
$B \rightarrow D^* \tau v$ with SuperIso

Yutaro Sato

Nagoya Univ., KMI, Japan 24th Feb. 2015 New Physics at Belle II Workshop @ KIT

Global Fit

- Sensitivity would be improved by combining measurements. → Global fit
 - Derive allowed/excluded parameter space
 - Check compatibility of models

- There are several public codes to calculate observables.
 - "SusyFlavour", "SuperIso", "SusyFit", and "GammaCombo" are introduced at last B2TiP meeting (Nov.2014).
- \rightarrow Global analysis for Belle II using public code.

 $A = 0.813^{+0.015}$

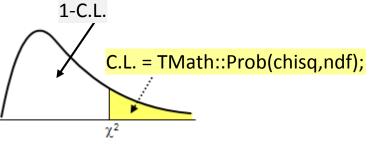
Calculation codes

In my study, public code "SuperIso" is used.

<u>SuperIso</u>

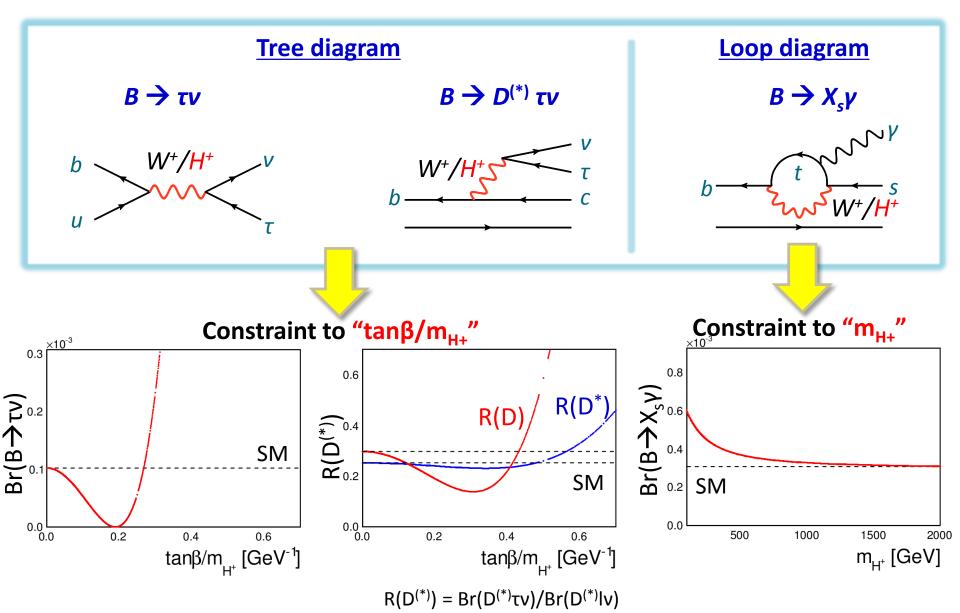
- Dedicated to the flavor physics observable calculation
 - Observables
 - $b \rightarrow s\gamma$, $b \rightarrow sII$, $B \rightarrow \tau\nu$, $B \rightarrow D\tau\nu$, $B_{s/d} \rightarrow \mu\mu$, $D_s \rightarrow I\nu$, $K \rightarrow \mu\nu/\pi \rightarrow \mu\nu$, muon g-2 ...
 - $B \rightarrow D^* \tau v$ is not implemented in SuperIso.
 - Calculation code for $\mathcal{B}(B \rightarrow D^*\tau v)$ in Type-II 2HDM are made, communicating with Y. Sakaki, R. Watanabe, and M. Tanaka.

[PRD87, 034028 (2013)].


