New Physics at Belle II KIT, Germany, Feb. 24, 2015

New Physics in $\bar{B} \to D^{(*)} \tau \bar{\nu}$

Ryoutaro Watanabe CTPU/IBS, Korea

B decays with "tau lepton" are now significant:

1. Deviation between SM prediction & experimental result

3.5 σ from $\bar{B} \to D \tau \bar{\nu}$ and $\bar{B} \to D^* \tau \bar{\nu}$

2. What about NP search?

2HDM cannot compensate the deviation

3. Observables available in future at Belle2

Promising improvement at Belle2

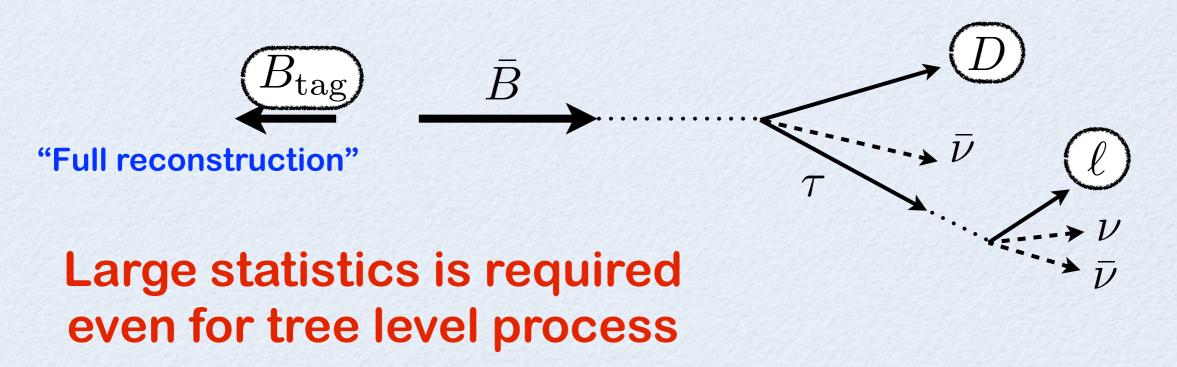
Content

1. Deviation

- Experiment
- SM prediction / 2HDM

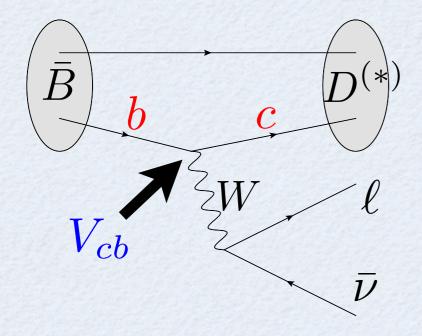
2. NP search

- Model independent analysis
- NP models


3. Observables at Belle2

- NP analyzer
- q^2 distribution / Test of discriminative potential at Belle2

Deviation


Experiment

- It is challenging to measure tauonic B meson decays, because 2 or more neutrinos appear in the final state.
- At B factory, however, reconstructing the opposite B meson we can compare the properties of the remaining particles to those expected for signal and background.

SM prediction

Tree level process from V_{cb} in the SM

 $\begin{aligned} \mathcal{B}(\bar{B} \to D\tau\bar{\nu}) \propto |V_{cb}|^2 \mathcal{G}(1)^2 \times \{\text{function of }\rho_1^2 \} \\ \mathcal{B}(\bar{B} \to D^*\tau\bar{\nu}) \propto |V_{cb}|^2 \mathcal{F}(1)^2 \\ \times \{\text{func. of }\rho_{A_1}^2, R_1(1), R_2(1) \} \end{aligned}$

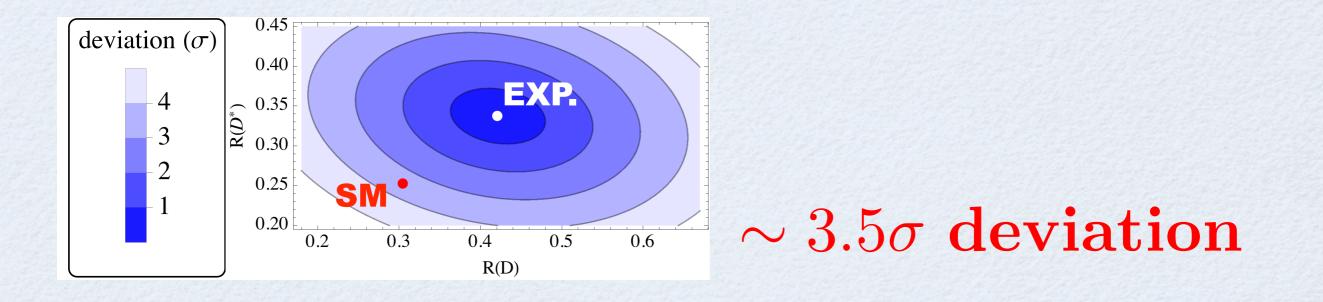
 $(\mathcal{G}, \mathcal{F}, \rho^2, R)$ are FF parameters

