

Common Readout Unit (CRU)

A New Readout Architecture for ALICE Experiment

Jubin Mitra

VECC, Kolkata, India

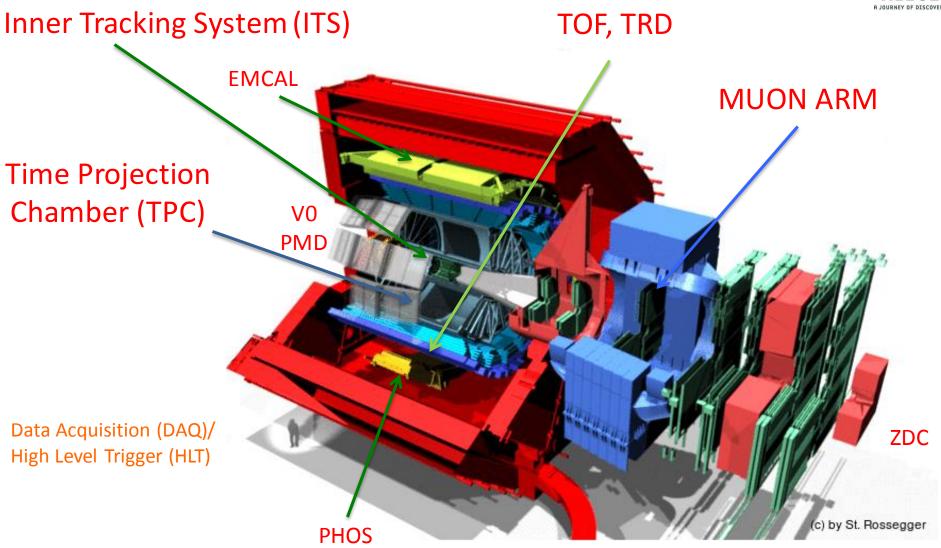
For the ALICE Collaboration

TWEPP 2015

Topical Workshop on Electronics for Particle Physics

28 September - 02 October 2015 IST - Lisbon - Portugal

Outlook


- 1) Motivation of building CRU
- 2) Understanding CRU connection and functionality
- 3) How we choose the CRU form factor
- 4) Firmware Development Status

Part I:

Motivation of Building CRU

ALICE at CERN-LHC (Now)

ALICE is a dedicated experiment for study of Quark-Gluon Plasma (QGP)
 with pp, p-Pb and Pb-Pb collisions at the LHC

ALICE Upgrade: > 2021

New Inner Tracking System (ITS)

Improved pointing precision

 Less material -> thinnest tracker at the LHC

25x10⁹ channels

Time Projection Chamber (TPC)

 New Micropattern gas detector technology

Continuous readout

New Central Trigger Processor (CTP)

Online Offline Systems (O2)

- New architecture
- On line tracking & data compression
- 50kHz PbPb event rate

New Si tracker Improved MUON pointing precision MUON ARM continuous

 continuous readout electronics

TOF, TRD

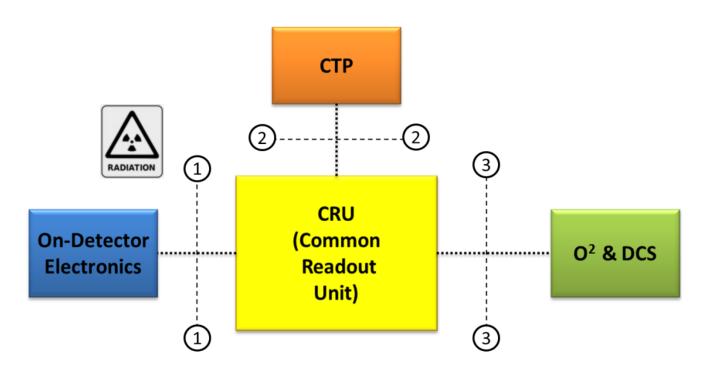
Faster readout

New Trigger Detectors (FIT)

Muon Forward Tracker (MFT)

(c) by St. Rossegger

Why Do We Need CRU?