- It is combined with SuperIso.
- Models
 - SM
 - 2HDM (type-I, II, lepton specific, flipped)
 - MSSM (CMSSM, NUHM, AMSB, HCAMSB, MMAMSB, GMSB)
 - NMSSM (CNMSSM, NGMSB, NNUHM)

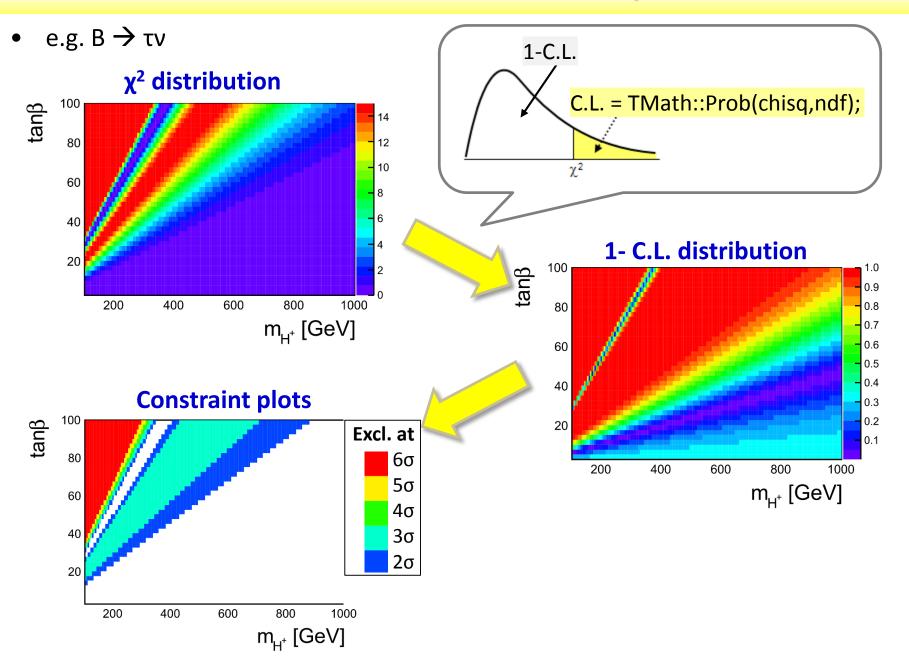
• Chi-squared approach.

$$\chi^{2} = \sum_{i} \chi_{i}^{2}, \quad \chi_{i}^{2} = \frac{\left|x_{i}^{\exp} - x_{i}^{\operatorname{theory}}\right|^{2}}{\left(\sigma_{i}^{\exp}\right)^{2} + \left(\sigma_{i}^{\operatorname{theory}}\right)^{2}} = \frac{|\Delta x_{i}|^{2}}{\sigma_{i}^{2}}$$
$$(x_{i}: \mathsf{i}^{\operatorname{th}} \operatorname{observable})$$

