New Physics at Belle II KIT, Germany, Feb. 24, 2015

New Physics in $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$

Ryoutaro Watanabe CTPU/IBS, Korea

B decays with "tau lepton" are now significant:

1. Deviation between SM prediction \& experimental result
3.5σ from $\bar{B} \rightarrow D \tau \bar{\nu}$ and $\bar{B} \rightarrow D^{*} \tau \bar{\nu}$
2. What about NP search?

2HDM cannot compensate the deviation
3. Observables available in future at Belle2

Promising improvement at Belle2

Content

1. Deviation

- Experiment
- SM prediction / 2HDM

2. NP search

- Model independent analysis
- NP models

3. Observables at Belle2

- NP analyzer
- $\mathbf{q}^{\wedge} 2$ distribution / Test of discriminative potential at Belle2

Deviation

Experiment

- It is challenging to measure tauonic \mathbf{B} meson decays, because 2 or more neutrinos appear in the final state.
- At B factory, however, reconstructing the opposite B meson we can compare the properties of the remaining particles to those expected for signal and background.

"Full reconstruction"

Large statistics is required even for tree level process

SM prediction

- Tree level process from $V_{\text {cb }}$ in the SM

- Measurement

Vcb \& FF parameters are obtained by a fit to distributions of $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ for $\ell=e$ or μ. For an observable of $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$, normalized decay rate;

$$
R(D)=\frac{\Gamma(\bar{B} \rightarrow D \tau \bar{\nu})}{\Gamma(\bar{B} \rightarrow D \ell \bar{\nu})} \quad R\left(D^{*}\right)=\frac{\Gamma\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}\right)}{\Gamma\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right)}
$$

is used in order to cancel $\left|V_{c b}\right| \mathcal{G}(1),\left|V_{c b}\right| \mathcal{F}(1)$ and reduce FF uncertainties.

SM prediction

- Comparison

$$
R(D)=\frac{\Gamma(\bar{B} \rightarrow D \tau \bar{\nu})}{\Gamma(\bar{B} \rightarrow D \ell \bar{\nu})} \quad R\left(D^{*}\right)=\frac{\Gamma\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}\right)}{\Gamma\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right)}
$$

[Belle (our combination), BABAR in arXiv:1205.5442]

	Belle	BABAR	SM
$R(D)$	0.430 ± 0.091	$0.440 \pm 0.058 \pm 0.042$	0.305 ± 0.012
$R\left(D^{*}\right)$	0.405 ± 0.047	$0.332 \pm 0.024 \pm 0.018$	0.252 ± 0.004
correlation	neglected	-0.27	-

2HDM

Type-II 2HDM is disfavored at 99.8\%CL
[BABAR in arXiv:1205.5442]

Content

1. Deviation

- Experiment
- SM prediction / 2HDM

2. NP search

- Model independent analysis
- NP models

3. Observables at Belle2

- NP analyzer
- $\mathbf{q}^{\wedge} 2$ distribution / Test of discriminative potential at Belle2

NP search

Model independent analysis

$$
\mathcal{L}_{\text {eff }}=-2 \sqrt{2} G_{F} V_{c b}\left[\underset{\substack{\text { SM }}}{\left.\left(1+C_{V_{1}}\right) \mathcal{O}_{V_{1}}+C_{V_{2}} \mathcal{O}_{V_{2}}+C_{S_{1}} \mathcal{O}_{S_{1}}+C_{S_{2}} \mathcal{O}_{S_{2}}+C_{T} \mathcal{O}_{T}\right]}\right.
$$

- Effective operators \mathcal{O}_{X}

Vector (1) $\mathcal{O}_{V_{1}}=\bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L} \quad$ Scalar (1) $\mathcal{O}_{S_{1}}=\bar{c}_{L} b_{R} \bar{\tau}_{R} \nu_{L}$

Vector (2) $\mathcal{O}_{V_{2}}=\bar{c}_{R} \gamma^{\mu} b_{R} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}$
Scalar (2) $\quad \mathcal{O}_{S_{2}}=\bar{c}_{R} b_{L} \bar{\tau}_{R} \nu_{L}$