LS1 (2013-14)	ALICE	After LS2 * (2019 - 20)
Present (RUN2)	UPGRADE	Future (RUN3/RUN4 – YEAR 2021)
1 nb ⁻¹ (PbPb)	Collisions and Collection	>10 nb ⁻¹ (PbPb) 6 pb ⁻¹ (pp) 50 nb ⁻¹ (pPb)
10 ²⁷ cm ⁻² s ⁻¹	At Peak Luminosities	6 x 10 ²⁷ cm ⁻² s ⁻¹
8 kHz (PbPb)	Corresponding to Collision Rate Of	50 kHz (PbPb) 200 kHz (pp and pPb)
500 Hz (PbPb)	Maximum Readout Rate	>200 kHz (PbPb) 1 MHz (pp)
Hardware triggers • Event multiplicity • Calorimeter energy • Track p _T	Trigger Mechanism	 A minimum bias event (Non- Upgraded detector) A self-triggered Continuous fashion (upgraded detector)
To summarize:		1

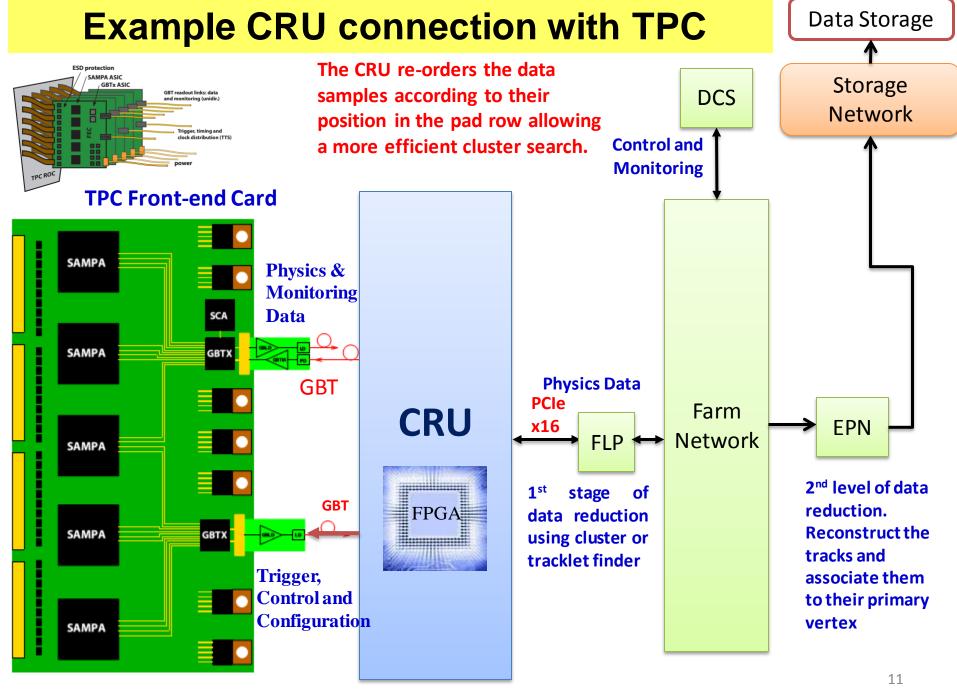
TO HANDLE THE DATA FLOW TRAFFIC OF ABOUT 1 TB/S

Part II:

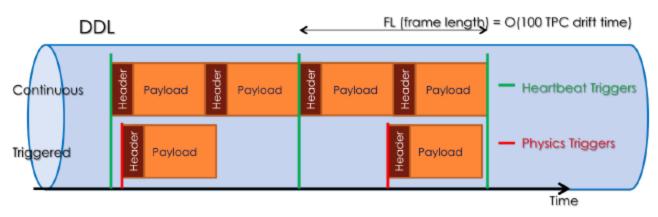
Understanding CRU Connection
And
Functionality

