
New Physics at Belle II
KIT, Germany,  Feb. 24, 2015

New Physics in B̄ ! D(⇤)⌧ ⌫̄

Ryoutaro Watanabe
CTPU/IBS, Korea



B decays with “tau lepton” are now significant:

3. Observables available in future at Belle2

Promising improvement at Belle2

2. What about NP search ?

2HDM cannot compensate the deviation

1. Deviation between SM prediction & experimental result

3.5� from B̄ ! D⌧ ⌫̄ and B̄ ! D⇤⌧ ⌫̄
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Experiment

Large statistics is required 
even for tree level process

Deviation

・It is challenging to measure tauonic B meson decays,

　because 2 or more neutrinos appear in the final state.

・At B factory, however, reconstructing the opposite B meson

　we can compare the properties of  the remaining particles to

　those expected for signal and background.
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SM prediction

・Tree level process from Vcb in the SM

B̄ D(�)

W

⌫̄

b c

`
Vcb

B( ¯B ! D⌧ ⌫̄) / |Vcb|2G(1)2 ⇥ {function of ⇢21 }

B(B̄ ! D⇤⌧ ⌫̄) / |Vcb|2F(1)2

⇥{func. of ⇢2A1
, R1(1), R2(1) }

・Measurement

is used in order to cancel                            and reduce FF uncertainties. 

Vcb & FF parameters are obtained by a fit to distributions of
for                  . For an observable of                     , normalized decay rate;

B̄ ! D(⇤)`⌫̄

` = e or µ

R(D) =
�(B̄ ! D⌧ ⌫̄)

�(B̄ ! D`⌫̄)
R(D⇤) =

�(B̄ ! D⇤⌧ ⌫̄)

�(B̄ ! D⇤`⌫̄)

B̄ ! D(⇤)⌧ ⌫̄

|Vcb|G(1), |Vcb|F(1)

(G, F , ⇢2, R) are FF parameters



・Comparison

SM prediction

R(D) =
�(B̄ ! D⌧ ⌫̄)

�(B̄ ! D`⌫̄)
R(D⇤) =

�(B̄ ! D⇤⌧ ⌫̄)

�(B̄ ! D⇤`⌫̄)

[Belle (our combination),   BABAR in arXiv:1205.5442]

Out[95]=

deviation HsL

SM

EXP.

⇠ 3.5� deviation

Belle BABAR SM

R(D) 0.430± 0.091 0.440± 0.058± 0.042 0.305± 0.012
R(D⇤

) 0.405± 0.047 0.332± 0.024± 0.018 0.252± 0.004
correlation neglected �0.27 -



Study of the B ! D(⇤)⌧⌫ decays : motivation

The BABAR results [arXiv:1205.5442],

R(D)exp =0.440 ± 0.058 ± 0.042 , R(D)SM = 0.297 ± 0.017 ,

R(D⇤)exp =0.332 ± 0.024 ± 0.018 , R(D⇤)SM = 0.252 ± 0.003 ,

disagree with the SM at the 3.4 � level (combining with Belle result, we obtain 3.5 �).

SlideB ! D(�)�⌫Manuel Franco Sevilla

R(D)0.2 0.4 0.6

R
(D

*)

0.3

0.4

SM

! 1
! 2
! 3
! 4
! 5
! 6

Figure 1: Values of R(D(�)) and its total uncertainties.

Table 1: Previous measurements of B ! D(�)⌧�⌫⌧ . � is the total significance of the signal yield. Belle 2007 and
2010 measured B(B ! D(�)⌧�⌫⌧ ) instead of R(D(�)), so B(B ! D(�)��⌫⌧ ) values found in ? were used to calculate
R(D(�)).

Belle, 2007 BABAR, 2008 Belle, 2010

535M BB pairs 232M BB pairs 657M BB pairs

Mode Events �(�) Events �(�) Events �(�)

B ! D⌧�⌫⌧ — — 67 ± 19 3.6 146 ± 42 3.5

B ! D�⌧�⌫⌧ 60 ± 12 5.2 101 ± 19 6.2 446 ± 57 8.1

R(D) =

�
0.440 ± 0.072 BABAR

0.297 ± 0.017 SM
(1)

R(D�) =

�
0.332 ± 0.030 BABAR

0.252 ± 0.003 SM
(2)
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tan�/mH±(GeV�1)

Type-II 2HDM is disfavored at 99.8%CL

2HDM

+

W ±

H±

/ mbm⌧ tan2 �

m2
H±

(Type II)

[BABAR in arXiv:1205.5442]



Content

- Experiment  
- SM prediction ／ 2HDM   

1. Deviation

2. NP search 

- Model independent analysis  
- NP models　

Study of the B ! D(⇤)⌧⌫ decays : motivation

The BABAR results [arXiv:1205.5442],

R(D)exp =0.440 ± 0.058 ± 0.042 , R(D)SM = 0.297 ± 0.017 ,

R(D⇤)exp =0.332 ± 0.024 ± 0.018 , R(D⇤)SM = 0.252 ± 0.003 ,

disagree with the SM at the 3.4 � level (combining with Belle result, we obtain 3.5 �).

