Andreas Crivellin

Supported by a Marie Curie Intra-European Fellowship of the European Community's 7th Framework Programme under contract number (PIEF-GA-2012-326948).

Outline:

- Introduction: LHC flavor anomalies and $L_{\mu}-L_{T}$
- 1 HDM with gauged $\mathrm{L}_{\mu}-\mathrm{L}_{T}$ and vector-quarks - $\mathrm{B} \rightarrow \mathrm{K}^{*} \mu^{+} \mu^{-}$ - $\mathrm{B} \rightarrow \mathrm{K} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K} e^{+} e^{-}$
- 2 HDM with gauged $\mathrm{L}_{\mu}-\mathrm{L}_{\mathrm{T}}$ and vector- quarks - $h \rightarrow \tau \mu$ and $\tau \rightarrow \mu \mu \mu$
- 2HDM and 3HDM with gauged horizontal charged (no vector-quarks)

- Conclusions

Based on: Andreas Crivellin, Giancarlo D'Ambrosio and Julian Heeck
Explaining $B \rightarrow K^{*} \mu \mu, B \rightarrow K \mu \mu / B \rightarrow K e e$ and $h \rightarrow \tau \mu$ in a two-Higgs-doublet model with gauged $L_{\mu}-L_{T}$ arXiv:1501.00993
Adressing the LHC flavour anomalies with horizontal gauge symmetires (in preperation)

The LHC flavour anomalies

$B \rightarrow K^{*} \mu \mu$

- 2-3 o deviation from the SM mostly in C5'
- Can be explained by $O_{9}=\bar{s} \gamma^{\mu} P_{L} b \bar{\ell} \gamma_{\mu} \ell$ Descotes-Genon et al. 1307.5683, Altmannshofer and DS 1308.1501, Beaujean et al. 1310.2478
- New physics explanation is not easy (MSSM, 2HDM, extra dimensions not possible).
- Most natural explanation: Z' Gauld et al. 1310.1082, Buras et al. 1311.6729, ...
- Subleading hadronic effects might be larger than expected...

$R(K)=B \rightarrow K_{\mu \mu} / B \rightarrow$ Kee

- Lepton flavour universality violation
- 2.6 o deviation from the theoretically rather clean SM expectation $R_{K}^{\mathrm{SM}}=1.0003 \pm 0.0001 \quad$ C. Bobeth, G. Hiller, and G. Piranishvili, 0709.4174. $R_{K}^{\exp }=0.745_{-0.074}^{+0.090} \pm 0.036 \quad$ LHCb 1406.6482
- Explanation:
- Leptoquarks
- flavour non-universal Z'

Also LFV in B decays?
Talk of Lars Hofer
e.g. G. Hiller, M.Schmaltz, 1408.1627
W. Altmannshofer, et al. 1403.1269
S. L. Glashow et al. 1411.0565.

$\mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu$ and $\mathrm{R}(\mathrm{K})$

- Contribution to $C_{9}^{\mu \mu}$ but not $C_{9}^{e e}$ gives simultaneously a good fit
W. Altmannshofer and D. M. Straub, 1411.3161.
T. Hurth, F. Mahmoudi, and S. Neshatpour, 1410.4545.
(see talk of Tobias Hurth)
- $C_{9}^{\mu \mu}=-C_{10}^{\mu \mu}$ possible but less good fit.

arXiv:1411.3161

$$
h \rightarrow \tau \mu
$$

- 2.4 o difference from zero

$$
\operatorname{Br}[h \rightarrow \mu \tau]=\left(0.89_{-0.37}^{+0.40}\right)
$$

- Can be explained in the effective field theory approach by

$$
Q_{c \phi}^{f i}=\ell_{f} \phi e_{i} \phi^{\dagger} \phi
$$

R. Harnik, J. Kopp, and J. Zupan, 1209.1397.
G. Blankenburg, J. Ellis, and G. Isidori, 1202.5704.
S. Davidson and P. Verdier, 1211.1248.

- No dominant contribution from vector-like fermions A. Falkowski, D. M. Straub, and A. Vicente, 1312.5329

Extended Higgs sector

A. Dery, et. al. 1408.1371.
M. D. Campos, et. al., 1408.1652.
A. Celis, et. al., 1409.4439.
D. Aristizabal Sierra and A. Vicente, 1409.7690.
C. -J. Lee and J. Tandean, 1410.6803.
J. Heeck, et. al., 1412.3671.

