

The ALICE Central Trigger Processor (CTP) Upgrade

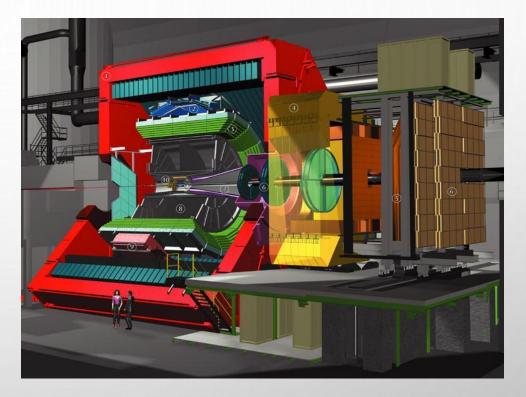
Marian Krivda¹⁾ and <u>Jan Pospíšil²⁾</u>

On behalf of ALICE collaboration

1) University of Birmingham, Birmingham, United Kingdom

2) Nuclear Physics Institute ASCR, Řež, Czech Republic

29. September 2015, TWEPP 2015


Content

- CTP for LHC Run 2
 - ALICE experiment after LS1
 - Trigger challenges for Run 2
 - New LMO board
 - Main features of upgraded CTP
 - Integration and commissioning
- CTP proposal for LHC Run 3
 - Requirements
 - Design Proposal
 - CTP emulator for Local Trigger Unit (LTU)
 - Low Latency Interface

2

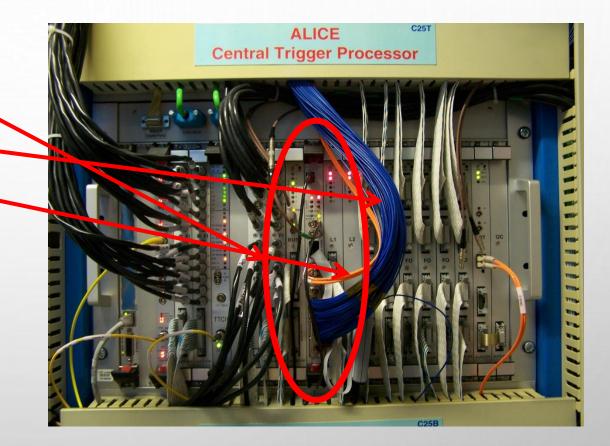
ALICE Experiment After LS1

- CENTRAL TRACKER
 - Silicon pixel, Silicon Drifts, Silicon Microstrips, TPC, TRD (fully completed), TOF
- FORWARD DETECTORS
 - T0, V0, FMD, PMD
- SPECIAL DETECTORS
 - ACORDE, PHOS, EMCAL, HMPID
 - New: DCAL, CPV
- DIMUON TRACKER
 - Absorber, Tracking chambers, Trigger chambers

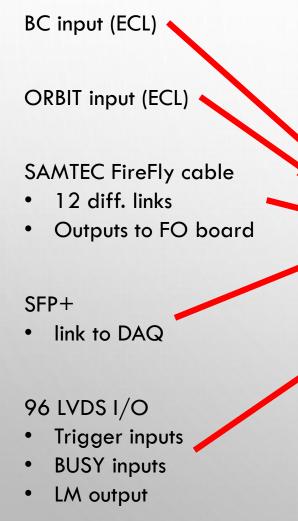
ALICE Trigger Challenges for LHC Run 2

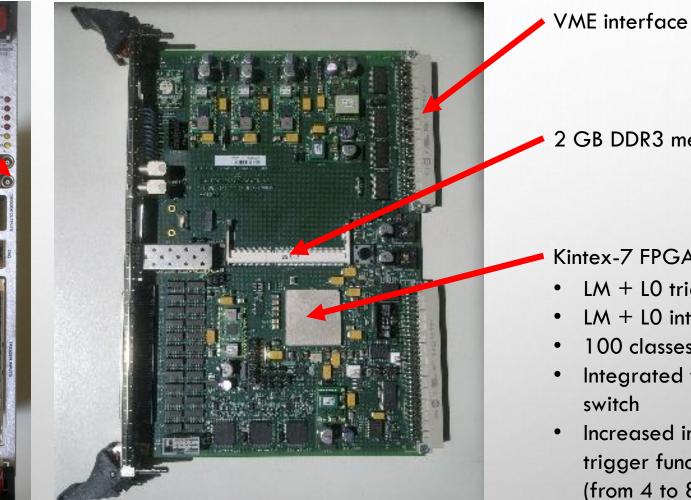
Trigger – selects interesting physics events (based on different triggering detectors)