SlideB ! D(�)�⌫Manuel Franco Sevilla

R(D)0.2 0.4 0.6

R(
D

*)

0.3

0.4

SM

! 1
! 2
! 3
! 4
! 5
! 6

Figure 1: Values of R(D(�)) and its total uncertainties.

Table 1: Previous measurements of B ! D(�)⌧�⌫⌧ . � is the total significance of the signal yield. Belle 2007 and
2010 measured B(B ! D(�)⌧�⌫⌧ ) instead of R(D(�)), so B(B ! D(�)��⌫⌧ ) values found in ? were used to calculate
R(D(�)).

Belle, 2007 BABAR, 2008 Belle, 2010

535M BB pairs 232M BB pairs 657M BB pairs

Mode Events �(�) Events �(�) Events �(�)

B ! D⌧�⌫⌧ — — 67 ± 19 3.6 146 ± 42 3.5

B ! D�⌧�⌫⌧ 60 ± 12 5.2 101 ± 19 6.2 446 ± 57 8.1

R(D) =

�
0.440 ± 0.072 BABAR

0.297 ± 0.017 SM
(1)

R(D�) =

�
0.332 ± 0.030 BABAR

0.252 ± 0.003 SM
(2)

R(D)0.2 0.4 0.6

R(
D

*)

0.3

0.4

SM

m 1
m 2
m 3
m 4
m 5 R(D) and R(D*) 

not independent

-27% correlation

2HDM-II

E

X

C

L

U

D

E

D

a

t

9

9

.

8

%

C

.

L

.

c�BABAR

/R MSSM ?
B

!
Xs⌫

⌫

2HDM-III ?

leptoquarks ?

smth else ?

Andrey Tayduganov @KEK-FF 2014 Searching for NP in semileptonic B decays 4 / 13

tan�/mH±(GeV�1)

Out[95]=

deviation HsL

SM

EXP.

3. Observables at Belle2

- NP analyzer  
- q^2 distribution ／ Test of  discriminative potential at Belle2



NP search

Model independent analysis 

・Effective operators

Cx represents “New Physics” contribution normalized by SM contribution

b ⌧
⌫̄

c

Le↵ = �2
p
2GFVcb

h
(1 + CV1)OV1 + CV2OV2 + CS1OS1 + CS2OS2 + CTOT

i

SM

Vector (1) OV1 = c̄L�
µbL ⌧̄L�µ⌫L

Tensor OT = c̄R�
µ⌫bL ⌧̄R�µ⌫⌫L

Vector (2) OV2 = c̄R�
µbR ⌧̄L�µ⌫L

・Wilson coefficients

Scalar (1) OS1 = c̄LbR ⌧̄R⌫L

Scalar (2) OS2 = c̄RbL ⌧̄R⌫L

OX

CX



・V1, V2, T can explain data within small Cx　
・S2 can explain but large Cs2(~−1.6) is needed

・S1 is not preferred

・Allowed region of  Cx from R(D) & R(D*) [M.Tanaka&RW, arXiv:1212.1878]

* assuming one operator dominance (ex:                     )CS2 ”= 0, others = 0

* using the data which is the average of Belle & BABAR 

* allowed at 90%(Light blue), 95%(Cyan), 99%(Dark blue) 

CV1 CV2 CS2CS1

CT



2 Higgs Doublet Model V1 V2 S1 S2 T

・contribute as S1 & S2 type 

・type I, II, X, Y cannot explain / type III can

R Parity Violation V1 V2 S1 S2 T

・S1 type operator is generated, and disfavored

・V1 type is generated, but incompatible with data of  B→Xsνν

Lepto Quark V1 V2 S1 S2 T

・S1 & V1 type are generated and disfavored as well as RPV

・S2-T types are generated and likely to explain the results

NP models [M.Tanaka & RW, arXiv:1212.1878]
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- NP analyzer  
- q^2 distribution ／ Test of  discriminative potential at Belle2