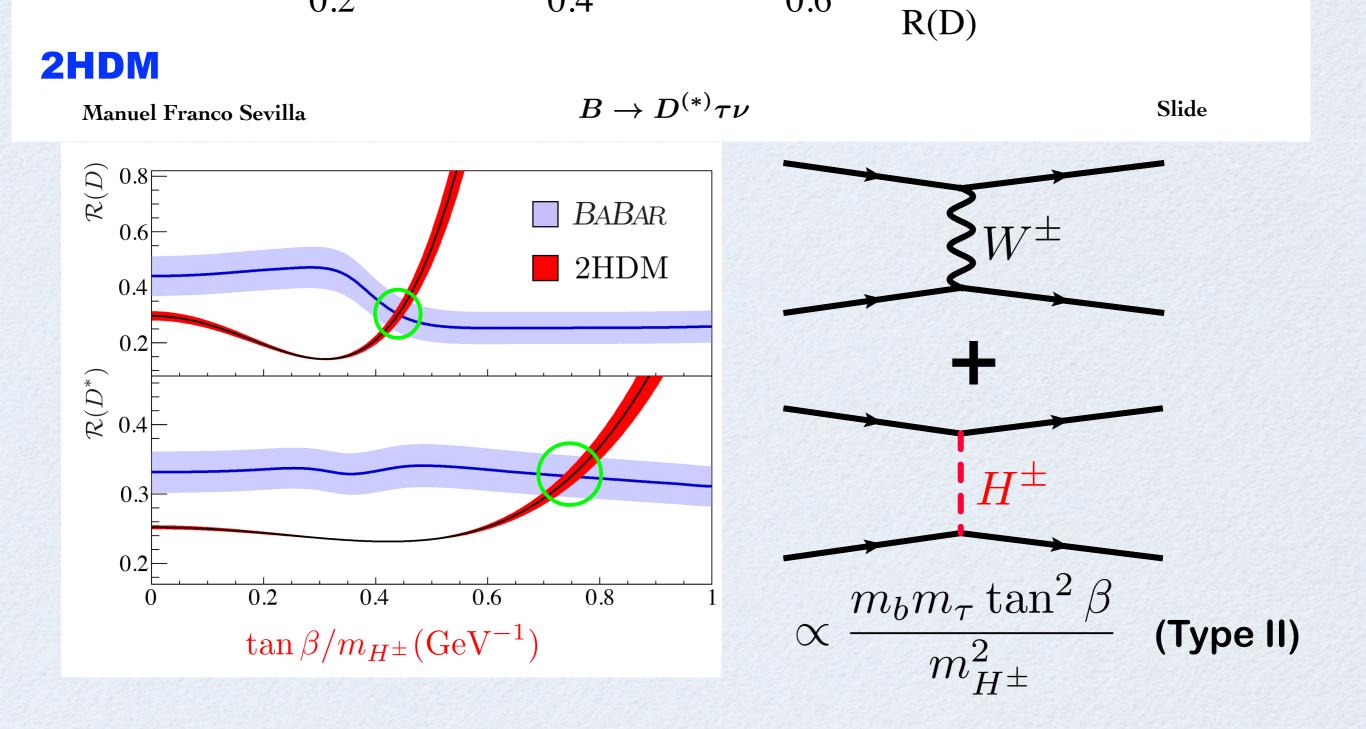
• Measurement

Vcb & FF parameters are obtained by a fit to distributions of $\bar{B} \to D^{(*)} \ell \bar{\nu}$ for $\ell = e$ or μ . For an observable of $\bar{B} \to D^{(*)} \tau \bar{\nu}$, normalized decay rate;

$$R(D) = \frac{\Gamma(\bar{B} \to D\tau\bar{\nu})}{\Gamma(\bar{B} \to D\ell\bar{\nu})} \qquad \qquad R(D^*) = \frac{\Gamma(\bar{B} \to D^*\tau\bar{\nu})}{\Gamma(\bar{B} \to D^*\ell\bar{\nu})}$$

is used in order to cancel $|V_{cb}|\mathcal{G}(1)$, $|V_{cb}|\mathcal{F}(1)$ and reduce FF uncertainties.