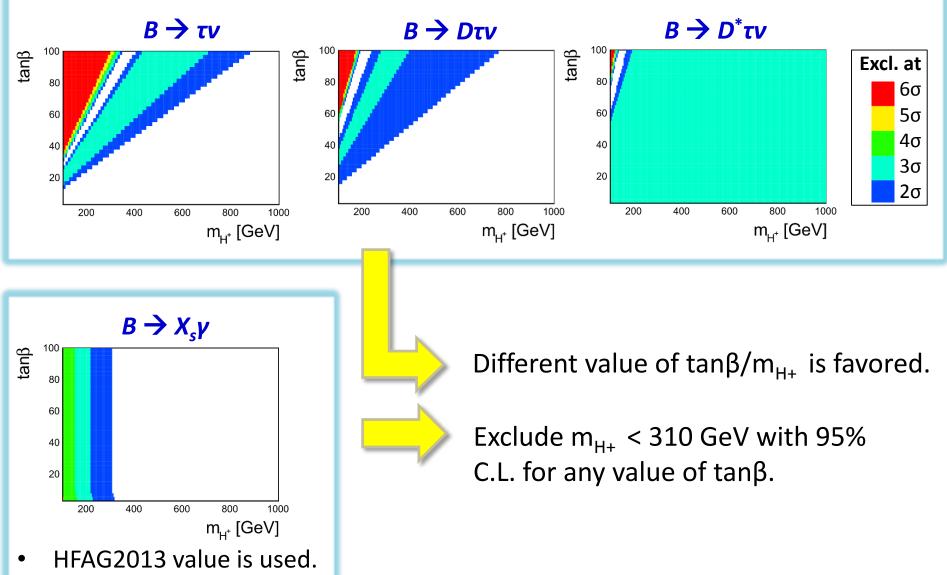

- Correlation between observables is not considered.
- For the estimation of theoretical error, relative accuracy at SM prediction is assumed.
- χ^2 is translated to confidence level (C.L.), and allowed/excluded region is estimated. 1-C.L.

* In this talk, I will show "combined constraint plots" which are made based on the above conditions (NOT official plots).