Observables at Belle II

New physics analyzer

・Compared with two body decay like B→τν, 

　many more observables are available in three body decays,  B→D(*)τν

・There are several studies for NP search toward Belle2 　
　(q^2 distributed and/or integrated)　

[Fajfer, Kamenik, Nisandzic, Zupan, arXiv:1203.2654]
[Sakaki, Tanaka, arXiv:1205.4908] 
[Datta, Duraisamy, Ghosh, arXiv1206.3760] 
[Tanaka, Watanabe, arXiv:1212.1878] 
[Biancofiore, Colangelo, De Fazio, arXiv:1302.1042]
[Duraisamy, Datta, arXiv:1302.7031, arXiv:1405.3719]
[Sakaki, Tanaka, Tayduganov, Watanabe, arXiv:1309.0301]
[Hagiwara, Nojiri, Sakaki, arXiv:1403.5892]

[Sakaki, Tanaka, Tayduganov, Watanabe, arXiv:1412.3761]

Pick up



[BABAR,  arXiv:1303.0571]

S2 & T are disfavored !　
Not conclusive for others

q^2 distribution
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Figure 2: The measured background subtracted q2 distributions for B ! D⌧⌫ and B ! D⇤⌧⌫ events,

extracted from the BABAR data [2].

and66

d�(B ! D⇤⌧⌫⌧ )

dq2
=

G2

F |Vcb|2
192⇡3m3

B

q2
p
�D⇤(q2)

✓
1� m2

⌧

q2

◆
2

⇥
⇢

(|1 + CV1 |2 + |CV2 |2)
✓

1 +
m2

⌧

2q2

◆�
H2

V,+ +H2

V,� +H2

V,0

�
+

3

2

m2

⌧

q2
H2

V,t

�

� 2Re[(1 + CV1)C
⇤
V2
]

✓
1 +

m2

⌧

2q2

◆�
H2

V,0 + 2HV,+HV,�
�
+

3

2

m2

⌧

q2
H2

V,t

�

+
3

2
|CS1 � CS2 |2 H2

S + 8|CT |2
✓
1 +

2m2

⌧

q2

◆�
H2

T,+ +H2

T,� +H2

T,0

�

+ 3Re[(1 + CV1 � CV2)(C
⇤
S1

� C⇤
S2
)]

m⌧p
q2

HSHV,t

� 12Re[(1 + CV1)C
⇤
T ]

m⌧p
q2

(HT,0HV,0 +HT,+HV,+ �HT,�HV,�)

+ 12Re[CV2C
⇤
T ]

m⌧p
q2

(HT,0HV,0 +HT,+HV,� �HT,�HV,+)

�
,

(7)

where �D(⇤)(q2) = ((mB � mD(⇤))2 � q2)((mB + mD(⇤))2 � q2). The SM distributions for67

the light lepton modes can be easily obtained by setting CX = 0 and m⌧ = 0.68

The helicity amplitudes H’s are expressed in terms of hadronic B ! D(⇤) form factors.69

In this work we use the Heavy Quark E↵ective Theory (HQET) form factors [10] with70

parameters extracted from experiments by the BABAR and Belle collaborations [11]. A71

detailed description of the matrix elements and form factor parametrization can be found72

in Ref. [6].73

To estimate the (dis)agreement between the measured and expected q2 spectra, we74

extract the experimental numbers of signal events from Fig. 23 in Ref. [2] and compare75

them with the expectations of di↵erent scenarios listed in the previous section. We present76

the extracted experimental data points in Fig. 2. In our study, we merge two last bins in77

Fig. 2 in order to satisfy the physical condition q2  (mB�mD(⇤))2 and add corresponding78

errors in quadratures. The corresponding theoretical predictions for dB/dq2 distributions79

5

d�(B̄ ! D(⇤)⌧ ⌫̄)

dq2
where q2 = (pB � pD(⇤))2
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Figure 3: The di↵erential branching fractions, predicted in the SM (black) and various NP scenarios

listed in Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to

the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.

model B ! D⌧⌫ B ! D⇤⌧⌫ B ! (D +D⇤
)⌧⌫

SM 54% 65% 67%

V1 54% 65% 67%

V2 54% 65% 67%

S2 0.02% 37% 0.1%

T 58% 0.1% 1.0%

LQ1 13% 58% 25%

LQ2 21% 72% 42%

Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.

are presented in Fig. 3. The width of each curve is due to the theoretical errors in the80

hadronic form factor parameters and the uncertainty of Vcb = (41.1± 1.3)⇥ 10�3 [12].81

Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
2) ⌘dB(B ! D⌧⌫)/dq2

dB(B ! D`⌫)/dq2
�D(q2)

(m2

B �m2

D)
2

✓
1� m2

⌧

q2

◆�2

,

RD⇤(q2) ⌘dB(B ! D⇤⌧⌫)/dq2

dB(B ! D⇤`⌫)/dq2

✓
1� m2

⌧

q2

◆�2

.

