THE ATLAS CATHODE STRIP CHAMBERS
MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
ATCA BASED GENERIC DATA ACQUISITION SYSTEM
CSC RUN-II OFF DETECTOR READOUT SYSTEM
CONCLUSION
CONCLUSION

A NEW ATLAS MUON CSC READOUT SYSTEM WITH SYSTEM ON CHIP TECHNOLOGY ON ATCA PLATFORM

S.Cenk Yıldız on behalf of ATLAS Muon Collaboration

University of California, Irvine

Topical Workshop on Electronics for Particle Physics, 28 September - 2 October 2015

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- **S** ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- OSC RUN-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- Conclusion

MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM ATCA BASED GENERIC DATA ACQUISITION SYSTEM CSC RUN-II OFF DETECTOR READOUT SYSTEM CONCLUSION

- **1** THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- **(3)** ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- CSC Run-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

CSC

 Multiwire proportional chambers designed to detect muons in the high pseudorapidity region:

$$2.0 < |\eta| < 2.7$$

- 2 endcaps, with 16 chambers on each side (8 big, 8 small chambers for seamless coverage), each has:
 - 4 precision (η) layers with 768 strips
 - 4 transverse (ϕ) layers with 192 strips
- Very close to interaction point, thus high rate of muons going through

CSC ON DETECTOR ELECTRONICS

- 5 Amplifier Storage Module (ASM)-II board for each chamber
- ASM-II board handles 192 channels, each connected to a preamplifier and shaper
- Bipolar pulse with 140ns shaping time
- Pulses are sampled every 50 ns and stored on a 144 cell analog memory Switched Capacitor Array (SCA)
- Each sample is digitized to 12 bits of data
- For standard readout, 4 samples are sent to off-detector readout system, so called Readout Driver (ROD) with high speed fiberoptic G-Links
 - 10 G-Links per chamber, each carrying data of 96 channels
 - 5.76kB per event, per chamber
 - At L1 Rate of 100 kHz, input to ROD: 4.4GBits/sec per chamber
- ROD must perform threshold cut, cluster
 - finding

 Data reduction from $1 \rightarrow 1/6$ to $1 \rightarrow 1/6$
 - Data reduction from $1 \rightarrow 1/6$ to $1 \rightarrow 1/60$ depending on luminosity

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- O CSC Run-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

MOTIVATION

ATLAS Run-I conditions:

- · Bunch spacing: 50ns
- Level 1 (L1) trigger rate: 75 kHz
- Peak Luminosity: $8 \cdot 10^{33} \text{cm}^2 \text{s}^{-1}$
- Peak number of interactions per beam crossing $(\mu) \approx 35$
- ATLAS Run-II conditions:
 - Bunch spacing: 25ns
 - Level 1 trigger rate: 100 kHz
 - Expected Luminosity: 1.6 · 10³⁴ cm² s⁻¹
 - Number of interactions per beam crossing $(\mu) \approx 50$
- Run-I ROD:
 - Functional and robust
 - Had high deadtime for L1 trigger rates higher than 75 kHz
- In Run-II, a better performing ROD was needed to cope with higher L1 rate and luminosity, thus higher number of interactions per crossing

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- **3** ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- CSC Run-II Off Detector Readout System
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- **3** ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- CSC Run-II Off Detector Readout System
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

ADVANCED TELECOMMUNICATION COMPUTING ARCHITECTURE

- From PICMG
- Developed for telecommunication industry
- Features
 - High Availability
 - Redundancy
 - Hot Swap
 - IPMI based shelf management infrastructure
- High-speed, protocol agnostic backplane
- Separates physical data interface from processing with Rear Transition Module (RTM)

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- **3** ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- O CSC Run-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

RECONFIGURABLE CLUSTER ELEMENT (RCE)

- RCE is developed by the detector R&D program at SLAC
- Based on System-On-Chip (SoC) technology (Processor-centric Xilinx ZYNQ)
- Provides a processing component that includes both firmware and software
- Large FPGA fabric, high speed I/O channels and large memory banks
- Strong internal interconnect to allow the CPU to conveniently access all resources at high speed
- The Cluster Element (CE) is the heart of RCE
 - Dual-core (A-9) ARM processor (@ 800 MHZ)
 - 1 GB of DDR3 RAM, up to 64 GB of flash
 - Memory subsystem has > 6 GB/sec of I/O capacity
- Choice of OS: Real-Time Executive for Multiprocessor Systems (RTEMS), Linux or bare metal

PROTOCOL PLUG-IN (PPI) MODEL

Defined as an arbitrary set of application specific logic, coresident with an RCE's FPGA fabric which requires the exchange of information with its CF.