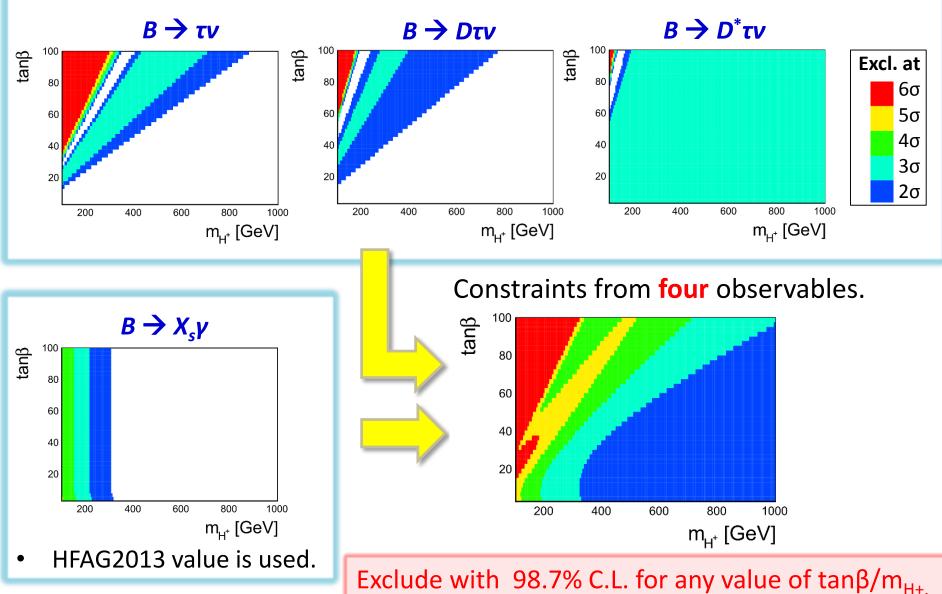
Observables sensitive to charged Higgs


• Type-II 2HDM

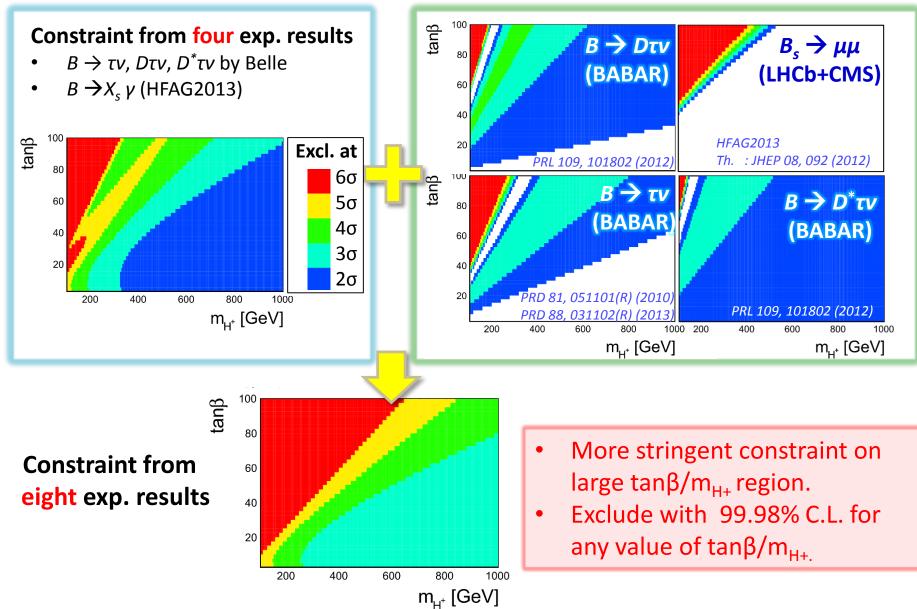
Observables used in global analysis


$\underline{B} \rightarrow D$	$\frac{\text{Theoretical prediction}}{\tau \nu}$	Experimental results Naïve Belle average (A. Bozek's average @KEK-FF0213)
	$R(D^*) = 0.252 \pm 0.004$ $R(D) = 0.305 \pm 0.012$	$R(D^*) = 0.405 \pm 0.047$ $R(D) = 0.430 \pm 0.091$
	@PRD87,032028,2013	 Inclusive tag, 535MBB, PRL 99, 191807 (2007) Inclusive tag, 657MBB, PRD 82, 072005 (2010) Hadronic tag, 657MBB, arXiv:0910.4301
	$B \rightarrow D^{0}$	^(*) τν with full Belle data is still ongoing.
$\underline{B} ightarrow au$ 1	<u>v</u>	Naïve Belle average (my hand calculation)
	$\mathscr{B}(B \to \tau \nu) = (75.3^{+10}_{-5}) \times 10^{-6}$	$\mathcal{B}(B \to \tau \nu) = (0.91 \pm 0.23) \times 10^{-4}$
	@CKM fitter winter 2014	 Semileptonic tag, 772MBB, CKM2014, arXiv:1409.5269 Hadronic tag, 772MBB, PRL 110, 131801 (2013)
	New Belle resu	It for $B \rightarrow \tau v$ with semilept. tag is included.
$\underline{b} \rightarrow s\gamma$	<u>/</u>	HFAG average 2013
	$\mathcal{B}(B \to s\gamma) = (3.15 \pm 0.23) \times 10^{-4}$	$\mathcal{B}(B \to s\gamma) = (3.43 \pm 0.22) \times 10^{-4}$
	@PRD 98, 022002 (2007)	

Derivation of constraint plots


Constraint on type-II 2HDM

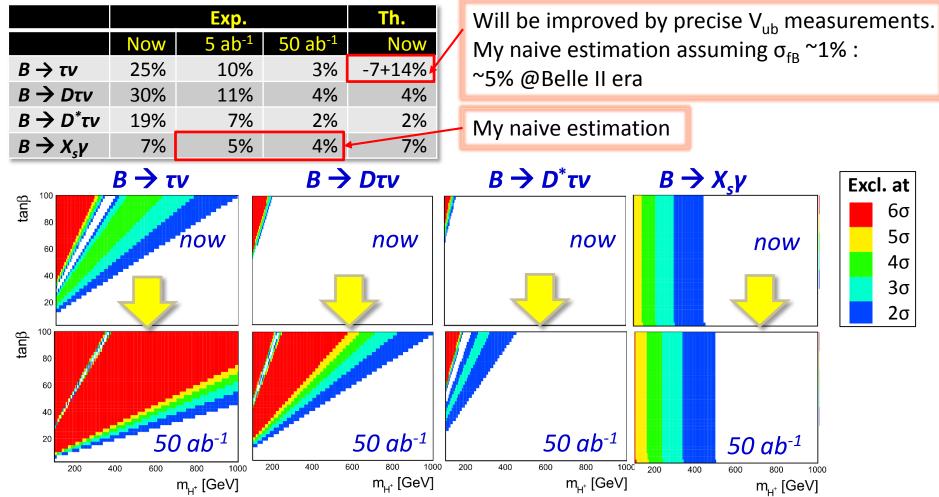
• Only Belle results described in previous page.