(8)

Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min

= m2

⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
5In the SM, dB(B ! D`⌫)/dq2 / (Hs

V )
2 / �D(q2) ! 0 for q2 ! q2

max

.

6

・p values for the fit



Test of discriminative potential at Belle2

Toward Belle2:　
　We propose new observable (distribution) for extracting NP signature. 

　
　

RD⇤(q2) ⌘ d�(B̄ ! D⇤⌧ ⌫̄)/dq2

d�(B̄ ! D⇤`⌫̄)/dq2
⇥

✓
1� m2

⌧

q2

◆�2

RD(q2) ⌘ d�( ¯B ! D⌧ ⌫̄)/dq2

d�( ¯B ! D`⌫̄)/dq2
⇥ [Normalization factor]

ratio of  q^2 distributions
for (our) convenience

　We can reduce theoretical uncertainties as is the case with R(D) and R(D*). 



Assumption:　
　1. use the best fitted Cx from the recent results of  R(D)&R(D*)

　2. prepare/make “faked data for the new distribution” using above

　3. evaluate luminosities required to discriminate “data” & “model”  by

Test of discriminative potential at Belle2

L [fb

�1
]

model

SM V1 V2 S2 T LQ1 LQ2

V1
1170

(270)

10

6

(5)

500

(5)

900

(5)

4140

(5)

2860

(1390)

V2
1140

(270)

10

6

(5)

510

(5)

910

(5)

4210

(5)

3370

(1960)

“
d
a
t
a
” S2

560

(290)

560

(13750)

540

(36450)

380

(5)

1310

(35720)

730

(4720)

T
600

(270)

680

(5)

700

(5)

320

(5)

620

(5)

550

(1980)

LQ1
1010

(270)

4820

(5)

4650

(5)

1510

(5)

800

(5)

5920

(1940)

LQ2
1020

(250)

3420

(1320)

3990

(1820)

1040

(20560)

650

(4110)

5930

(1860)

Table 2: Luminosity required to discriminate various simulated “data” and tested model sets at

99.9% C.L. using RD(⇤)(q2) or R(D(⇤)) (in parentheses).

model

SM V1 V2 S2 T LQ1 LQ2

V1 ⌅⌅⌅ 8 }}} }}} }}} ⌅⌅⌅
V2 ⌅⌅⌅ 8 }}} }}} }}} ⌅⌅⌅

“
d
a
t
a
” S2 ⌅⌅⌅ � � }}} � �

T ⌅⌅⌅ }}} }}} }}} }}} �
LQ1 ⌅⌅⌅ }}} }}} }}} }}} ⌅⌅⌅
LQ2 ⌅⌅⌅ ⌅⌅⌅ ⌅⌅⌅ � � ⌅⌅⌅

Table 3: Comparison of two discrimination methods, using RD(⇤)(q2) (circle) or R(D(⇤)) (square): the

method requiring a smaller luminosity to distinguish “data” and theoretical model at 99.9% C.L. is more

advantageous. Double circle corresponds to the case when only RD(⇤)(q2) is e↵ective and can distinguish

scenarios. Cross marks denote the impossibility of discrimination by either of the two methods.

experimental data of R(D(⇤)) have already shown the significant deviation from the SM153

as explained in Section 1.154

As can been seen from Table 3, for the “data”-model cases LQ
2

(V
1,2)-V1,2(LQ2

) and155

LQ
2(1)

-LQ
1(2)

, R(D(⇤)) turn out to be more advantageous quantities to be studied. On156

the other hand, if we assume “data” to be e.g. S
2

or T , the binned q2 distributions157

become more profitable for discrimination of other NP models. Moreover, only RD(⇤)(q2)158

can clearly distinguish the S
2

-T and T -S
2

cases. To summarise, among the 36 cases listed159

in Table 3, in 22 cases the study of q2 distributions turns out to be more advantageous160

and has a lower luminosity cost, and in 15 cases only RD(⇤)(q2) can discriminate “data”161

and models at 99.9% C.L.162

To clarify the sensitivity to NP Wilson coe�cients in the Belle II experiment, in Fig. 5163

we present constraints on the Wilson coe�cients, obtained from the �2 fit of binned RD(q2)164

and RD⇤(q2) for the integrated luminosity of 40 ab�1, assuming the “data” to be perfectly165

consistent with the SM predictions. The dark (light) blue regions represent the expected166