- Application specific plug-ins with plug and socket model
- User wraps the logic in a common way. Wrapper is the plug
- Wrapped logic can be plugged into 8 predefined sockets on RCE
- Application specific plug-ins can
 - Act as an Input/Output device (such as receiving data from detector and sending it to Readout System)
 - Take advantage of Digital Signal Processing (DSP) tiles and combinatoric logic of the FPGA for data manipulation

RCE TYPES

DATA PROCESSING MODULE (DPM)

- Contains 2 RCEs
- ZYNQ: XC7Z045-2FFG900E with 16 MGT
- DPM performs task related to data manipulation/ feature extraction (FEX)

DATA TRANSFER MODULE (DTM)

- Contains 1 RCE
- ZYNQ: XC7Z030-2FBG484E with 4 MGTs
- Manages the networking between RCEs on COB and to external world

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- **3** ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- CSC Run-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

THE CLUSTER ON BOARD

THE CLUSTER ON BOARD

- Carrier board developed to hold 9 RCEs
 - 4 DPM bays (8 RCEs)
 - 1 DTM bay (1 RCE)
- Cluster Interconnect: on-board 24-port 10GbE low latency switch (Fulcrum)
- Coupled with application specific Rear Transition Modules (RTM) with Rear Mezzanine Board (RMB) for Trigger Timing and Control (TTC) interface
- 3 Zones and connectors
 - Zone 1: Power and management
 - Zone 2: Data transport interface for communication between boards
 - Zone 3: Connectivity with RTM in a 96 channel high density connector

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- **(3)** ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- OSC Run-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- OSC Run-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

ATLAS TRIGGER AND DATA ACQUISITION CONCEPTS

- Read out Driver (ROD): Part of the off-detector readout system that process data of front-end electronics
- Local Trigger Processor (LTP): Propagates trigger signal from ATLAS Central Trigger Processor (CTP) to ROD
- Busy Module: Propagates busy from ROD to CTP
- Read out System (ROS): Stores event fragments that are processed in ROD, sends them for event building depending on the decision of High Level Trigger (HLT)
- Complex deadtime: Burst protection using a leaky bucket model (Run-II Settings: 15/370, 42/381, 9/351, 7/350)

- Standard 6-slot ATCA Shelf populated with COB+RTM
- COB hosts RCEs that provide feature extraction and data formatting
- On each COB, there are up to 3 DPMs (4-6 RCEs) and 1 DTM (1 RCE)
- RTM: Provides physical interface to chambers and the central Trigger and Data Acquisition (TDAQ) system
 - The data fibers from/control fiber to on-detector electronics (G-Links)
 - Read Out Links (ROL) to ROS (S-Links)
 - Connections to Busy Module, and LTP

- Standard 6-slot ATCA Shelf populated with COB+RTM
- COB hosts RCEs that provide feature extraction and data formatting
- On each COB, there are up to 3 DPMs (4-6 RCEs) and 1 DTM (1 RCE)
- RTM: Provides physical interface to chambers and the central Trigger and Data Acquisition (TDAQ) system
 - The data fibers from/control fiber to on-detector electronics (G-Links)
 - Read Out Links (ROL) to ROS (S-Links)
 - Connections to Busy Module, and LTP

- Standard 6-slot ATCA Shelf populated with COB+RTM
- COB hosts RCEs that provide feature extraction and data formatting
- On each COB, there are up to 3 DPMs (4-6 RCEs) and 1 DTM (1 RCE)
- RTM: Provides physical interface to chambers and the central Trigger and Data Acquisition (TDAQ) system
 - The data fibers from/control fiber to on-detector electronics (G-Links)
 - Read Out Links (ROL) to ROS (S-Links)
 - Connections to Busy Module, and LTP

- Standard 6-slot ATCA Shelf populated with COB+RTM
- COB hosts RCEs that provide feature extraction and data formatting
- On each COB, there are up to 3 DPMs (4-6 RCEs) and 1 DTM (1 RCE)
- RTM: Provides physical interface to chambers and the central Trigger and Data Acquisition (TDAQ) system
 - The data fibers from/control fiber to on-detector electronics (G-Links)
 - · Read Out Links (ROL) to ROS (S-Links)
 - · Connections to Busy Module, and LTP

- Standard 6-slot ATCA Shelf populated with COB+RTM
- COB hosts RCEs that provide feature extraction and data formatting
- On each COB, there are up to 3 DPMs (4-6 RCEs) and 1 DTM (1 RCE)
- RTM: Provides physical interface to chambers and the central Trigger and Data Acquisition (TDAQ) system
 - The data fibers from/control fiber to on-detector electronics (G-Links)
 - Read Out Links (ROL) to ROS (S-Links)
 - Connections to Busy Module, and LTP

- Control Processor (CP) is used to interact with the RCEs and ATLAS
 - CP connects to RCEs via a dedicated switch, and to ATLAS Technical Network (ATCN)
 - Internal network assignment of the COBs done in the ATCA fabric