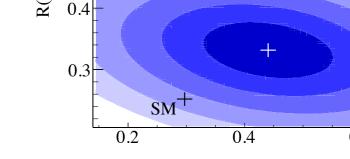

SM prediction


· Comparison

$$R(D) = \frac{\Gamma(\bar{B} \to D\tau\bar{\nu})}{\Gamma(\bar{B} \to D\ell\bar{\nu})} \qquad \qquad R(D^*) = \frac{\Gamma(\bar{B} \to D^*\tau\bar{\nu})}{\Gamma(\bar{B} \to D^*\ell\bar{\nu})}$$

[Belle (our combination), BABAR in arXiv:1205.5442]

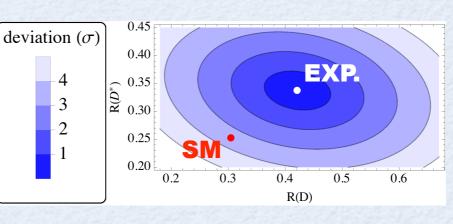
	Belle	BABAR	SM
R(D)	0.430 ± 0.091	$0.440 \pm 0.058 \pm 0.042$	0.305 ± 0.012
$R(D^*)$	0.405 ± 0.047	$0.332 \pm 0.024 \pm 0.018$	0.252 ± 0.004
correlation	neglected	-0.27	_

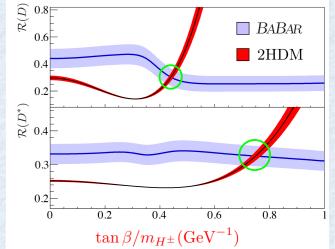


Type-II 2HDM is disfavored at 99.8%CL

[BABAR in arXiv:1205.5442]

Content

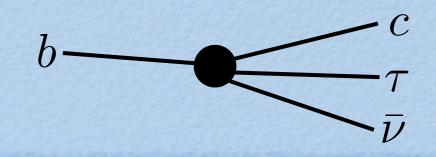



Manuel Franco Sevilla

 $B o D^{(*)} au
u$

1. Deviation

- Experiment
- SM prediction / 2HDM


2. NP search

- Model independent analysis
- NP models

3. Observables at Belle2

- NP analyzer
- q^2 distribution / Test of discriminative potential at Belle2

NP search

Model independent analysis

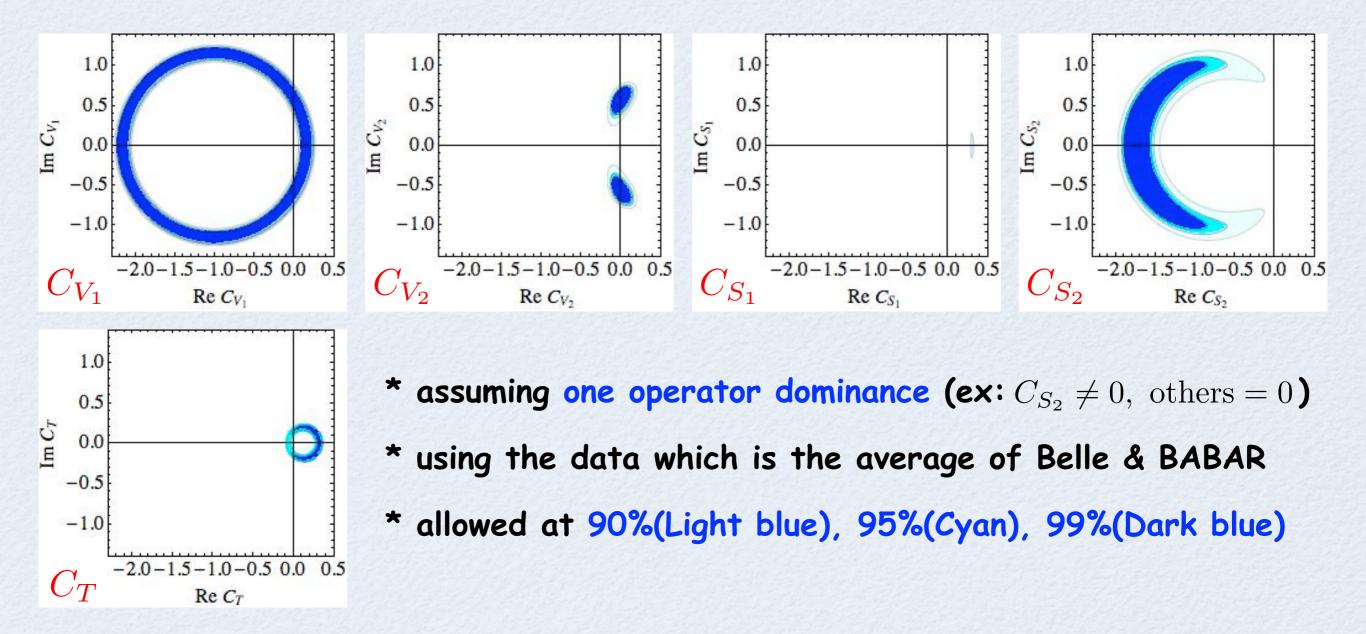
$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1+C_{V_1})\mathcal{O}_{V_1} + C_{V_2}\mathcal{O}_{V_2} + C_{S_1}\mathcal{O}_{S_1} + C_{S_2}\mathcal{O}_{S_2} + C_T\mathcal{O}_T \Big]$$