Gauged $L_{\mu}-L_{T}$

- Vectorial U(1) gauge group:
$Q(e)=0, Q(\mu)=1, Q(T)=-1$

R. Foot, Mod.Phys.Lett. A6, 527 (1991).
- Good zero order approximation to the PMNS matrix:
- maximal atmospheric and
- vanishing reactor neutrino mixing angle

$$
M_{v}=\left(\begin{array}{lll}
X & 0 & 0 \\
0 & 0 & Y \\
0 & Y & 0
\end{array}\right)
$$

P. Binetruy, et al., hep-ph/9610481.
N. F. Bell and R. R. Volkas, hep-ph/0008177.
S. Choubey and W. Rodejohann, hep-ph/0411190.
J. Heeck and W. Rodejohann, 1107.5238

Breaking necessary for a realistic neutrino sector

1HDM
 with vector-quarks

The Model

W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, 1403.1269.

- Gauged $\mathrm{L}_{\mu}-\mathrm{L}_{\tau}$: Z ' boson with
$-\mathrm{ig}^{\prime} \bar{\ell}_{\mathrm{f}} y^{\prime \prime} \mathrm{Z}_{\mu}^{\prime} \ell_{\mathrm{i}}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)_{\mathrm{f}}$
- Vector-like quarks charged under $\mathrm{L}_{\mu}-\mathrm{L}_{\tau}$
$m_{Q} \bar{Q}_{L} \tilde{Q}_{R}+m_{D} \overline{\tilde{D}}_{L} D_{R}+m_{U} \bar{U}_{L} U_{R}+$ h.c.
- Effective Z' quark couplings
P. Langacker, 0801.1345., A. J. Buras, F. De Fazio, and J. Girrbach, 1211.1896.
$\mathrm{ig}^{\prime} \gamma^{\mu} \mathrm{d}_{\mathrm{f}}\left(\Gamma_{\mathrm{i}}^{\mathrm{L}} \mathrm{l}_{\mathrm{L}}+\Gamma_{\mathrm{fi}}^{\mathrm{R}} \mathrm{P}_{\mathrm{R}}\right) \mathrm{d}_{\mathrm{i}} \mathrm{Z}_{\mu}^{\prime}$
$\Gamma_{\mathrm{ij}}^{\mathrm{dR}} \square-\frac{\mathrm{v}_{\Phi}^{2}}{2 \mathrm{~m}_{\mathrm{D}}^{2}}\left(\mathrm{Y}_{\mathrm{i}}^{\mathrm{D}} Y_{\mathrm{j}}^{\mathrm{D}^{\mathrm{s}}}\right), \quad \Gamma_{\mathrm{ij}}^{\mathrm{dL}} \square \frac{\mathrm{v}_{\mathrm{\Phi}}^{2}}{2 \mathrm{~m}_{\mathrm{Q}}^{2}}\left(\mathrm{Y}_{\mathrm{i}}^{\mathrm{Q}} \mathrm{Y}_{\mathrm{j}}^{\mathrm{Q}^{\mathrm{E}}}\right)$

$\mathrm{m}_{\mathrm{D}}^{2} \rightarrow \infty$

$\mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu, \mathrm{R}(\mathrm{K})$

B_{s} mixing

$\frac{\Delta M_{12}}{M_{12}^{S M}} \square \Gamma_{23}^{d L} \frac{g^{\prime 2}}{m_{Z^{\prime}}^{2}}$

allowed regions

2HDM

with vector-quarks

Explaining $B \rightarrow K^{*} \mu \mu, B \rightarrow K \mu \mu / B \rightarrow K e e$ and $h \rightarrow T \mu$ in a two-Higgs-doublet model with gauged $L_{\mu}-L_{T}$ arXiv:1501.00993

$2^{\text {nd }}$ Doublet breaks $L_{\mu}-L_{T}$

J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, 1412.3671

- Two Higgs doublets

$$
Q_{L_{\mu}-L_{t}}\left(\Psi_{2}\right)=0 \quad Q_{L_{\mu}-L_{t}}\left(\Psi_{1}\right)=2
$$