- Optimise for different running scenarios (p-p, p-Pb, Pb-Pb) with different interaction rates
- Optimise rates according to physics requirements (downscaling)
- Optimise use of detectors with widely different busy times
 - Detector grouping trigger clusters
- Different latency requirements (4 trigger levels)
- Protect detectors from Pile-Up detector protection interval


Requirements for CTP for LHC Run 2

- Add LM trigger level (before L0 trigger level) for TRD pre-trigger
- Increase number of classes from 50 to 100
- Trigger input switch integrated into CTP
- New snapshot/generator memory (using 1+1 GB of DDR3 memory)
- All functions (special type of trigger inputs) from 8 inputs (only 4 inputs before)
- LM and LO interactions (definition of basic trigger) from first 8 inputs
- Past-Future protection for LM and LO levels (protects detectors from Pile-Up)
- Second link to DAQ for extended Interaction record


ALICE CTP for LHC Run 2


Changes with respect to LHC Run 1

- New LMO board with Kintex-7 FPGA
- 96 diff. IOs at front panel
- New octopus cable (blue) for CTP inputs
- New Detector Data Link (DDL2) to DAQ
- New FPGA designs for all CTP and LTU boards
- Installed new trigger cables from T0, V0, CPV and DCAL
- Repaired many old cables
- Timing on CTP backplane, CTP-LTU and LTU-TTCex connections re-checked after upgrade of all FPGA designs

LMO Board

2 GB DDR3 memory

Kintex-7 FPGA:

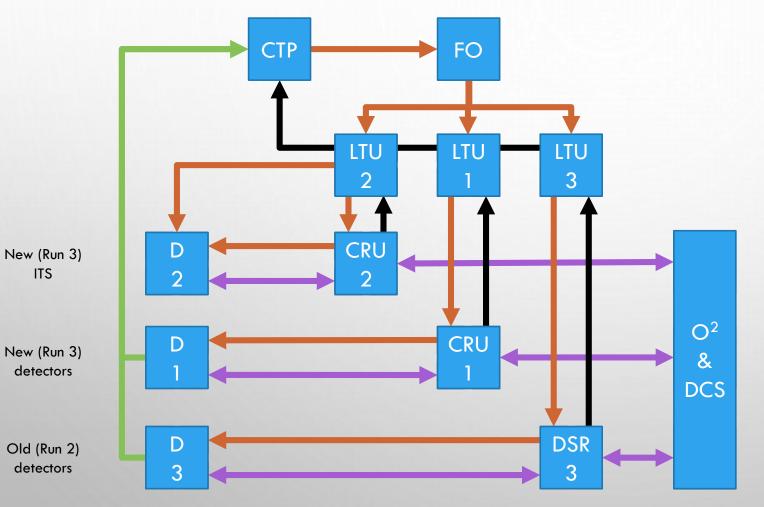
- LM + LO trigger levels
- LM + LO interaction
- 100 classes
- Integrated trigger inputs
- Increased input for each trigger functions (from 4 to 8)

Integration and Commissioning for LHC Run 2

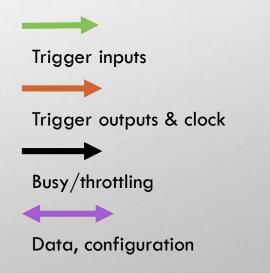
- All detectors tested with 100 classes (logical combination of triggers)
- LM trigger tested with TRD detector
- New functions with 8 trigger inputs tested for CTP
- DDL2 link basic functionality (physical layer) tested with DAQ
- New improved downscaling successfully tested
- New Past-Future protection tested