• Effective operators \mathcal{O}_X

Vector (1) $\mathcal{O}_{V_1} = \bar{c}_L \gamma^\mu b_L \, \bar{\tau}_L \gamma_\mu \nu_L$

Vector (2) $\mathcal{O}_{V_2} = \bar{c}_R \gamma^\mu b_R \bar{\tau}_L \gamma_\mu \nu_L$

Scalar (1) $\mathcal{O}_{S_1} = \bar{c}_L b_R \, \bar{\tau}_R \nu_L$ Scalar (2) $\mathcal{O}_{S_2} = \bar{c}_R b_L \, \bar{\tau}_R \nu_L$


Tensor

$$\mathcal{O}_T = \bar{c}_R \sigma^{\mu\nu} b_L \, \bar{\tau}_R \sigma_{\mu\nu} \nu_L$$

• Wilson coefficients C_X

Cx represents "New Physics" contribution normalized by SM contribution

Allowed region of Cx from R(D) & R(D*)

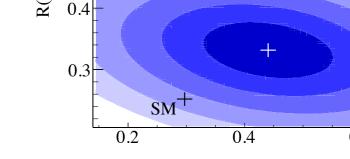
- · V1, V2, T can explain data within small Cx
- S2 can explain but large Cs₂(~-1.6) is needed
- S1 is not preferred

NP models

[M.Tanaka & RW, arXiv:1212.1878]

2 Higgs Doublet Model $V_1 \ V_2 \ S_1 \ S_2 \ T$

- contribute as S1 & S2 type
- type I, II, X, Y cannot explain / type III can

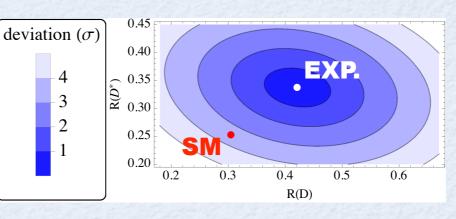

R Parity Violation $V_1 \ V_2 \ S_1 \ S_2 \ T$

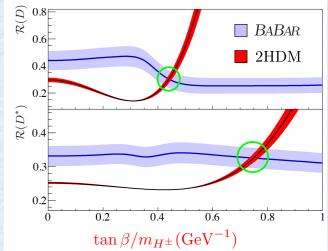
- S1 type operator is generated, and disfavored
- V1 type is generated, but incompatible with data of $B \rightarrow X_{sVV}$

Lepto Quark $V_1 \ V_2 \ S_1 \ S_2 \ T$

- S1 & V1 type are generated and disfavored as well as RPV
- S2-T types are generated and likely to explain the results