Common Readout Unit (CRU)

CRU has three interfaces:

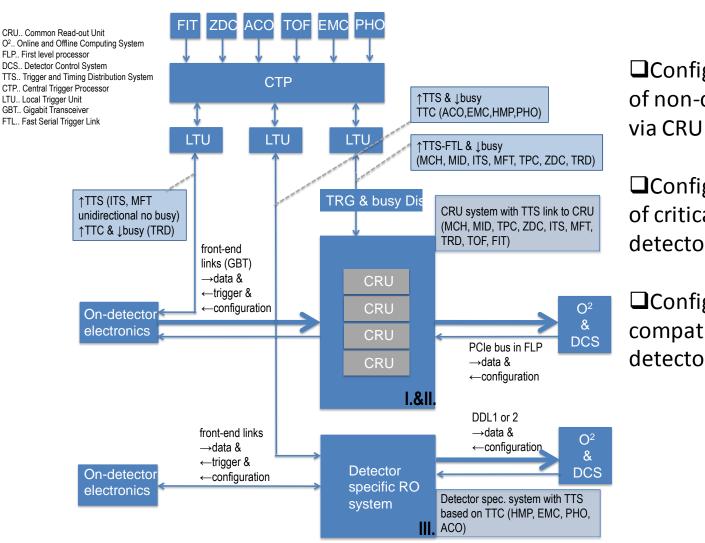

- 1 GBT Link (Radiation Tolerant High Speed Optical Link)
- 2 To be decided (GBT/10Gigabit PON)
- 3 **DDL3 link (PCle Gen 3 x16)**

Read-out and Trigger Distribution System


ALICE Detector readout board types

Detector	Link	Number of links		Read-out	Number of boards		
	type	DDL1 (2 Gbps)	DDL2 (4-5 Gbps)	GBT (4.8 Gbp	board type	C-RORC	CRU
ACO	DDL1	1			C-RORC	1	
CPV	DDL1	6			C-RORC	1	
CTP	GBT			14	CRU		1
EMC	DDL2		20		C-RORC	4	
FIT	DDL2		2		C-RORC	1	
HMP	DDL1	14			C-RORC	4	
ITS	GBT			495	CRU		23
MCH	GBT			550	CRU		25
MFT	GBT			304	CRU		14
MID	GBT			32	CRU		2
PHS	DDL2		16		C-RORC	4	
TOF	GBT			72	CRU		3
TPC	GBT			5832	CRU		324
TRD	Custom			1044	CRU		54
ZDC	GBT			1	CRU		1
Total		21	38	8344		15	447

Trigger Types


Level	Trigger	Trigger	Trigger	contributing
	${\bf Input}$	output	decision	detectors
	to CTP	at CTP	at detector *	
	[ns]	[ns]	[ns]	
LM	425	525	775	FIT
L0	1200	1300	1500	ACO, EMC, PHO, TOF, ZDC
L1	#6100	#6200	#6400	EMC, ZDC

Usage of **Interaction Trigger**Usage of **Heartbeat Trigger**

- → Triggered Readout
- **→** Continuous Readout

Trigger, Timing and Clock Distribution System (TTS)

- ☐ Configuration I: Transmission of non-critical trigger and data via CRU
- ☐ Configuration II: Transmission of critical trigger directly to the detector and data via CRU
- ☐ Configuration III: Back-end compatibility for Legacy detectors

Part III:

How we choose the CRU form factor?