68% (99.9%) C.L. constraints from RD(q2) and RD⇤(q2). For comparison, we show the167

68% (99.9%) C.L. allowed regions, represented by red solid (dashed) lines, from R(D) and168

R(D⇤). Due to the large statistics of the B ! D(⇤)`⌫` events at the Belle II experiment, it169

9

(    ) = required luminosity only from R(D)&R(D*)

99.9%CL

・Some cases can be already tested using present data
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- SM prediction ／ 2HDM   

1. Deviation

2. NP search 

- Model independent analysis  
- NP models　

3. Observables at Belle2

- NP analyzer  
- q^2 distribution 

Study of the B ! D(⇤)⌧⌫ decays : motivation

The BABAR results [arXiv:1205.5442],

R(D)exp =0.440 ± 0.058 ± 0.042 , R(D)SM = 0.297 ± 0.017 ,

R(D⇤)exp =0.332 ± 0.024 ± 0.018 , R(D⇤)SM = 0.252 ± 0.003 ,

disagree with the SM at the 3.4 � level (combining with Belle result, we obtain 3.5 �).

SlideB ! D(�)�⌫Manuel Franco Sevilla

R(D)0.2 0.4 0.6

R(
D

*)

0.3

0.4

SM

! 1
! 2
! 3
! 4
! 5
! 6

Figure 1: Values of R(D(�)) and its total uncertainties.

Table 1: Previous measurements of B ! D(�)⌧�⌫⌧ . � is the total significance of the signal yield. Belle 2007 and
2010 measured B(B ! D(�)⌧�⌫⌧ ) instead of R(D(�)), so B(B ! D(�)��⌫⌧ ) values found in ? were used to calculate
R(D(�)).
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・V1, V2, T can explain data within small Cx　
・S2 can explain but large Cs2(~-1.6) is needed

・S1 is not preferred
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Table 3: Comparison of two discrimination methods, using RD(⇤)(q2) (circle) or R(D(⇤)) (square): the

method requiring a smaller luminosity to distinguish “data” and theoretical model at 99.9% C.L. is more

advantageous. Double circle corresponds to the case when only RD(⇤)(q2) is e↵ective and can distinguish

scenarios. Cross marks denote the impossibility of discrimination by either of the two methods.

experimental data of R(D(⇤)) have already shown the significant deviation from the SM153
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become more profitable for discrimination of other NP models. Moreover, only RD(⇤)(q2)158

can clearly distinguish the S
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cases. To summarise, among the 36 cases listed159

in Table 3, in 22 cases the study of q2 distributions turns out to be more advantageous160

and has a lower luminosity cost, and in 15 cases only RD(⇤)(q2) can discriminate “data”161

and models at 99.9% C.L.162

To clarify the sensitivity to NP Wilson coe�cients in the Belle II experiment, in Fig. 5163

we present constraints on the Wilson coe�cients, obtained from the �2 fit of binned RD(q2)164

and RD⇤(q2) for the integrated luminosity of 40 ab�1, assuming the “data” to be perfectly165

consistent with the SM predictions. The dark (light) blue regions represent the expected166

68% (99.9%) C.L. constraints from RD(q2) and RD⇤(q2). For comparison, we show the167

68% (99.9%) C.L. allowed regions, represented by red solid (dashed) lines, from R(D) and168

R(D⇤). Due to the large statistics of the B ! D(⇤)`⌫` events at the Belle II experiment, it169
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・Fit the shape (=interaction type) and the hight (=coupling)

B̄ ! D`⌫̄

Hight： V1(1)|Vcb|
 
z =

p
w + 1�

p
2

p
w + 1 +

p
2

!
V1(w) = V1(1)

⇥
1� 8⇢21z + (51⇢21 � 10)z2 � (252⇢21 � 84)z3

⇤
Shape：

・Shape is parametrized by HQET [Caprini et.al. (1996)]

|Vcb| determination 

the low-momentum range, measured using real data. The
second half is used to perform the analysis with a statisti-
cally independent sample. The results of the background
estimation shown in Table I are those obtained in the
samples used for the analysis. Both of the samples contain
about 120 000 signal events.