- Yukawa couplings

$$
\mathrm{L}_{Y} \supset-\bar{\ell}_{f} Y_{i}^{\ell} \delta_{f i} \Psi_{2} e_{i}-\xi_{\text {ru }} \bar{\ell}_{3} \Psi_{1} e_{2}-\bar{Q}_{f} Y_{f i}^{u} \tilde{\Psi}_{2} u_{i}-\bar{Q}_{f} Y_{f i}^{d} \Psi_{2} d_{i}+\text { h.c.. }
$$

- Flavour changing SM-like Higgs coupling

$$
\begin{array}{ll}
\Gamma_{z \mu}^{h} \bar{\tau} P_{R} \mu h^{0} \approx \frac{m_{\tau}}{v} \frac{\cos (\alpha-\beta)}{\cos (\beta) \sin (\beta)} \theta_{R} \bar{\tau} P_{R} \mu h^{0} & \sin \theta_{R} \square \frac{v}{\sqrt{2} m_{\tau}} \xi_{z \mu} \cos \beta \\
& \sin \theta_{L} \square 0
\end{array}
$$

- Lepton flavour violating Z' couplings

$$
g^{\prime} Z^{\prime}(\bar{\mu}, \bar{\tau})\left(\begin{array}{cc}
\cos 2 \theta_{R} & \sin 2 \theta_{R} \\
\sin 2 \theta_{R} & -\cos 2 \theta_{R}
\end{array}\right) \gamma^{\nu} P_{R}\binom{\mu}{\tau}
$$

$\mathrm{h} \rightarrow \mu \tau$ and $\tau \rightarrow \mu \mu \mu$

$\mathrm{h} \rightarrow \gamma \gamma$ etc.
$\tan (\beta)=10$ (yellow) and $\tan (\beta)=50$ (blue)

$$
\cos (\alpha-\beta)
$$

$h \rightarrow \tau \tau$

$$
\mathrm{h} \rightarrow \mu \tau(\tan \beta=10)
$$

$\tau \rightarrow \mu \mu \mu$ and $\mathrm{h} \rightarrow \mu \tau$

Horizontal charges

Andreas Crivellin, Giancarlo D'Ambrosio and Julian Heeck
Adressing the LHC flavour anomalies with horizontal gauge symmetires (in preperation)

Charge assignmet

- Avoid vector-like quarks by assigning charges to baryons as well
same mechanism in the quark and lepton sector
- Use $L_{\mu}-L_{\tau}$ in the lepton sector good symmetry for the PMNS matrix effect in $C_{9}^{\mu \mu}$ but not $C_{9}^{e e}$
- First two quark generations must have the same charges because the large Cabibbo angle would lead to huge effect in Kaon mixing
- Anomaly free

$$
Q(B)=(-a, \quad-a, \quad 2 a)
$$

$\Delta F=2: Z^{\prime}$ contribution

$\Delta F=2$: Higgs contributions

$$
\mathrm{m}_{\mathrm{H}}=300 \mathrm{GeV}, \quad \mathrm{C}_{9}^{\mu, \mu}=-1.3
$$

m_{A}	$=250 \mathrm{GeV}$
m_{A}	$=300 \mathrm{GeV}$
$\square \mathrm{m}_{\mathrm{A}}$	$=350 \mathrm{GeV}$

LHC limits

$\mathrm{C}_{9}^{\mu \mu} \& \mathrm{~B}_{\mathrm{s}}-\overline{\mathrm{B}}_{s}$

3HDM

- Same effect in $\tau \rightarrow \mu \mu \mu$ $\mathrm{h} \rightarrow \mu \tau$ provided that the mixing among the doublets is small excluded
allowed by $h \rightarrow \tau \mu$
allowed by $\tau \rightarrow \mu \mu \mu$

Conclusions

- The LHC found three anomalies in the flavour sector
- $h \rightarrow \tau \mu$
- $\mathrm{B} \rightarrow \mathrm{K}^{*} \mu^{+} \mu^{-}$
- $\mathrm{B} \rightarrow \mathrm{K} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K} e^{+} e^{-}$
- All three anomalies can be explained in a model with gauged $L_{\mu}-L_{T}$
- 2HDM with vector-quarks
- 3HDM with gauged flavour dependent B-L charges