8

CTP Proposal for LHC Run 3

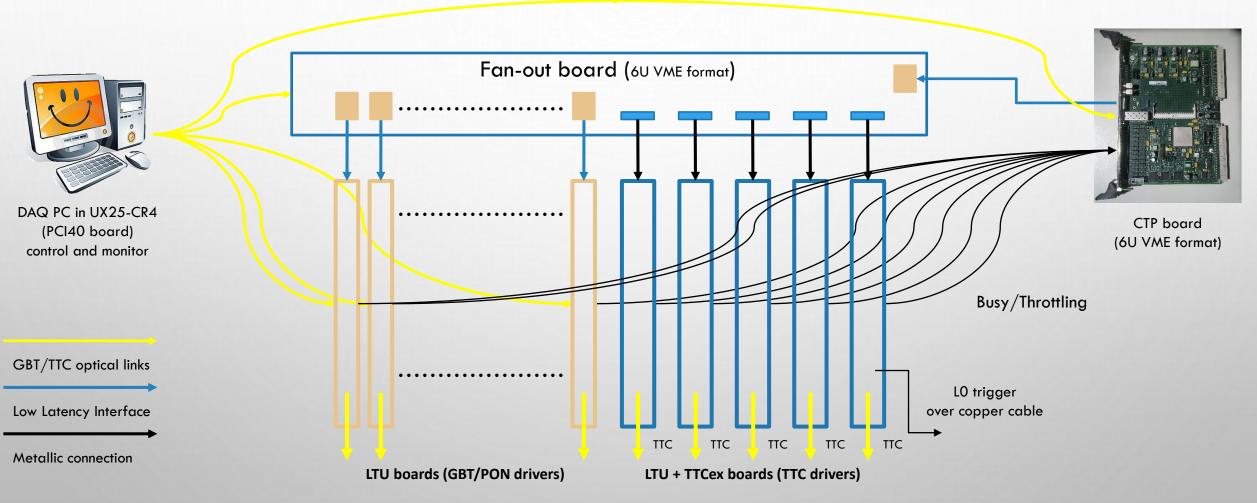

Requirements for LHC Run 3

- The main "interaction" trigger via the "FIT" detector
 - Not selecting events, just announcing an interaction
 - Not every bunch crossing has an interaction in ALICE
- No trigger levels, each detector selects which max. trigger latency it can accept
- 2 modes of running for detectors: triggered and continuous
- Triggers sent to all detectors which are not busy
- Each detector as separate cluster, but retain also clustering possibility
- No CTP Dead-time
- Interaction Rates: 50 kHz for Pb-Pb, and up to 200 kHz for p-p and p-Pb


Requirements for LHC Run 3 (cont.)

- 3 types of trigger distribution
 - Directly on detector (ITS detector)
 - Via Common Readout Unit (CRU)
 - Via detector specific readout system
- 2 types of link layer
 - GBT (PON) for upgraded detectors
 - TTC system for old detectors
- 12 detectors (7 with GBT system, 4 with TTC system, 1 with GBT+TTC system)
- 6 Triggering detectors (FIT, ACO, EMC, PHO, TOF, ZDC)
- Trigger latencies
 - 775 ns (contributing detector: FIT) → wake-up signal for TRD electronics
 - 1.5 μs (contributing detectors: FIT, ACO, EMC (only some inputs), PHO, TOF, ZDC (only some inputs))
 - 6.4 µs (contributing detectors: all)

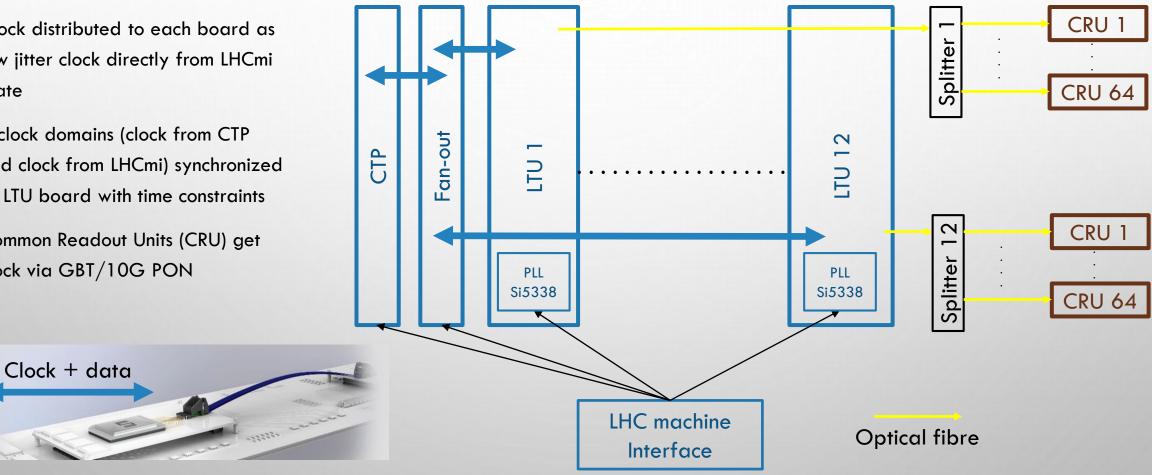
ALICE System Block Diagram for LHC Run 3 3 Types of Trigger Distribution