The sample used to investigate the efficiency of
low-momentum tracks is divided into a total of six bins
in p!s

. The bin borders of the first five are 50 MeV=c,
100 MeV=c, 125 MeV=c, 150 MeV=c, 175 MeV=c and
200 MeV=c. The region beyond 200 MeV=c defines the
sixth bin. By subtracting the background, we obtain an
estimate of the signal in data and form the ratio with the
signal in MC in each bin, fi ¼ Ndata

i =NMC
i .

The high momentum range is used as normalization, no
efficiency correction is applied there. In the lower momen-
tum bins we obtain the ratios "!s;i ¼ fi=fmax, which are

identical to the ratio of reconstruction efficiencies in the
bins i and the high momentum region, "!s;i ¼ #i=#max. We
calculate this set of ratios for the electron and muon modes
and form the weighted average, separately for each of the
four subsamples. These values are applied as weights when
filling the MC histograms to correct the reconstruction
efficiency.

Most systematic uncertainties cancel out in the ratios
"!s;i. Only the uncertainties in the various background
components give a small systematic contribution to the
uncertainty.

This procedure assumes that the distribution of events in
the p!s

spectrum is identical for data and MC. However,

one of the aims of the analysis is to measure the form factor
parameters that govern this distribution. Therefore, an
iterative procedure is adopted: we calculate one set of
corrections, apply them and perform the analysis to deter-
mine F ð1ÞjVcbj and the form factor parameters. We then
calculate a new set of corrections using these results and
repeat the analysis. The changes of the parameters during
this iterative procedure are small and vanish after the third
iteration. We assign an additional systematic uncertainty to
our results based on the stability of the corrections against
changes in the form factor parameters. As will be shown
in Table III, this is a negligibly small contribution.

C. Results of the fits and investigation of the
systematic uncertainties in the subsamples

After applying all analysis cuts and subtracting back-
grounds, a total of 123 427$ 636 signal events are used for
the analysis, divided into a total of four experimental
subsamples as mentioned above. The result of the fit to
these data is shown in Fig. 5 and Table II. The $2 per
degree of freedom, $2=n:d:f, of all fits is good. Table II also
gives the $2 probabilities or P values, P$2 .

To estimate the systematic uncertainties in these results,
we consider contributions from the following sources: un-
certainties in the background component normalizations,
uncertainty in theMC tracking efficiency, errors in theworld
average ofBðD%þ ! D0!þÞ andBðD0 ! K'!þÞ as well
as in the BðB ! D%%‘%Þ components [8], uncertainties
in the shape of the w distribution of B ! D%%‘% events
based on the LLSW model [23], uncertainties in the B0

FIG. 5 (color online). Result of the fit of the four kinematic variables in the subsample B. The electron and muon modes are added in
this plot. The points with error bars are continuum-subtracted on-resonance data. Where not shown, the uncertainties are smaller than
the black markers. The histograms are, top to bottom, the signal component, D%% background, signal correlated background,
uncorrelated background, fake ‘ component and fake D% component.

MEASUREMENT OF THE FORM FACTORS OF THE DECAY . . . PHYSICAL REVIEW D 82, 112007 (2010)

112007-9

V1(1)|Vcb| = (4.26± 0.07± 0.14)⇥ 10�2

⇢21 = 1.186± 0.055

Fit result:

d�

dw
=

GFm5
B

48⇡3
r3(1 + r)2(w2 � 1)3/2V1(w)

2|Vcb|2

w = (m2
B +m2

D � q2)/(2mBmD)



Experimental analysis @BABAR

m2
miss = (pe+e� � ptag � pD(⇤) � p`)

2

* inv. mass of missing particles:

* Decay channel BABAR analyzed:

B̄ ! D(⇤)(⌧ ! `⌫̄⌫)⌫̄

1.               are identified 

2.        distribution is measured

3. Comparing total event data with 
    expected signal & background,
    signal event is extracted

Btag, D
(⇤), `

m2
miss

[BABAR, arXiv:1205.5442]
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The q2 spectra were found to be consistent with the SM to within the statistical
uncertainties.

Fig. 4. m2

miss

(left) and p⇤l (right) distributions of the B ! D̄(⇤)⌧+⌫⌧ candidates reconstructed

by BABAR13,14. Shaded regions show the results of the fit with the isospin constraint R(D(⇤)0) =
R(D(⇤)+) ⌘ R(D(⇤)). The reconstructed final state is shown on each plot. The p⇤l distributions

were produced with the requirement m2

miss

> 1 GeV to suppress the large B ! D̄(⇤)`+⌫` peak,
which is truncated in the m2

miss

distributions. The dashed line in the background (labeled Bkg.)
shows the level of the continuum background.