Content




Manuel Franco Sevilla

 $B o D^{(*)} au
u$

1. Deviation

- Experiment
- SM prediction / 2HDM

2. NP search

- Model independent analysis
- NP models

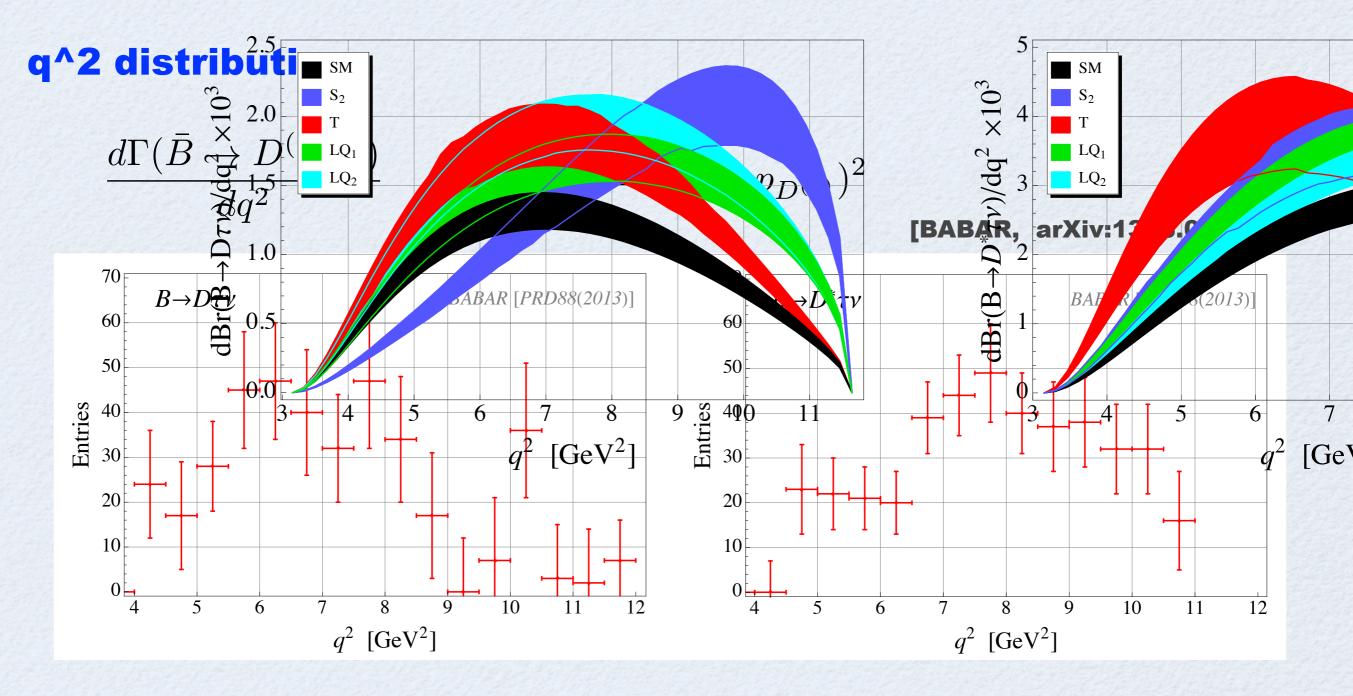
- \cdot V1, V2, T can explain data within small Cx
- S2 can explain but large Cs2(~-1.6) is needed
- · S1 is not preferred

3. Observables at Belle2

- NP analyzer
- q^2 distribution / Test of discriminative potential at Belle2

Observables at Belle II

New physics analyzer


• Compared with two body decay like $B \rightarrow \tau v$,

many more observables are available in three body decays, $B \rightarrow D(*) \tau v$

 There are several studies for NP search toward Belle2 (q² distributed and/or integrated)

[Fajfer, Kamenik, Nisandzic, Zupan, arXiv:1203.2654]
[Sakaki, Tanaka, arXiv:1205.4908]
[Datta, Duraisamy, Ghosh, arXiv1206.3760]
[Tanaka, Watanabe, arXiv:1212.1878]
[Biancofiore, Colangelo, De Fazio, arXiv:1302.1042]
[Duraisamy, Datta, arXiv:1302.7031, arXiv:1405.3719]
[Sakaki, Tanaka, Tayduganov, Watanabe, arXiv:1309.0301]
[Hagiwara, Nojiri, Sakaki, arXiv:1403.5892]
[Sakaki, Tanaka, Tayduganov, Watanabe, arXiv:1412.3761]

Pick up

p values for the fit

S2 & T are disfavored !