CRU Form Factor Evaluation

Features	Prototype version 1	Prototype version 2
DDL3	10 Gigabit Ethernet	PCIe Gen 3
Trigger and Busy line Distribution	ATCA	Processor

Advantage

Disadvantage

Modularity

Not Enough memory for data clustering not Compatibility of the board depends on possible

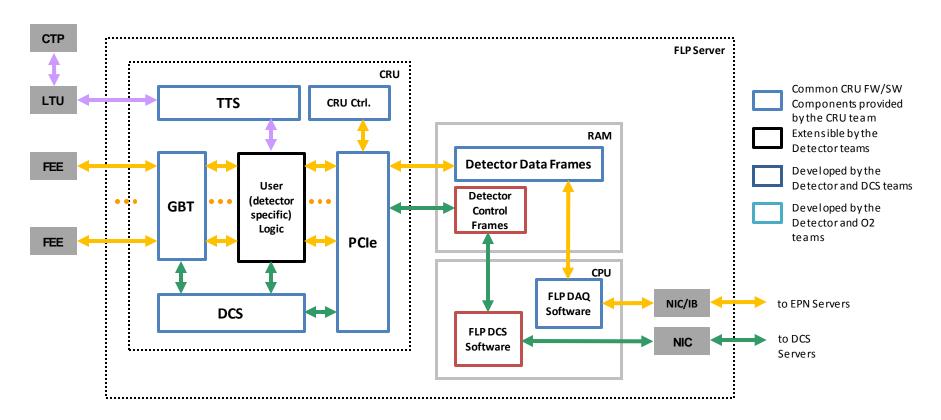
Directly connected to the O^2

future PCs PCIe form factor

CRU CANDIDATE BOARDS EVALUATED

AMC 40

Developed By: CPPM Marseille

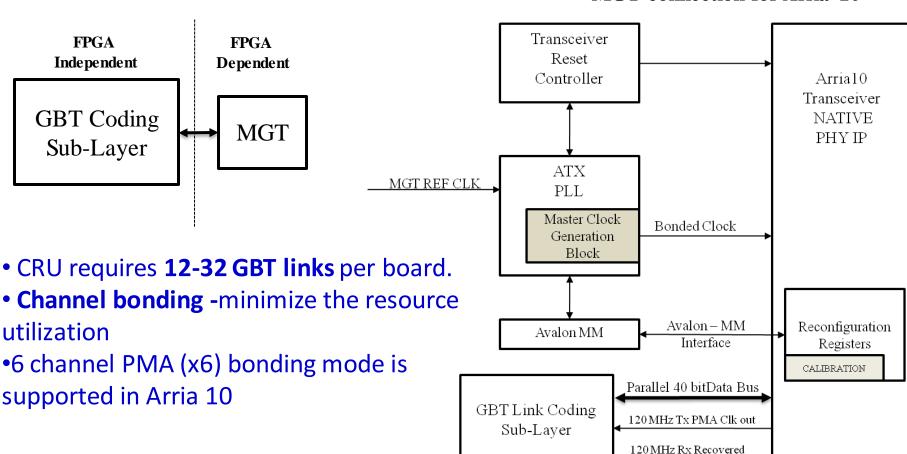

Stratix V vs Arria 10 FPGA

	Stratix V	Arria 10
	(High End FPGA)	(Mid End Latest FPGA)
	5SGXEA7N2F45C3	10AX115S4F45I3SGES
Chip Technology	28 nm	20 nm
Core voltage	0.85V	0.95V (For ES) else 0.9V
ALMs	234720	427200
Total I/Os	1064	960
GXB Channel PMA and PCS/ HSSI channels	48	72
PCIe Hard IP Blocks	4	4
Memory Bits	52428800	55562240
DSP Blocks	256	1518
27 x 27 Multiplier	256	1518
Fractional PLL	28	32
DLLs	4	-
I/O PLLs	-	16
Global Clocks	16	32
HPS CPU Core	-	0

Part IV:

Firmware Development Status

CRU internal block connections

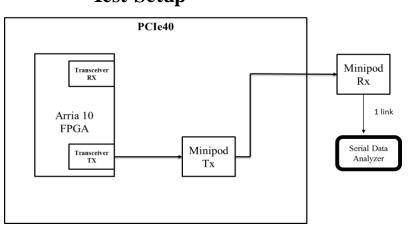


- CTP Central Trigger Processor
- DCS Detector Control System
- EPN Event Processing Node
- FLP First Level Processor
- GBT Giga-Bit Transceiver
- LTU Local Trigger Unit

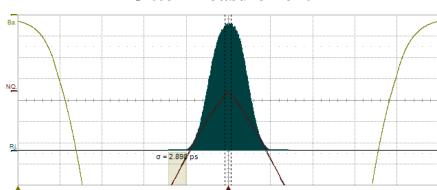
GBT: Design Implementation on Arria 10

GBT Interface links are error resilient data communication protocol developed by CERN for high energy physics experiment.