D – Detector
CTP – Central trigger Processor
FO – Fan-Out board
LTU – Local Trigger Unit
CRU – Common Read-out Units
DSR – Detector Specific Read-out
O² – Online + Offline Computing
DCS – Detector Control System

12

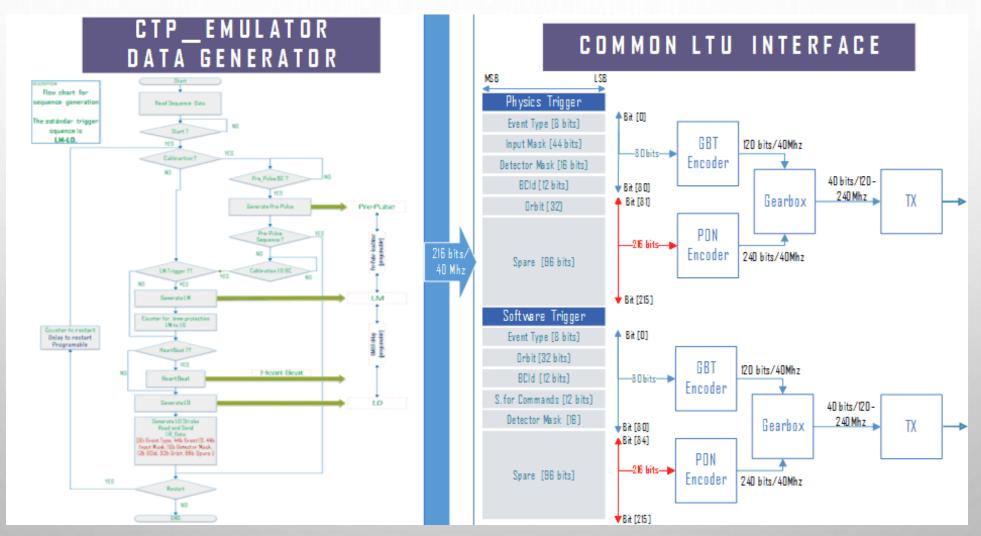
Design Proposal for Trigger System



Trigger Protocol

- Detectors with fast links (GBT)
 - Synchronous message with 188 bits. This message can be transmitted every BC, i.e. 40 MHz
- Detectors with TTC (old detectors can run with max. 100 kHz)
 - One synchronous pulse in channel A
 - Asynchronous message in channel B
 - The size of channel B message is restricted by TTC bandwidth. We have 2 options:
 - Short message which is 16 bit long and carries 8 bit of data (188 bits/trigger at 100kHz)
 - Long message which is 42 bits long with 16 bit of data (148 bits/trigger at 100 kHz)