Not conclusive for others

model	$\overline{B} \to D \tau \overline{\nu}$	$\overline{B} \to D^* \tau \overline{\nu}$	$\overline{B} \to (D+D^*)\tau\overline{\nu}$
SM	54%	65%	67%
V_1	54%	65%	67%
V_2	54%	65%	67%
S_2	0.02%	37%	0.1%
T	58%	0.1%	1.0%
LQ ₁	13%	58%	25%
LQ ₂	21%	72%	42%

Test of discriminative potential at Belle2

Toward Belle2:

We propose new observable (distribution) for extracting NP signature.

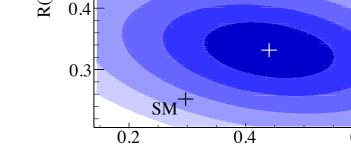
$$R_{D}(q^{2}) \equiv \frac{d\Gamma(\bar{B} \to D\tau\bar{\nu})/dq^{2}}{d\Gamma(\bar{B} \to D\ell\bar{\nu})/dq^{2}} \times \underbrace{[\text{Normalization factor}]}_{\text{for (our) convenience}}$$

$$R_{D^*}(q^2) \equiv \frac{d\Gamma(\bar{B} \to D^*\tau\bar{\nu})/dq^2}{d\Gamma(\bar{B} \to D^*\ell\bar{\nu})/dq^2} \times \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}$$

We can reduce theoretical uncertainties as is the case with R(D) and R(D*).

Test of discriminative potential at Belle2

Assumption:

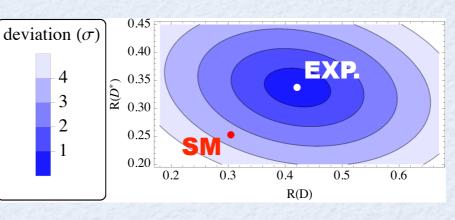

- 1. use the best fitted Cx from the recent results of R(D)&R(D*)
- 2. prepare/make "faked data for the new distribution" using above
- 3. evaluate luminosities required to discriminate "data" & "model" by $R_{D^{(*)}}(q^2)$

$\mathcal{L} \text{ [fb}^{-1} \text{]}$		1. 15 / 113	99.9%CL						
		SM	V_1	V_2	S_2	Т	LQ_1	LQ_2	99.970UL
1.22	V_1	1170		10^{6}	500	900	4140	2860	
		(270)		(X)	(X)	(X)	(X)	(1390)	
	V_2	1140	10^{6}		510	910	4210	3370	
3/3 7		(270)	(X)		(X)	(X)	(X)	(1960)	
:	S_2	560	560	540		380	1310	730	
"data"		(290)	(13750)	(36450)		(X)	(35720)	(4720)	
p, [T	600	680	700	320		620	550	
		(270)	(X)	(X)	(X)		(X)	(1980)	
	LQ1	1010	4820	4650	1510	800		5920	
		(270)	(X)	(X)	(X)	(X)		(1940)	
	LQ ₂	1020	3420	3990	1040	650	5930		
		(250)	(1320)	(1820)	(20560)	(4110)	(1860)		

) = required luminosity only from R(D)&R(D*)

- Some cases can be already tested using present data
- To test LQ, we need 1-6 ab^-1 at Belle2

Summary

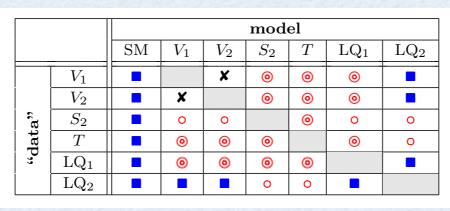


Manuel Franco Sevilla

 $B o D^{(*)} au
u$

1. Deviation

- Experiment
- SM prediction / 2HDM


2. NP search

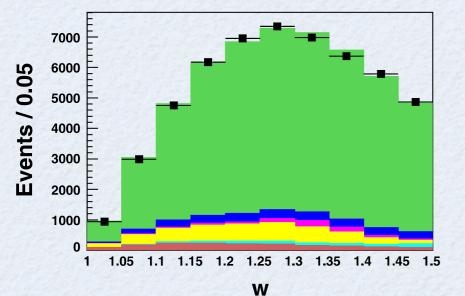
- Model independent analysis
- NP models

