

# Topmetal-II: a direct charge sensor for high energy physics and imaging applications

Chaosong Gao<sup>a</sup>, Mangmang An<sup>a</sup>, Chufeng Chen<sup>a</sup>, Yan Fan<sup>a</sup>, Guangming Huang<sup>a</sup>, Rong Ji<sup>a</sup>, Xiaoting Li<sup>a</sup>, Quan Sun<sup>b</sup>, Xiangming Sun<sup>a</sup>, Kai Wang<sup>a</sup>, Le Xiao<sup>a</sup>, Ping Yang<sup>a</sup>, Shuguang Zou<sup>a</sup>, Wei Zhou<sup>a</sup>

<sup>a</sup> Central China Normal University, Wuhan 430079, China <sup>b</sup> Institute of Acoustics, Chinese Academy of Science, Beijing 100190, China chaosong\_gao@126.com

#### **Abstract**

Topmetal-II-, a direct charge sensor, was manufactured in an XFAB 350 nm CMOS process. The Topmetal-II- sensor features a 72 x 72 pixel array of 83 µm pitch between pixels. It is suitable for Time Projection Chamber (TPC) [1] charge readout. This paper focuses on the implementation of circuitry in the sensor including the analogue readout channel and a column based digital readout structure. The analogue readout channel allows access to the full waveform from each pixel through time-shared multiplexing. The digital readout channel records hits identified by a variable threshold in each pixel. Preliminary tests show that an ENC of < 15 e<sup>-</sup>, a charge-voltage conversion gain of 190 mV/fC, and a threshold of 200 e<sup>-</sup> for the digital readout.

## Sensor photograph & pixel layout





Circuit modules distribution: A: pixel array

B: end-of-column readout module digital C: multiplex module readout

D: scan module analogue E: off-pixel unity gain buffer J readout

#### **Charge Collection Electrode**



➤ Charge collection electrode: top metal [2]

- Total area: 25 x 25 μm<sup>2</sup>
- Exposed area: 15 x 15 μm<sup>2</sup>
- Position: right bottom of each pixel, connect to the front-end circuitry directly in the pixel.
- > Guard ring is connected to a test PAD.
- $\triangleright$  Electric field:  $\sim 10^2$  V/cm.
- Radiation ionizes the gas, charges drift to the in-pixel charge collection electrode.



- > Front-end circuit processes signal in two ways:
  - Analogue readout channel: allow access to the full waveform from each pixel through time-shared multiplexing.
- Digital readout channel: record hits identified by a variable threshold in each pixel.
- > CSA output feeds into both analogue and digital readout channels.
- ➤ Shaper-less architecture: lower power consumption and smaller pixel area.

# Analogue readout channel ROW\_SEL **CSAOUT** COLAOUT I<sub>COL</sub> **⇒** AVSS **⇒** AVSS AVSS

## > CSA

- Feedback capacitance:  $C_f = 5.1$  fF (design value).
- Feedback resistor (continuous discharge): NMOS transistor with a tunable gate bias voltage VFBN to control the discharge time.
- Tunable reference voltage VREF to adjust the CSA operating point.
- Total power consumption: 1.2 uW.
- $C_d$ : detector capacitance, ~ 23.5 fF.

#### ➤ In-pixel Buffer:

- Fixed bias current (~ 2 uA) source follower: separate the CSA output node from the ROW\_SEL switch, in order to reduce the charge injection by switching.
- Tunable bias current ( $I_{COL}$ ) source follower: the current source is shared with all pixels.

#### > Off-pixel Buffer:

One unity gain buffer for multiplex analogue output.

#### $\triangleright$ Test capacitor ( $C_{ini}$ )

Testability feature, C<sub>ini</sub> (design value: 5.5 fF) is implemented in the pixel. C<sub>ini</sub> is the parasitic capacitor between guard ring and in-pixel charge collection electrode.