MGT connection for Arria 10

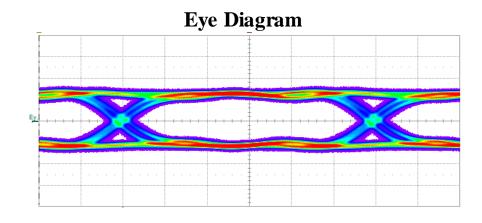


PMA Clk out


GBT: Operating at 4.8 Gbps Using 120 MHz External Jitter

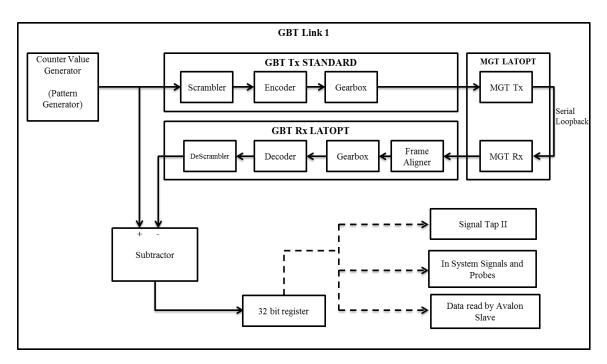
Cleaner

Test Setup



Jitter Measurement

The random component of the Jitter is specified using statistical terms.


Standard Deviation = 2.898 ps

Eye Width = 176.8 psEye Height = 373 mV

Bit/Rate = 4.7996

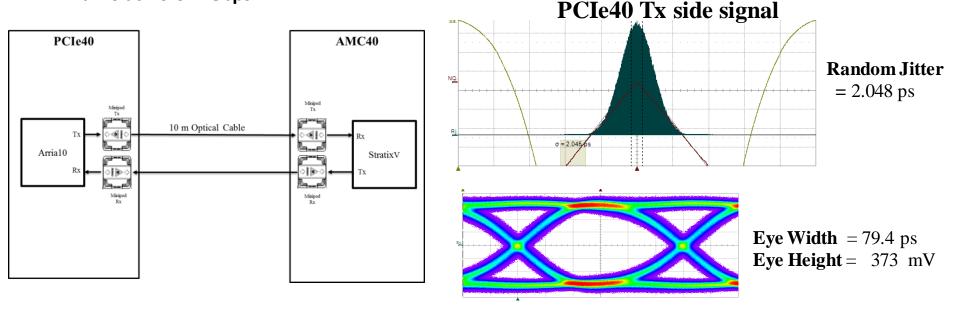
GBT: Latency Measurement

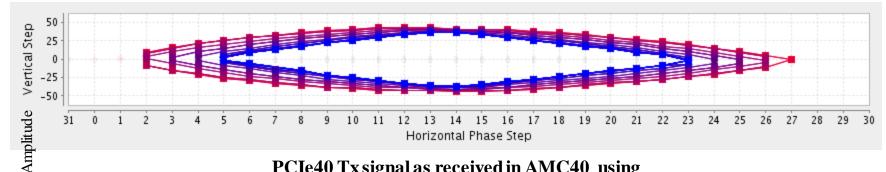
Latency measured between


Tx Data Frame – GBT Tx – MGT Tx (Serialization) – Optical Loopback --MGT Rx (De-serialization)