4.1.4. Summary and Consistency of B ! D̄(⇤)⌧+⌫⌧ Measurements

As shown discussed above, the B ! D̄(⇤)⌧+⌫⌧ rate measurements have consistently
yielded results higher the SM expectations. Comparison of theory and experimental
results from both BABAR and Belle is best performed in terms of the branching-
fraction ratios R(D(⇤)). However, this is complicated by the fact that the published
Belle results were given in terms of the branching fractions, and correlations between
the R(D) and R(D⇤) results in the Belle measurements have not been published.
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4.1.4. Summary and Consistency of B ! D̄(⇤)⌧+⌫⌧ Measurements

As shown discussed above, the B ! D̄(⇤)⌧+⌫⌧ rate measurements have consistently
yielded results higher the SM expectations. Comparison of theory and experimental
results from both BABAR and Belle is best performed in terms of the branching-
fraction ratios R(D(⇤)). However, this is complicated by the fact that the published
Belle results were given in terms of the branching fractions, and correlations between
the R(D) and R(D⇤) results in the Belle measurements have not been published.
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Figure 4: The RD(⇤)(q2) distributions, predicted in the SM (black) and various NP scenarios listed in

Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to the

theoretical errors in the hadronic form factor parameters

In Fig. 4, for illustration, we show the RD(⇤)(q2) distributions, predicted for the five94

scenarios described in Section 2. The width of each curve is due to the theoretical errors95

in the hadronic form factor parameters, which are varied within ±1� ranges. The dis-96

tributions for the vector V
1,2 NP scenarios (with best fitted values of Wilson coe�cients97

CV1 = 0.16 and CV2 = 0.01 ± 0.60i respectively) have small theoretical uncertainties as98

in the SM, but are practically indistinguishable from the distribution of the tensor (LQ
1

)99

NP scenario for the D(D⇤) mode. Therefore we omit plotting them in Fig. 4.100

We find that RD(q2) is very sensitive to the scalar contribution and RD⇤(q2) is more101

sensitive to the tensor operator. Moreover, one can easily see from Figs. 3 and 4 that the102

theoretical uncertainties in RD(⇤)(q2) are significantly smaller than those of the di↵erential103

branching fractions. Hence, the RD(⇤)(q2) distributions provide a good test of NP in104

addition to R(D(⇤)).105

4 Discriminative potential at Belle II106

In order to demonstrate the discriminating power of RD(⇤)(q2), we simulate “experimental107

data” for the binned RD(⇤)(q2) distributions, assuming one of the scenarios, listed in108

Section 2, that can explain the observed deviation in R(D) and R(D⇤), and compare109

them with other various model predictions by calculating �2 defined in the following way:110

111

�2 =
NbinsX

i,j=1

(Rexp

i �Rmodel

i )(V exp + V model)�1

ij (R
exp

j �Rmodel

j ) , (9)

where i and j denote the q2-bin indices, V exp and V model are the experimental and the-112

oretical covariance matrices of the simulated “experimental data” and the tested model113

respectively. Here the binned Ri is defined as Ri = (N ⌧
i /N

`
i )f(q

2

i ) with f(q2i ) for shortness114

denoting purely kinematic factors introduced in Eq. (8), where N ⌧,`
i are the numbers of115

signal events in the ith bin for a given luminosity. We evaluate N ⌧,`
i for each benchmark116

scenario using the central values of the hadronic parameters.117

For model predictions, the uncertainties of the HQET hadronic form factors and the118
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Figure 3: The di↵erential branching fractions, predicted in the SM (black) and various NP scenarios

listed in Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to

the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.

model B ! D⌧⌫ B ! D⇤⌧⌫ B ! (D +D⇤
)⌧⌫

SM 54% 65% 67%

V1 54% 65% 67%

V2 54% 65% 67%

S2 0.02% 37% 0.1%

T 58% 0.1% 1.0%

LQ1 13% 58% 25%

LQ2 21% 72% 42%

Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.

are presented in Fig. 3. The width of each curve is due to the theoretical errors in the80

hadronic form factor parameters and the uncertainty of Vcb = (41.1± 1.3)⇥ 10�3 [12].81

Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
2) ⌘dB(B ! D⌧⌫)/dq2

dB(B ! D`⌫)/dq2
�D(q2)

(m2

B �m2

D)
2

✓
1� m2

⌧

q2

◆�2

,

RD⇤(q2) ⌘dB(B ! D⇤⌧⌫)/dq2

dB(B ! D⇤`⌫)/dq2

✓
1� m2

⌧

q2

◆�2

.