- \cdot V1, V2, T can explain data within small Cx
- S2 can explain but large Cs2(~-1.6) is needed
- · S1 is not preferred

3. Observables at Belle2

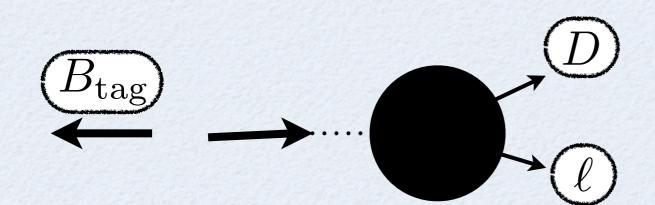
- NP analyzer - q² distribution

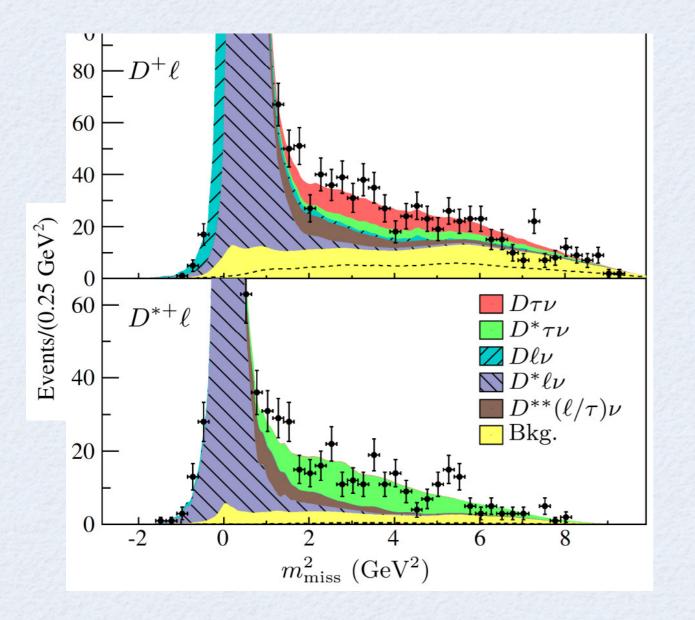
- R(D(*)) has an advantage
- O Distribution has adv.


possible only from distribution

Back up

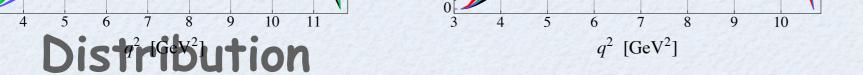
|Vcb| determination


$$\overline{\overline{B} \to D\ell\bar{\nu}} \qquad \frac{d\Gamma}{dw} = \frac{G_F m_B^5}{48\pi^3} r^3 (1+r)^2 (w^2 - 1)^{3/2} V_1(w)^2 |V_{cb}|^2 w = (m_B^2 + m_D^2 - q^2)/(2m_B m_D)$$