Tensor

$$
\mathcal{O}_{T}=\bar{c}_{R} \sigma^{\mu \nu} b_{L} \bar{\tau}_{R} \sigma_{\mu \nu} \nu_{L}
$$

- Wilson coefficients C_{X}

Cx represents "New Physics" contribution normalized by SM contribution

- Allowed region of Cx from $R(D) \& R\left(D^{*}\right)$

* assuming one operator dominance (ex: $C_{S_{2}} \neq 0$, others $=0$)
* using the data which is the average of Belle \& BABAR
* allowed at 90\%(Light blue), 95\%(Cyan), 99\%(Dark blue)
- V1, V2, T can explain data within small Cx
- S2 can explain but large $\mathrm{Cs}_{2}(\sim-1.6)$ is needed
- S1 is not preferred

2 Higgs Doublet Model $\quad V_{1} \quad V_{2} \quad S_{1} \quad S_{2} T$

- contribute as S1 \& S2 type
- type I, II, X, Y cannot explain / type III can

R Parity Violation

$$
V_{1} V_{2} S_{1} \quad S_{2} T
$$

- S1 type operator is generated, and disfavored
- V1 type is generated, but incompatible with data of $B \rightarrow X$ svv

Lepto Quark

$$
\begin{array}{lllll}
V_{1} & V_{2} & S_{1} & S_{2} & T
\end{array}
$$

- S1 \& V1 type are generated and disfavored as well as RPV
- S2-T types are generated and likely to explain the results

Content

1. Deviation

- Experiment
- SM prediction / 2HDM

2. NP search

- Model independent analysis
- NP models
- V1, V2, T can explain data within small Cx
- S2 can explain but large Cs2(~-1.6) is needed
- S1 is not preferred

3. Observables at Belle2

- NP analyzer
- $\mathbf{q}^{\wedge} 2$ distribution / Test of discriminative potential at Belle2

Observables at Belle II

New physics analyzer

- Compared with two body decay like $B \rightarrow T v$, many more observables are available in three body decays, $B \rightarrow D\left(^{*}\right) T V$
- There are several studies for NP search toward Belle2
($q^{\wedge} 2$ distributed and/or integrated)
[Fajfer, Kamenik, Nisandzic, Zupan, arXiv:1203.2654]
[Sakaki, Tanaka, arXiv:1205.4908]
[Datta, Duraisamy, Ghosh, arXiv1206.3760]
[Tanaka, Watanabe, arXiv:1212.1878]
[Biancofiore, Colangelo, De Fazio, arXiv:1302.1042]
[Duraisamy, Datta, arXiv:1302.7031, arXiv:1405.3719]
[Sakaki, Tanaka, Tayduganov, Watanabe, arXiv:1309.0301]
[Hagiwara, Nojiri, Sakaki, arXiv:1403.5892]
[Sakaki, Tanaka, Tayduganov, Watanabe, arXiv:1412.3761]

q^{\wedge} 2 distribution

$$
\frac{d \Gamma\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}\right)}{d q^{2}} \quad \text { where } q^{2}=\left(p_{B}-p_{D^{(*)}}\right)^{2}
$$

[BABAR, arXiv:1303.0571]

- p values for the fit

S2 \& T are disfavored !

Not conclusive for others

model	$\bar{B} \rightarrow D \tau \bar{\nu}$	$\bar{B} \rightarrow D^{*} \tau \bar{\nu}$	$\bar{B} \rightarrow\left(D+D^{*}\right) \tau \bar{\nu}$
SM	54%	65%	67%
V_{1}	54%	65%	67%
V_{2}	54%	65%	67%
S_{2}	0.02%	37%	0.1%
T	58%	0.1%	1.0%
LQ_{1}	13%	58%	25%
LQ_{2}	21%	72%	42%

Test of discriminative potential at Belle2

Toward Belle2:

We propose new observable (distribution) for extracting NP signature.

$$
R_{D}\left(q^{2}\right) \equiv \frac{d \Gamma(\bar{B} \rightarrow D \tau \bar{\nu}) / d q^{2}}{d \Gamma(\bar{B} \rightarrow D \ell \bar{\nu}) / d q^{2}} \times \text { [Normalization factor] }
$$

$$
R_{D^{*}}\left(q^{2}\right) \equiv \frac{d \Gamma\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}\right) / d q^{2}}{d \Gamma\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right) / d q^{2}} \times\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2}
$$

We can reduce theoretical uncertainties as is the case with $R(D)$ and $R\left(D^{*}\right)$.