(8)

Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min

= m2

⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
5In the SM, dB(B ! D`⌫)/dq2 / (Hs

V )
2 / �D(q2) ! 0 for q2 ! q2

max

.
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Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.
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Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
2) ⌘dB(B ! D⌧⌫)/dq2
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Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min
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⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
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the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.
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to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84
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operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88
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Assumption:　
　1. use the best fitted Cx from the recent results of  R(D)&R(D*)

　2. prepare/make “faked data for the new distribution” using above

　3. evaluate luminosities required to discriminate “data” & “model”  by

L [fb

�1
]

model

SM V1 V2 S2 T LQ1 LQ2

V1
1170

(270)

10

6

(5)

500

(5)

900

(5)

4140

(5)

2860

(1390)

V2
1140

(270)

10

6

(5)

510

(5)

910

(5)

4210

(5)

3370

(1960)

“
d
a
t
a
” S2

560

(290)

560

(13750)

540

(36450)

380

(5)

1310

(35720)

730

(4720)

T
600

(270)

680

(5)

700

(5)

320

(5)

620

(5)

550

(1980)

LQ1
1010

(270)

4820

(5)

4650

(5)

1510

(5)

800

(5)

5920

(1940)

LQ2
1020

(250)

3420

(1320)

3990

(1820)

1040

(20560)

650

(4110)

5930

(1860)

Table 2: Luminosity required to discriminate various simulated “data” and tested model sets at

99.9% C.L. using RD(⇤)(q2) or R(D(⇤)) (in parentheses).

model

SM V1 V2 S2 T LQ1 LQ2

V1 ⌅⌅⌅ 8 }}} }}} }}} ⌅⌅⌅
V2 ⌅⌅⌅ 8 }}} }}} }}} ⌅⌅⌅

“
d
a
t
a
” S2 ⌅⌅⌅ � � }}} � �

T ⌅⌅⌅ }}} }}} }}} }}} �
LQ1 ⌅⌅⌅ }}} }}} }}} }}} ⌅⌅⌅
LQ2 ⌅⌅⌅ ⌅⌅⌅ ⌅⌅⌅ � � ⌅⌅⌅

Table 3: Comparison of two discrimination methods, using RD(⇤)(q2) (circle) or R(D(⇤)) (square): the

method requiring a smaller luminosity to distinguish “data” and theoretical model at 99.9% C.L. is more

advantageous. Double circle corresponds to the case when only RD(⇤)(q2) is e↵ective and can distinguish

scenarios. Cross marks denote the impossibility of discrimination by either of the two methods.

experimental data of R(D(⇤)) have already shown the significant deviation from the SM153

as explained in Section 1.154

As can been seen from Table 3, for the “data”-model cases LQ
2

(V
1,2)-V1,2(LQ2

) and155

LQ
2(1)

-LQ
1(2)

, R(D(⇤)) turn out to be more advantageous quantities to be studied. On156

the other hand, if we assume “data” to be e.g. S
2

or T , the binned q2 distributions157

become more profitable for discrimination of other NP models. Moreover, only RD(⇤)(q2)158

can clearly distinguish the S
2

-T and T -S
2

cases. To summarise, among the 36 cases listed159

in Table 3, in 22 cases the study of q2 distributions turns out to be more advantageous160

and has a lower luminosity cost, and in 15 cases only RD(⇤)(q2) can discriminate “data”161

and models at 99.9% C.L.162

To clarify the sensitivity to NP Wilson coe�cients in the Belle II experiment, in Fig. 5163

we present constraints on the Wilson coe�cients, obtained from the �2 fit of binned RD(q2)164

and RD⇤(q2) for the integrated luminosity of 40 ab�1, assuming the “data” to be perfectly165

consistent with the SM predictions. The dark (light) blue regions represent the expected166

68% (99.9%) C.L. constraints from RD(q2) and RD⇤(q2). For comparison, we show the167

68% (99.9%) C.L. allowed regions, represented by red solid (dashed) lines, from R(D) and168

R(D⇤). Due to the large statistics of the B ! D(⇤)`⌫` events at the Belle II experiment, it169

9

(    ) = required luminosity only from R(D)&R(D*)

99.9%CL

RD(⇤)(q2)

Discriminative potential

Setup:　
　1. divide q^2 region by 16(14) bins in B→D(*)τν as is done by BaBar

　2. evaluate covariant matrices of  theoretical uncertainties for each model

　3. estimate experimental errors taking efficiencies (10^-4) into account

　(10^-4 is obtained from BaBar analysis and we assume using this value)