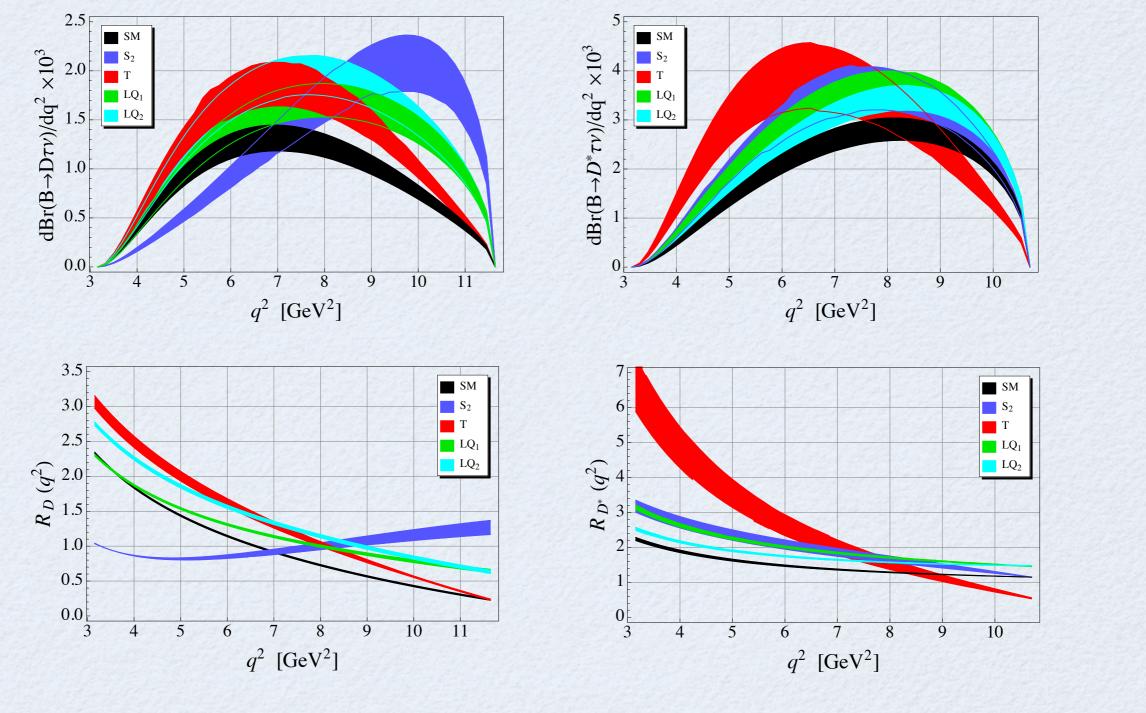

- Fit the shape (=interaction type) and the hight (=coupling)
- Shape is parametrized by HQET [Caprini et.al. (1996)] Shape : $V_1(w) = V_1(1) \left[1 - 8\rho_1^2 z + (51\rho_1^2 - 10)z^2 - (252\rho_1^2 - 84)z^3 \right]$ Hight : $V_1(1)|V_{cb}|$ $\left(z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \right)$

Fit result: $V_1(1)|V_{cb}| = (4.26 \pm 0.07 \pm 0.14) \times 10^{-2}$ $\rho_1^2 = 1.186 \pm 0.055$

Experimental analysis @BABAR



[BABAR, arXiv:1205.5442]


- * Decay channel BABAR analyzed: $\bar{B} \rightarrow D^{(*)}(\tau \rightarrow \ell \bar{\nu} \nu) \bar{\nu}$
- * inv. mass of missing particles:

$$m_{\rm miss}^2 = (p_{e^+e^-} - p_{\rm tag} - p_{D^{(*)}} - p_{\ell})^2$$

- 1. $B_{\text{tag}}, D^{(*)}, \ell$ are identified
- 2. $m_{\rm miss}^2$ distribution is measured
- 3. Comparing total event data with expected signal & background, signal event is extracted

• Distribution in NP models using best fitted Cx from R(D(*))

 $R_D(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D\ell\overline{\nu})/dq^2} \frac{\lambda_D(q^2)}{(m_B^2 - m_D^2)^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2} \qquad R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D^*\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D^*\ell\overline{\nu})/dq^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}$

Discriminative potential

Assumption:

- 1. use the best fitted Cx from the recent results of R(D)&R(D*)
- 2. prepare/make "faked data for the new distribution" using above
- 3. evaluate luminosities required to discriminate "data" & "model" by $R_{D^{(*)}}(q^2)$

$\mathcal{L} [\mathrm{fb}^{-1}]$		model							
		SM	V_1	V_2	S_2	T	LQ_1	LQ_2	
"data"	V_1	1170		10^{6}	500	900	4140	2860	
		(270)		(X)	(X)	(X)	(X)	(1390)	
	V_2	1140	10^{6}		510	910	4210	3370	
		(270)	(X)		(X)	(X)	(X)	(1960)	
	S_2	560	560	540		380	1310	730	
		(290)	(13750)	(36450)		(X)	(35720)	(4720)	
	Т	600	680	700	320		620	550	
		(270)	(X)	(X)	(X)		(X)	(1980)	
	LQ1	1010	4820	4650	1510	800		5920	
		(270)	(X)	(X)	(X)	(X)		(1940)	
	LQ ₂	1020	3420	3990	1040	650	5930		
		(250)	(1320)	(1820)	(20560)	(4110)	(1860)		

99.9%CL

() = required luminosity only from R(D)&R(D*)

Setup:

- 1. divide q^2 region by 16(14) bins in $B \rightarrow D(*) \tau v$ as is done by BaBar
- 2. evaluate covariant matrices of theoretical uncertainties for each model
- 3. estimate experimental errors taking efficiencies (10^-4) into account
- (10⁻⁴ is obtained from BaBar analysis and we assume using this value)