Test of discriminative potential at Belle2

Assumption:

1. use the best fitted $C x$ from the recent results of $R(D) \& R\left(D^{*}\right)$
2. prepare/make "faked data for the new distribution" using above
3. evaluate luminosities required to discriminate "data" \& "model" by $R_{D^{(*)}}\left(q^{2}\right)$

() = required luminosity only from $R(D) \& R\left(D^{*}\right)$

- Some cases can be already tested using present data
- To test LQ, we need 1-6 ab^-1 at Belle2

Summary

1. Deviation

- Experiment
- SM prediction / 2HDM

2. NP search

- Model independent analysis
- NP models
- V1, V2, T can explain data within small Cx
- S2 can explain but large Cs2(~-1.6) is needed
- S1 is not preferred

3. Observables at Belle2

- NP analyzer
- $q^{\wedge} 2$ distribution

		model						
		SM	V_{1}	V_{2}	S_{2}	T	LQ1	LQ2
$\begin{aligned} & \text { ซ̈ } \\ & \text { だ } \end{aligned}$	V_{1}	\square		X	©	\bigcirc	\bigcirc	\square
	V_{2}	\square	X		©	©	©	\square
	S_{2}	\square	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc
	T	\square	\bigcirc	©	\bigcirc		\bigcirc	\bigcirc
	LQ_{1}	\square	\bigcirc	©	\bigcirc	\bigcirc		\square
	LQ_{2}	\square	\square	\square	\bigcirc	\bigcirc	\square	

- $R\left(D\left(^{*}\right)\right.$) has an advantage

O Distribution has adv.
(0) possible only from distribution

Back up

$\left|V_{c b}\right|$ determination

$$
\begin{aligned}
\bar{B} \rightarrow D \ell \bar{\nu} & \frac{d \Gamma}{d w}=\frac{G_{F} m_{B}^{5}}{48 \pi^{3}} r^{3}(1+r)^{2}\left(w^{2}-1\right)^{3 / 2} V_{1}(w)^{2}\left|V_{c b}\right|^{2} \\
w & =\left(m_{B}^{2}+m_{D}^{2}-q^{2}\right) /\left(2 m_{B} m_{D}\right)
\end{aligned}
$$

- Fit the shape (=interaction type) and the hight (=coupling)
- Shape is parametrized by HQET
[Caprini et.al. (1996)]

$$
\begin{aligned}
& \text { Shape : } V_{1}(w)=V_{1}(1)\left[1-8 \rho_{1}^{2} z+\left(51 \rho_{1}^{2}-10\right) z^{2}-\left(252 \rho_{1}^{2}-84\right) z^{3}\right] \\
& \text { Hight: } V_{1}(1)\left|V_{c b}\right| \\
& \left(z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}\right)
\end{aligned}
$$

Fit result:

$$
\begin{aligned}
& V_{1}(1)\left|V_{c b}\right|=(4.26 \pm 0.07 \pm 0.14) \times 10^{-2} \\
& \rho_{1}^{2}=1.186 \pm 0.055
\end{aligned}
$$

Experimental analysis @BABAR

* Decay channel BABAR analyzed:

$$
\bar{B} \rightarrow D^{(*)}(\tau \rightarrow \ell \bar{\nu} \nu) \bar{\nu}
$$

* inv. mass of missing particles:

$$
m_{\mathrm{miss}}^{2}=\left(p_{e^{+} e^{-}}-p_{\mathrm{tag}}-p_{D^{(*)}}-p_{\ell}\right)^{2}
$$

1. $B_{\mathrm{tag}}, D^{(*)}, \ell$ are identified
2. $m_{\text {miss }}^{2}$ distribution is measured
3. Comparing total event data with expected signal \& background, signal event is extracted

Distribution

- Distribution in NP models using best fitted $C x$ from $R\left(D\left(^{*}\right)\right.$)