Combined constraint on type-II 2HDM

• Only Belle results described in previous page.

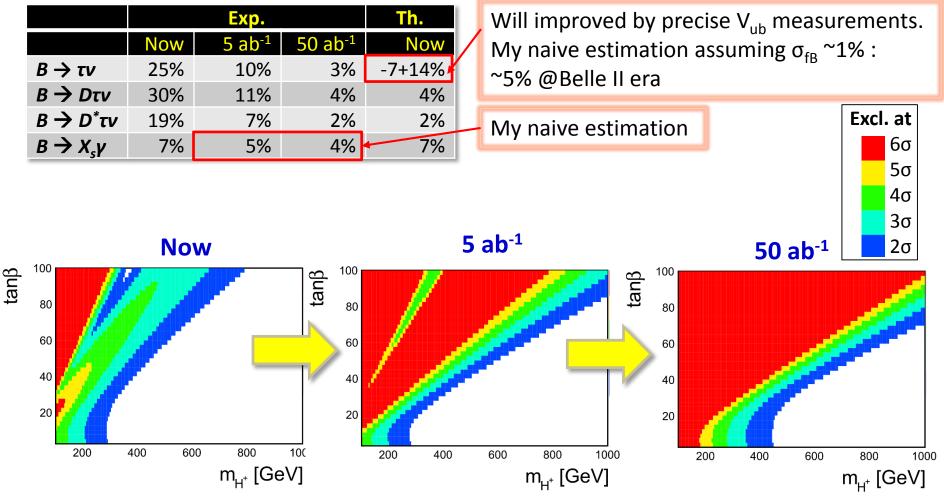
Combined constraint on type-II 2HDM

• More combination with other experimental results.

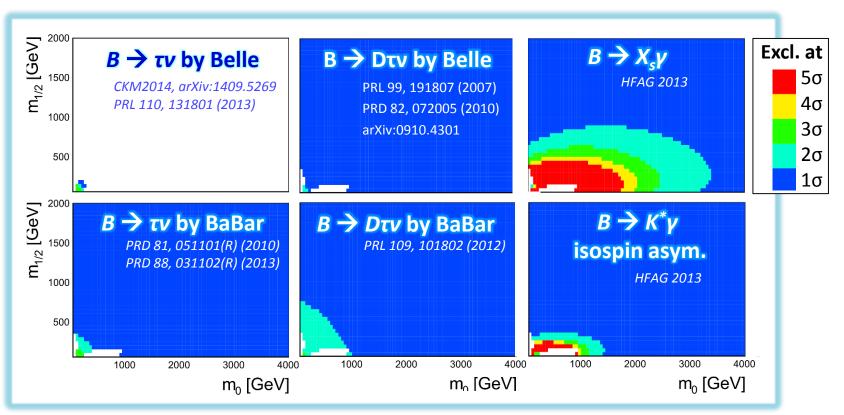

- Global fit also can be possible using 8 experimental results.
 - Optimal points can be found, although type-II 2HDM is disfavored