LHC Clock Distribution

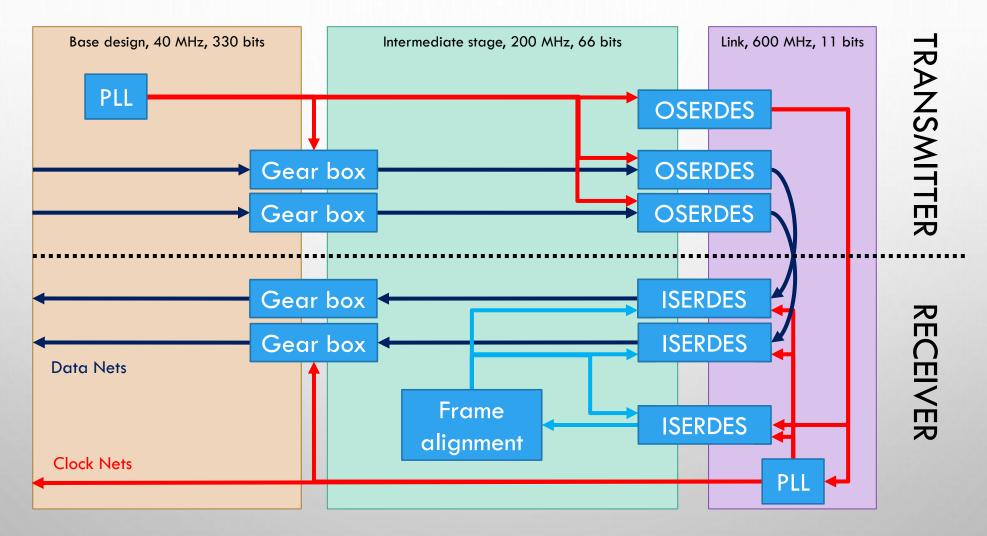

- Clock distributed to each board as low jitter clock directly from LHCmi crate
- 2 clock domains (clock from CTP and clock from LHCmi) synchronized at LTU board with time constraints
- Common Readout Units (CRU) get clock via GBT/10G PON

Design Proposal of LTU Board

- LTU Local Trigger Unit
 - Global mode: interface between Detector and CTP
 - Standalone mode: programmable FSM generator of CTP sequences with adjustable frequency/pseudorandom
- 6U VME board (only power taken from VME)
- 1 slot for Samtec FireFly cable with 12 diff. links (Low Latency Interface from CTP)
- PLL with fixed IN/OUT phase for 120/280 MHz clock (Silicon Labs 5338)
- 6 GBT (10G PON) links (trigger distribution)
- 1 GBT link to DAQ (control and monitoring)
- Compatibility with 10G PON

CTP Emulator on LTU Board

The ALICE Central Trigger Processor (CTP) Upgrade, TWEPP 2015


Low Latency Interface

(minimization of trigger latency for CTP-FO-LTU connections)

Assignment, Constraints

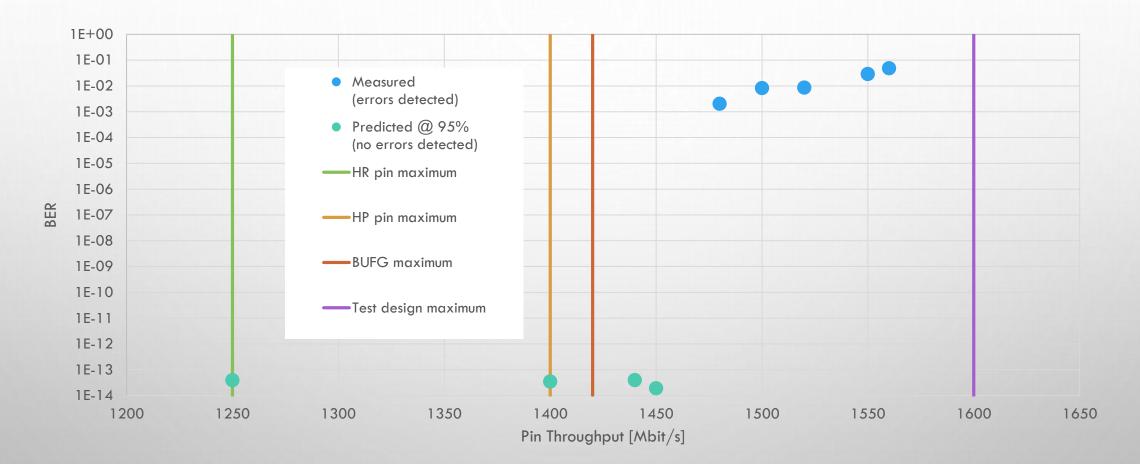
- Propose communication interface for future CTP-FO-LTU connection
 - Low latency of link (to minimize trigger latency)
- Xilinx Kintex-7 HR pins (maximal speed: 1250 Mbit/s)
- Samtec FireFly connector/cable (UEC5, UCC8)
 - 12 differential pairs
- More bandwidth than in present system
 - Requested bandwidth: 280 bit @ 40 MHz (11.2 Gbit/s)
- Base design clock: LHC (~40 MHz)
 - Or integer multiplication
 - Synchronous to LHC clock

FPGA Design Proposal (2 links)

20

Configurations at Maximal Rates

	Variant 1	Variant 2
Bus width @ 40 MHz	330 bits	308 bits
Intermediate Freq. (Frame Clock)	200 MHz	280 MHz
SERDES	6:1:6	4:1:4
Link frequency (Bit Clock)	600 MHz	560 MHz
One Link speed	1200 Mbit/s	1120 Mbit/s
Throughput (all 11 links)	13.2 Gbit/s	12.32 Gbit/s
Bandwidth Utilisation	96%	90 %
Latency Rx+Tx (first fragment)	45 ns	39.29 ns
Latency Rx+Tx (whole message)	70 ns	64.29 ns