$R_{D}\left(q^{2}\right) \equiv \frac{d \mathcal{B}(\bar{B} \rightarrow D \tau \bar{\nu}) / d q^{2}}{d \mathcal{B}(\bar{B} \rightarrow D \ell \bar{\nu}) / d q^{2}} \frac{\lambda_{D}\left(q^{2}\right)}{\left(m_{B}^{2}-m_{D}^{2}\right)^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2} \quad R_{D^{*}}\left(q^{2}\right) \equiv \frac{d \mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}\right) / d q^{2}}{d \mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right) / d q^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2}$

Discriminative potential

Assumption:

1. use the best fitted $C x$ from the recent results of $R(D) \& R\left(D^{*}\right)$
2. prepare/make "faked data for the new distribution" using above
3. evaluate luminosities required to discriminate "data" \& "model" by $R_{D^{(*)}}\left(q^{2}\right)$

$\mathcal{L}\left[\mathrm{fb}^{-1}\right]$		model						
		SM	V_{1}	V_{2}	S_{2}	T	LQ1	LQ2
	V_{1}	$\begin{aligned} & 1170 \\ & (270) \end{aligned}$		$\begin{aligned} & 10^{6} \\ & (\times) \end{aligned}$	$\begin{aligned} & \hline 500 \\ & (\times) \end{aligned}$	$\begin{aligned} & \hline 900 \\ & (\times) \end{aligned}$	$\begin{gathered} \hline 4140 \\ (\times) \end{gathered}$	$\begin{gathered} \hline 2860 \\ (1390) \end{gathered}$
	V_{2}	$\begin{aligned} & 1140 \\ & (270) \end{aligned}$	$\begin{aligned} & 10^{6} \\ & (\times) \\ & \hline \end{aligned}$		$\begin{aligned} & 510 \\ & (\times) \\ & \hline \end{aligned}$	$\begin{aligned} & 910 \\ & (\times) \end{aligned}$	$\begin{gathered} 4210 \\ (\times) \end{gathered}$	$\begin{gathered} 3370 \\ (1960) \\ \hline \end{gathered}$
	S_{2}	$\begin{gathered} 560 \\ (290) \end{gathered}$	$\begin{gathered} 560 \\ (13750) \end{gathered}$	$\begin{gathered} 540 \\ (36450) \end{gathered}$		$\begin{aligned} & 380 \\ & (\times) \\ & \hline \end{aligned}$	$\begin{gathered} 1310 \\ (35720) \end{gathered}$	$\begin{gathered} 730 \\ (4720) \end{gathered}$
	T	$\begin{gathered} 600 \\ (270) \end{gathered}$	$\begin{aligned} & 680 \\ & (\times) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 700 \\ & (\times) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 320 \\ & (\times) \\ & \hline \end{aligned}$		$\begin{aligned} & 620 \\ & (\times) \\ & \hline \end{aligned}$	$\begin{gathered} 550 \\ (1980) \end{gathered}$
	LQ1	$\begin{aligned} & 1010 \\ & (270) \\ & \hline \end{aligned}$	$\begin{gathered} 4820 \\ (\times) \\ \hline \end{gathered}$	$\begin{gathered} 4650 \\ (\times) \end{gathered}$	$\begin{gathered} 1510 \\ (\times) \end{gathered}$	$\begin{aligned} & 800 \\ & (\times) \\ & \hline \end{aligned}$		$\begin{gathered} 5920 \\ (1940) \\ \hline \end{gathered}$
	LQ_{2}	$\begin{aligned} & 1020 \\ & (250) \end{aligned}$	$\begin{gathered} 3420 \\ (1320) \end{gathered}$	$\begin{gathered} 3990 \\ (1820) \end{gathered}$	$\begin{gathered} 1040 \\ (20560) \\ \hline \end{gathered}$	$\begin{gathered} 650 \\ (4110) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5930 \\ (1860) \\ \hline \end{gathered}$	

() = required luminosity only from $R(D) \& R\left(D^{*}\right)$

Setup:

1. divide $q^{\wedge} 2$ region by $16(14)$ bins in $B \rightarrow D\left(^{*}\right) T V$ as is done by BaBar
2. evaluate covariant matrices of theoretical uncertainties for each model
3. estimate experimental errors taking efficiencies (10^-4) into account ($10^{\wedge}-4$ is obtained from BaBar analysis and we assume using this value)