 $(\chi^2/ndf = 26.1/8).$

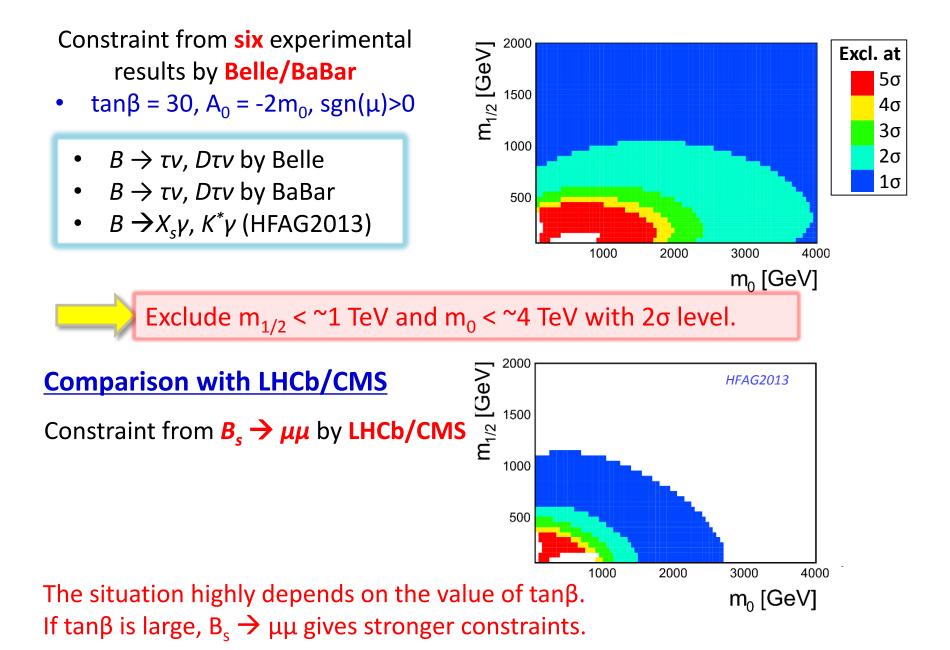
Prospect of constraint on type-II 2HDM@ Belle II


- Constraint from four observables at Belle II.
 - All experimental inputs are assumed to be SM values.
 - Experimental uncertainties are estimated based on Belle II TDR.
 - Improvement of theory side is not included except for $B \rightarrow \tau v$.

Prospect of constraint on type-II 2HDM@ Belle II

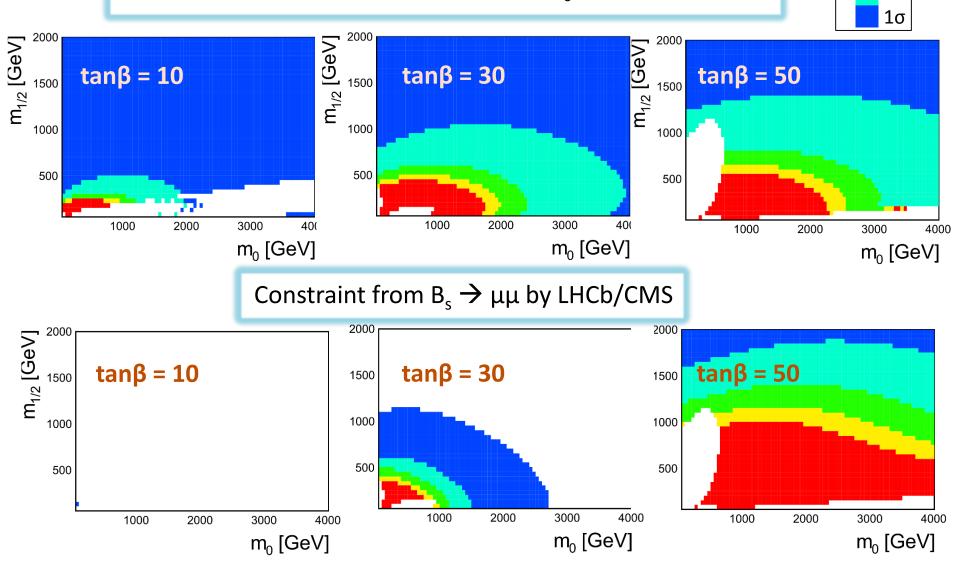

13

- Constraint from four observables at Belle II.
 - All experimental inputs are assumed to be SM values.
 - Experimental uncertainties are estimated based on Belle II TDR.
 - Improvement of theory side is not included except for $B \rightarrow \tau v$.