- GBT Rx - Rx Data Frame

k Data Frame	GBT				
	Tx Standard	Tx Standard	Tx Latency	Tx Latency	
			Optimize d	Optimized	
	Rx Standard	Rx Latency	Rx Standard	Rx Latency	
		Optimize d		Optimize d	
Latency	450 ns	350 ns	200 ns	150 ns	
Measured	430 hs	330 hs	200 hs	130 ns	


Transmission Side Phase latency is very stringent as it is used for timing information transmission


DDL3: PCIe Link Testing and DMA Performance Measurement

Avago MiniPOD™ performance study

12 channel Transceiver tool kit design for board to board communication between Stratix V and Arria 10 at 10.312Gbps

PCIe40 Tx signal as received in AMC40 using Transceiver Tool kit (TTK)

A Test Configuration for Firmware Resource Estimation

For power and resource estimation of CRU a low level interface is made:

- 48 bidirectional GBT link + x16 PCle Gen 3
 - + SFP+ (Transceiver Toolkit design)
- It is composed of total 65 High speed links each attached with its dedicated pattern generator and pattern checker
- The entire design is integrated in Altera QSYS Integration tool
- In this design it is assumed to operate PCIe40 in extended configuration
- No user or glue logic is taken into account in this preliminary resource estimation

Aggregated Links	Logic Utilization	HSSI SERDES Utilization
48 GBT link + x16 PCIe Gen 3 + SFP+ (Transceiver Toolkit design)	34,614 / 427,200 (8%)	65/72 (90%)
36 GBT link + x16 PCIe Gen 3 + SFP+ (Transceiver Toolkit design)	32,247 / 427,200 (7.5%)	53/72 (74%)
24 GBT link + x16 PCIe Gen 3 + SFP+ (Transceiver Toolkit design)	29,771 / 427,200 (7%)	41/72 (57%)

Summary and Outlook

- The CRU in ALICE is designed to cope up with increased beam energy and luminosity of LHC for RUN3 and beyond
- CRU acts as the interface between:
 - the on-detector electronics
 - Online and Offline computing system (O2)
 - the Trigger Timing System (TTS)
- Already done:
 - Survey of prototype boards
 - Implementation of GBT for Arria 10
 - PCIe functional testing and how to use the IP cores
 - A resource estimation before full firmware implementation
- Plans for near future:
 - Finishing the Interface specification (External and Internal)
 - Integration of CRU firmware/hardware building blocks
 - Built and test pilot system
 - Detector specific firmware development (Done by the sub-detector groups)

Technical Team Members

Variable Energy Cyclotron Centre (VECC)

Jubin MITRA Shuaib Ahmad KHAN Tapan Kumar NAYAK

University of Jammu

Anik GUPTA

Bose InstituteSanjoy MUKHERJEE

University Of Calcutta Rourab PAUL Amlan CHAKRABARTI

Wigner Research Centre for Physics

Erno DAVID Tivadar KISS

CERN

Filippo COSTA

Leaders of Interfacing Groups:

- •Peter CHOCHULA (DCS)
- •Marian KRIVDA (TTS)
- •Pierre Vande VYVRE (O2)
- •Alex KLUGE (Electronics Coordinator)

With Active help and Support from LHCb group:

CPPM, Marseille

Jean-Pierre CACHEMICHE and others

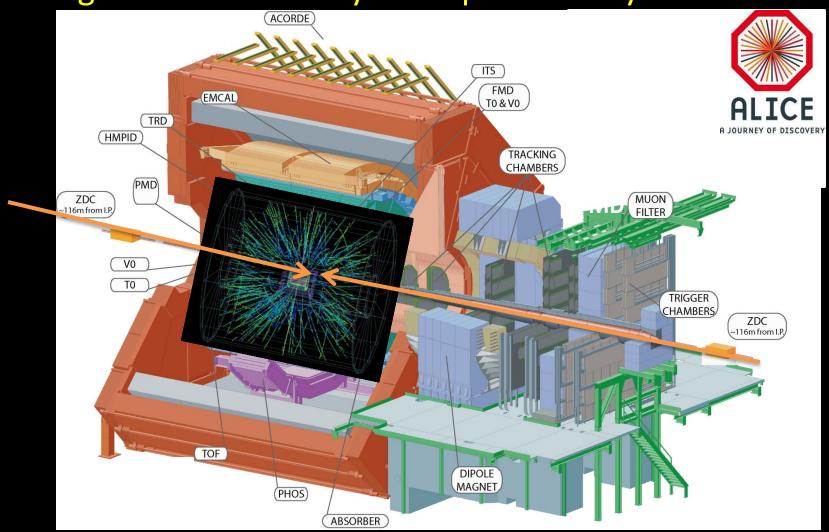
Questions

Backup

ALICE Upgrade Strategy

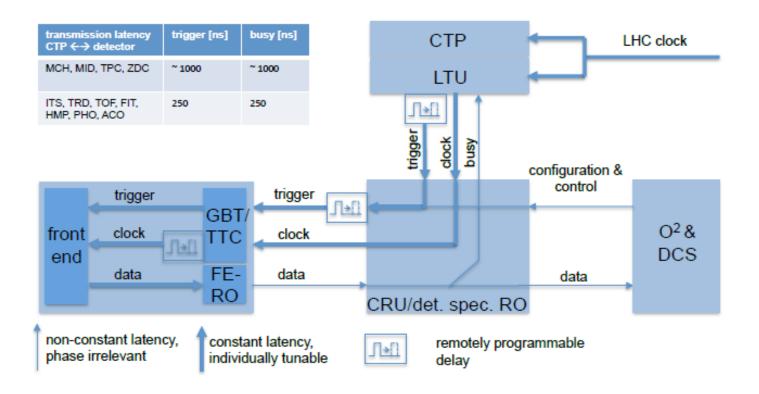
❖ Goal:

- High precision measurements of rare probes at low transverse momentum, which cannot be selected with a trigger
- Target to record Pb-Pb collisions at higher luminosity to gain a factor 100 in statistics over present Run1+Run2
- Readout all Pb-Pb interactions at a maximum rate of 50kHz (i.e. $L = 6x10^{27} \text{ cm}^{-2} \text{ s}^{-1}$) which is roughly 6 times of present rate
- Perform online data reduction based on reconstruction of clusters and tracks
- A separate data processing unit is needed for detector data multiplexing, processing and formatting before online data reduction.


Implementation of a novel readout architecture Common Read-out Unit (CRU).

UPGRADE EFFORT

Detector Data Rate And Channels


Det	#	Run1&2	upgrade	FE ASIC
	channels	RO rate	RO rate)
		[kHz]	[kHz]	
TPC	5×10^{5}	3.5	50	17000 SAMPA
MCH	10^{6}	1	100	33000 SAMPA
ITS	25×10^9	0.5	100	25000 ASICs
MFT	500×10^{6}		100	896 ASICs
MID	21×10^3	1	100	4000 FEERIC
ZDC	22	8	100)
TOF	1.6×10^5	40	100)
FIT	160 + 64	80	100	
ACO	120	100	100)
TRD	1.2×10^{6}	_1_	39	
EMC	18×10^3	3.7	42	
PHS	17×10^3	3.7	42	
HMP	1.6×10^{5}	2.5	2.5	

ALICE is giving answer to some of our basic questions using the extraordinary tools provided by the LHC

Collisions at the CERN Large Hadron Collider (LHC): proton-proton, proton-lead, lead-lead

Read-out control signal flow through CRU

• **CLOCK:** Common Reference Timing Signal + the LHC clock

• TRIGGER: PHYSICS TRIGGER + HEARTBEAT TRIGGER + BUNCH

CROSSING ID + ORBIT COUNTER VALUE

• BUSY: When Trigger rate > Detector Readout Capabilities. One signal

covers for entire sub-detector.

• **DATA:** Detector specific data payload with header and timestamp