Mbit = 10^6 bit, Gbit = 10^9 bit

Test Setup

- Tested on maximal datasheet speed
 - 1250 Mbit/s on one pin/link
- DDR, SERDES ratio 1:8
 - Frame clock 156.25 MHz, bit clock 625 MHz
- PRBS test data
- Two identical LMO boards
 - FPGA Xilinx Kintex-7 (XC7K325T-2FFG900C)
 - Inserted in VME crate, controlled by VME processor
- Samtec FireFly cable with ECUE connectors
 - Various types and lengths

Error Rates

Low Latency Interface Summary

- Latency measured:
 - TX Parallel data \rightarrow RX parallel data
 - Without medium (only transmitter + receiver)
- Our interface latency, Frame Clock = 280 MHz
 - 39.29 ns for the first fragment (25 ns 40/280 MHz conv., 14.29 ns SER/DES)
 - 64.29 ns for the whole message (25 ns 40/280 MHz conv., 14.29 ns SER/DES, 25 ns 280/40 MHz conv.)
- Good scalability (separate clock and data links)
- Comparison: Latency optimized GBT
 - Xilinx Kintex-7, high-speed serial pins
 - Latency 71.2 ns for the first fragment
 - H. Chen, K. Chen, F. Lanni: "The testing of the GBT-FPGA on Xilinx FPGA", 2014

Summary

- CTP upgrade for LHC Run 2 is integrated and commissioned
 - LM implemented and fully tested
 - 100 classes implemented and fully tested
 - New Past-Future implemented and fully tested
 - DDL2 physical layer implemented and tested
- CTP upgrade for LHC Run 3 is ongoing
 - Design proposal well advanced
 - LTU requirements being collected
 - Low Latency Interface between CTP-FO-LTU tested

Back-up Slides

Trigger Data Format

- Detectors with GBT or PON:
 - Event ID (Orbit 32 bits + BCld 12 bits): 44 bits
 - Input Mask: 48 bits
 - Detector Mask: 72 bits (= 24 x 3 different trigger latencies)
 - Event type: 24 bits (= 8 x 3 different trigger latencies)
 - Message/Spare: 64 bits
 - TOTAL: 252 bits/each BC
- Detectors with TTC:
 - it seems that at 100 khz there is enough bandwidth to transmit all apart Message/Spare:
 - Event ID (Orbit 32 bits + BCld 12 bits): 44 bits
 - Input Mask: 48 bits
 - Detector Mask: 24 bits
 - Event type: 8 bits
 - TOTAL: 124 bits/each BC

Main CTP Connections

- CTP board FO board → custom protocol (12 diff. links, 1 link CLK (1200 Mbit/s) x 11 data bits, 330 bits each BC, ORBIT is one bit in data)
- FO board old LTU+TTCex boards → modified protocol from LHC Run 1 (less data through TTC in order to increase trigger rates)
- Old LTU board FEE \rightarrow L0 cable (LVDS) + TTC system
- FO board new LTU boards → custom protocol
- New LTU board CRU \rightarrow GBT (10G PON) (data protocol defined by ALICE)
- New LTU board ITS \rightarrow GBT
- CTP board + FO board + new LTU boards DAQ → control and monitoring instead VME, bidirectional GBT protocol (data defined by ALICE)

Error Rates

Frame clock [MHz]	Bit clock [MHz]	Throughput [Mbit/s]	Error rate [1/s]	BER [-]
156.25	625	1250	0	3.92 × 10 ⁻¹⁴
175	700	1400	0	3.50 × 10 ⁻¹⁴
180	720	1440	0	3.99 × 10 ⁻¹⁴
181.25	725	1450	0	1.91 × 10 ⁻¹⁴
185	740	1480	3.00 × 10 ⁶	2.03 × 10 ⁻³
187.5	750	1500	1.25×10^{7}	8.33 × 10 ⁻³
190	760	1520	1.30×10^{7}	8.58 × 10 ⁻³
193.75	775	1550	4.48×10^{7}	2.89 × 10 ⁻²
195	780	1560	7.52×10^{7}	4.82 × 10 ⁻²

BER on measurement with 0 errors has been estimated with 95% confidence level.