Constraint on CMSSM

- $B \rightarrow D^* \tau v$ is not implemented in SuperIso.
- Isospin asymmetry in $B \rightarrow K^* \gamma$ is added.
 - **[Th.]** 0.026 ± 0.008 @PRD72, 014013 (2015), [**Exp.]** 0.052 ±0.026 @HFAG2013
- There are five parameters $(m_0, m_{1/2}, \tan\beta, A_0, \operatorname{sgn}(\mu))$ in CMSSM.

$\tan\beta = 30, A_0 = -2m_0, \operatorname{sgn}(\mu) > 0$

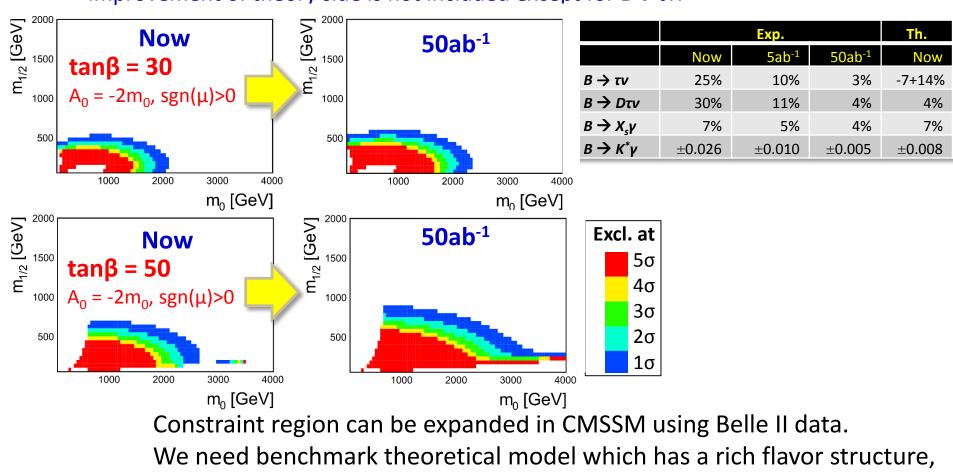

Combined constraint on CMSSM

tanβ dependence on CMSSM

Constraint from **six** experimental results by Belle/BaBar

• $B \rightarrow \tau v$, $D\tau v$ by Belle/BaBar and $B \rightarrow X_s \gamma$, $K^* \gamma$ (HFAG2013)

Excl. at


5σ 4σ

3σ

2σ

Prospect of constraint on CMSSM@ Belle II

- Constraint from **four** observables at Belle II.
 - All experimental inputs are assumed to be SM values.
 - Experimental uncertainties are estimated based on Belle II TDR.
 - Improvement of theory side is not included except for $B \rightarrow \tau v$.

because Belle II is more sensitive to the flavor structure in NP.