DPM AND DTM IN CSC COB

DPM

- Equivalent of Read Out Driver (ROD) in ATLAS systems
- Each RCE handles a single chamber
 - 10 G-Links as input, 1 S-Link as output
- Runs RTEMS as OS
- Processes 4 or more time slices from the Front-End per event
- Feature extraction, zero suppression
- Samples into event fragments
- Sends formatted data to ROS via ROL

DTM

- Runs Arch Linux as OS
- Handles TTC distribution directly communicating with Local Trigger Processor (LTP) (No intermediate agent like TTC Interface Module (TIM)).
- Manages network traffic
- TTC emulator available for Local Trigger Processor (LTP) functionality

FIRMWARE SOLUTIONS REPLACING HARDWARE

Traditional hardware solutions are implemented in firmware of the SoC, causing smaller footprint and lower power consumption

- TTC handling: DTM firmware eliminated need for intermediate distribution module (TIM)
- Connection to ROS: S-link High-speed Optical Link (HOLA) card replaced by firmware
 - Typical 9U VME board has space for 3 HOLAs, while a CSC COB can host 8 S-Links

 Connection to Front-End: G-link ASIC (HDMP) implemented in firmware (In Run-I CSC ROD, G-link ASIC was implemented in the CSC Transition Module (CTM) in Xilinx Virtex-II pro FPGA)

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- OCSC Run-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

INTEGRATION WITH ATLAS TDAQ

- Control Processor
 - Interacts with the TDAQ infrastructure
 - Interacts with RCEs in a client/server model
 - Each RCE is represented by a separate process in the CP
- Automatic recoveries to recover a crashed RCE deployed
- All firmware registers are periodically dumped to Information Services (IS) for diagnosis
- In situ fast calibration by doing histogramming on the ROD
- ATCA shelf is controlled and monitored via Detector Control System (DCS) using IPMI interface

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- ATCA Based Generic Data Acquisition System
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- OSC RUN-II OFF DETECTOR READOUT SYSTEM
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

PERFORMANCE

- Performance has few layers: Configuration, Front-End, Feature Extraction, data transfer to ROS
- Fast configuration due to the parallel operation on each RCE
- G-Link bandwidth has not changed, and it is limited to 111 kHz at 4 samples (lower rate at > 4 samples)
- High performing FEX code using On-Chip Memory (OCM) deployed
- Increased bandwidth to ROSes by doubling the number of S-links compared to Run-1
- Performance tests show
 - 0% deadtime up to L1 rate of 110 kHz with Run-II occupancy, while protected by complex deadtime
 - At 100 kHz input rate, no busy until 13% occupancy (Maximum expected in Run-II for CSC $\approx 5\%$)
- System is able to handle the Level-1 trigger rate of 100 kHz and the higher luminosity of Run-II

- THE ATLAS CATHODE STRIP CHAMBERS
- MOTIVATION FOR A NEW OFF-DETECTOR READOUT SYSTEM
- **(3)** ATCA BASED GENERIC DATA ACQUISITION SYSTEM
 - Platform
 - Reconfigurable Cluster Element
 - Cluster-On-Board Card
- CSC Run-II Off Detector Readout System
 - Overview
 - Integration with ATLAS
 - Performance
- CONCLUSION

CONCLUDING REMARKS

- With Run-II upgrade, ATLAS L1 trigger rate and luminosity increased
- The CSC Run-I off detector readout system would not be able to cope with Run-II conditions
- The CSC Run-II off-detector readout system was developed with this goal using modern DAQ technologies
- It is the first deployment of a ATCA and RCE based DAQ system in ATLAS
- Additional functionality compared to old ROD such as automatic recoveries, IS monitoring, high statistics pedestal calculation on the RCE
- Large FPGA fabric allows to implement hardware solutions in the firmware with much smaller footprint and lower power consumption
- System running stably since start of Run-II
- Performance tests show we accomplished main goal of 100 kHz L1 rate at Run-II occupancy with significant margin

OBRIGADO PELA ATENÇÃO

6 BACKUP SLIDES

ATLAS CSC

- Strip pitch for precision layers:
 - Big chambers: 5.567 mm
 - Small chambers: 5.308 mm
- High spatial resolution (60μ m) and high counting rate capability
- Good two-track separation, 40% of the readout pitch
- Short electron drift time (< 45ns), and good timing resolution (≈ 7 ns)
- Low neutron sensitivity, ($\varepsilon_n < 1\%$)
- Low photon sensitivity, $(\varepsilon_{\gamma} \approx 1\% \text{ for } E_{\gamma} = 1\text{MeV})$

COB DIAGRAM

For single ATCA slot

DATAFLOW DIAGRAM

RACK INFRASTRUCTURE

