power efficiency:

- **Opamp switching** reduces power consumption during reset phase, but introduces speed or headroom limitations [7-9]

- **Opamps** can be shared between stages in order to ensure they are being used at all times [10-13]

- **Class AB amplifiers** [14] may be used, but are more complex and have limited effectiveness
Techniques to improve power efficiency:

• Use of **low gain amplifiers** and **digital calibration**
• Opamp substituted by **comparator + current source** [15,16].

 o No stability and gain-bandwidth product limitations
 o Stops consuming when the desired voltage is reached
Techniques to improve power efficiency:

• **Open loop amplifiers based on transconductances** [17,18]:
 - Gain is parasitic and PVT dependent, and non-linearity is non-negligible. Complex digital calibration required

• **Open loop amplifiers that are not based on transconductances**:
 - Parametric amplification [19,20]
 - Bucket brigade circuits [21,22]
 - Even larger non-linearity and dependence of parasitics/PVT
 - Digital calibration complexity is further increased
12b 200MS/s digitally calibrated pipeline ADC

- Calibration of amplifier finite gain and capacitor mismatches
 - Fast startup time and robustness against VDD/Temp variations
- Stages with reduced output swing
- Opamp switching technique with no speed or signal swing limitations

[Diagram of the ADC with calibration stages and binary outputs]
12b 200MS/s digitally calibrated pipeline ADC

- Gain error of S/H, and residue amplifier, and mismatches of the DAC cause \(G_{Ei} \) and \(G_{Eo} \neq 1 \)

- **Digital gain calibration**: Multiply by \(1/G_{Eo} \)
12b 200MS/s digitally calibrated pipeline ADC

- Determination of digital coefficients

Foreground (Fast Startup)

U.S. Patent 8 742 961

Background (Adapt coef. as VDD/Temp varies)
12b 200MS/s digitally calibrated pipeline ADC

- Capacitor C_D:
 - Injects the Pseudo-Random Binary Sequence on the central segment
 - Shifts L/R segments in order to reduce signal swing
 - Lower amplifier non-linearity
 - Relaxed settling specifications
12b 200MS/s digitally calibrated pipeline ADC

- **Amplifier:**
 - Single stage, high-swing $\rightarrow A_0\beta \approx 16\text{dB}$ only
 - Switching of C_B reduces power consumption in ϕ_1
 - No speed or signal swing limitations

![Amplifier Circuit Diagram]

U.S. Patent 8 610 422
12b 200MS/s digitally calibrated pipeline ADC

- Measurement results:
 - Calibration off
 - Calibration on
Quantizer-only ADCs

- No need for highly linear or gain accurate blocks → better adapted to nanometer technologies

- Non-linearity of the DACs inside the quantizers:
 - Caused by random deviations on its constitutive elements
 - Matching improved by using devices with larger area
 - Resistive ladder DACs: increased parasitics
 - Switched capacitor DACs: sets a minimum limit for the value of the capacitors (as does noise)
 - May also be addressed by digital calibration
Quantizer-only ADCs

- Performance of flash/subranging/time-interleaved SAR ADCs limited by comparator offsets
- Add pre-amplifier with offset sampling
 - Static consumption
 - Non-negligible residual offset [23]
Quantizer-only ADCs

- **Offset calibration:**
 - Programmable capacitor or current source arrays in dynamic comparator [24,25]
 - Auxiliary diff pair and switched capacitor integrator [23,26]
 - No speed reduction
 - Marginal power increase
 - High calibration-range/calibration-step ratio
 - (Almost) perfect offset removal

Auxiliary Differential Pair

- V_{MAX}, V_{MIN}
- C_p, C_{CAL}
- W, W_{CAL}
- V_{CALP}, V_{CALN}
- Selection Logic

31
Quantizer-only ADCs

- **Averaging** [23,27,28]
 - Offset of comparators is a weighted sum of several amplifiers
 - Offsets become correlated
 - Lower area devices may be used
Quantizer-only ADCs

- **Stochastic** flash ADCs [29,30]:
 - Fully synthesized in a digital flow
 - 2^n minimum size comparators with the same V_{REF}
 - Output code obtained by counting the number of ‘1’
 - Nonlinear transfer function: Gaussian cumulative distribution \rightarrow Linearization through digital calibration
12b 80MS/s digitally calibrated SAR ADC

- Asynchronous architecture.
- Operation independent of clk duty cycle
- Low noise fully dynamic comparator
- Use of time-interleaving: 12b 160MS/s and 320MS/s ADCs
DAC with capacitive dividers avoids the exponential increase on the number of (small) unit capacitors.

Digital calibration: addresses random capacitor mismatches and sensitivity to parasitics in the capacitive divider nodes.

- Measures capacitor ratios at startup
- Corrects the raw code provided by the SAR
12b 80MS/s digitally calibrated SAR ADC

- **Measurement results:**

 - **Calibration bypassed**
 - DNL [LSB] vs Code
 - INL [LSB] vs Code
 - **Calibration on**
 - DNL [LSB] vs Code
 - INL [LSB] vs Code
Conclusions

- Reviewed ADC performance evolution in the last 10 years

- **Main trend:** energy efficiency improvement
Conclusions

- ADC architectures
 - SAR ADC is the direct implementation of the elementary multi-bit ADC architecture
 - Speed increase: use parallelization in the code-search process or pipelining
 - This yields ADCs based only on quantizers, and those based on residue amplification for further quantization
 - ...which have significantly different trade-offs
 - Speed also increases by parallelizing in time-domain: time-interleaving
Conclusions

- Reviewed challenges/benefits introduced by technology scaling

- **Digitally Assisted Analog** trend:
 - Relaxed analog circuits’ complexity...
 - ...traded favorably by extra digital complexity

- Disclosed a few details about Synopsys 12b digitally calibrated pipeline and SAR ADCs
 - Illustrated how the use of digital calibration can dramatically improve performance
References

References

References

Thank you
pmff@synopsys.com