#### Amplifier in the CSA:

(1) Differential folded cascode amplifier. The transistor M12 as an additional capacitive load reduces the bandwidth hence as well as the noise.

(2) Current distribution:

 $I_1 \approx 317 \text{ nA}$ 

 $I_3 \approx 16.8 \text{ nA}$ 



> CSA

- Resettable feedback:
  - VFBN ( $M_f$  gate voltage) is set by M3 ~ M6 to control  $M_f$  conductance.
    - □ VREF3: provide the correct DC operation point.
    - $\square$  AVSS: turn off  $M_f$  and retain signal.
    - $\square$  AVDD: turn on  $M_f$  and discharge  $C_f$ .
- Dummy transistor M2: reduce the charge injection effect after releasing the reset signal RST\_PIX.

#### Comparator

Tunable threshold

- Coarse tune: a global 8-bit voltage output DAC common to all pixels.
- Fine tune on a pixel by pixel basis: a local 4-bit current output DAC in each pixel allows to mitigate the threshold dispersion.
- > 5-bit SRAM for the configuration.

4-bit SRAM for the comparator threshold DAC and 1-bit SRAM to enable and disable digital readout.

- ➤ Priority logic (red dashed block in the above figure)
  - Priority encoder:
    - $f = \begin{cases} STATE, & if \overline{RESET} \mid\mid ADDRCTR = 1 \\ 0, & if \overline{RESET} \mid\mid ADDRCTR = 0 \end{cases}$
    - $Busy\_OUT = Busy\_IN || f$
    - $ADDRCTR = \overline{Busy\_IN} \&\& f$
    - where f is an intermediate variable
  - Reset decoder:

 $RST_PIX = RESET \&\& ADDRCTR$ 

- The column level RESET signal is generated by the end-of-column readout circuit and decoded in the local pixel.
- Pixels in the same column are daisy chained by connecting Busy OUT to Busy IN between adjacent pixels. Priority is given to the pixel with a hit at the highest position in the chain.
- Hit pixel with the highest priority: Busy\_IN = 0 & Busy\_OUT = 1.
- > 7 bits addresses
  - Uniquely coded 7-bit address for each pixel.
  - Active pixel pulls the column address bus to its own address, signaling a hit to the column readout module.

#### Preliminary tests & ENC calculation

#### Analogue readout channel:

- $\triangleright$  External voltage pulse ( $V_{test}$  = 10 mV) is injected through the test capacitor  $C_{inj}$ .
- > Trapezoidal filter shapes the digitized waveform in software.
- $\triangleright$  Voltage signal peak height:  $\mu = 10.47 \ mV$ ,  $\sigma = 0.42 \ mV$ .
- [ $Q_i$ : input charge, q: the elementary charge.]
- $C_{ini}$  (design value: 5.5 fF)  $\rightarrow$  ENC of the CSA:  $< 15 e^{-}$ .
- Charge-voltage conversion gain: 190 mV/fC.





Baseline distribution:  $ENC = \frac{\sigma(Baseline)}{\mu(voltage \, signal \, peak)} = 39.5 \, e^{-}$ 

We set the smallest step size of the internal 4-bit DAC to be 6 mV so that its total dynamic range can cover the mismatch in CSAs and comparators over the entire array. In this case, 6 mV becomes the worst case threshold uncertainty, which corresponds to 200 e-

#### **Conclusions**

The Topmetal-II- sensor was successfully implemented and proven to function correctly. It achieved an ENC of < 15 e<sup>-</sup>, a charge-voltage conversion gain of 190 mV/fC, and a threshold of 200 e<sup>-</sup> for the digital readout. It was observed the alpha tracks. Our team are striving a better performance sensor and developing the *Topmetal* sensor family.

#### References

] M. Berger, et al. A Time Projection Chamber for Continuous Readout, Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE Y. Fan, et al. Development of a highly pixelated direct charge sensor, Topmetal-I for ionizing radiation imaging, arXiv:1407.3712

 $I_2 \approx 16.8 \text{ nA}$