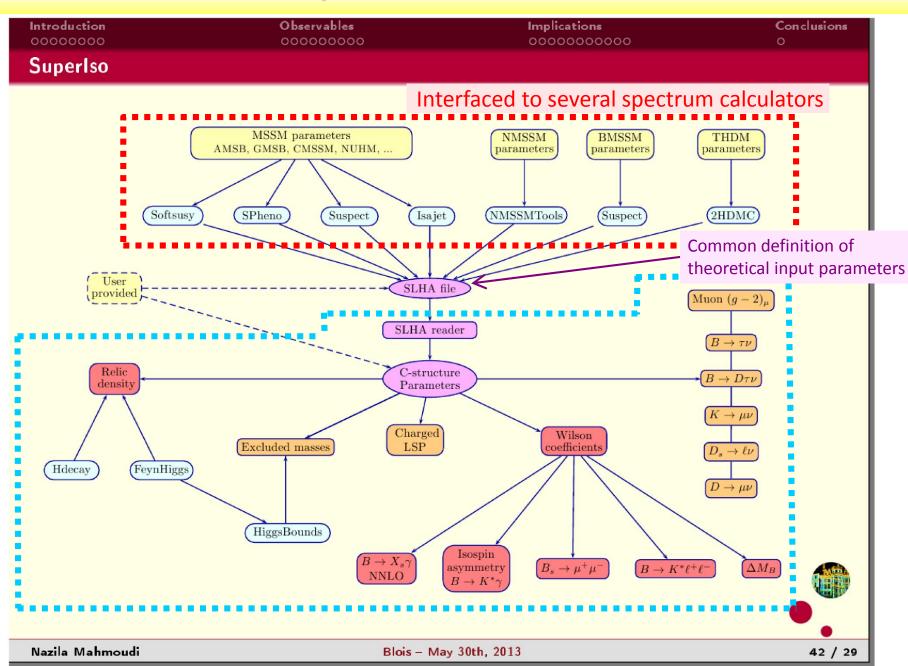
Summary

- Global fit analysis for Belle II are performed using
 - existing public code "SuperIso"
 - − code for $B \rightarrow D^* \tau v$ in type-II 2HDM
 - which is made, communicating with Y. Sakaki, R. Watanabe, and M. Tanaka [PRD87, 034028 (2013)].
- Observables : $B \rightarrow \tau v$, $B \rightarrow D\tau v$, $B \rightarrow D^* \tau v$, $B \rightarrow X_s \gamma$, $\Delta_{0-}(B \rightarrow K^* \gamma)$
- Models : Type-II 2HDM, CMSSM

Benchmark theoretical model

Need benchmark theoretical model which has a rich flavor structure, because Belle II is sensitive to the flavor structure in NP.

Theoretical calculation codes


Not covered all observables, which are important for Belle II. We can also combine multiple calculation tools.

Fitter code

Simplest method (chi-square) is used so far. The treatment of error should be cared.

Backup

SuperIso framework

Br prediction by 2HDM consistent for both $D\tau\nu$ and $D^{*}\tau\nu$

BR(B→DTv) and BR(B→Dlv) from Y. Sakaki, R. Watanabe, and M. Tanaka (Phys. Rev. D87, 034028 (2013) + private comm.)

$$\begin{split} & \text{Br}(B \to D\tau \nu_{\tau}) = \tau_{B} \Gamma(B \to D\tau \nu_{\tau}) \\ & \equiv \tau_{B} G_{F}^{2} |V_{*b}|^{2} V_{1}(1)^{2} \times \left[\Gamma_{1} + \Gamma_{2} \rho_{1}^{2} + \Gamma_{3} \rho_{1}^{4} \\ & + (\Gamma_{4} + \Gamma_{5} \rho_{1}^{2} + \Gamma_{6} \rho_{1}^{4}) \left(\frac{4.91 \text{GeV} - 1.77 \text{GeV}}{m_{b} - m_{c}} \right) \text{Re}(C_{S_{1}} + C_{S_{2}}) \\ & + (\Gamma_{7} + \Gamma_{8} \rho_{1}^{2} + \Gamma_{9} \rho_{1}^{4}) \left(\frac{4.91 \text{GeV} - 1.77 \text{GeV}}{m_{b} - m_{c}} \right)^{2} |C_{S_{1}} + C_{S_{2}}|^{2} \right] \\ & \alpha = \left[(M + \Gamma_{5} \rho_{1}^{2} + \Gamma_{9} \rho_{1}^{4}) \left(\frac{4.91 \text{GeV} - 1.77 \text{GeV}}{m_{b} - m_{c}} \right)^{2} |C_{S_{1}} + C_{S_{2}}|^{2} \right] \\ & \Gamma_{1} = + \left(1.868 - 2.321 \times 10^{-2}a + 1.373 \times 10^{-4}a^{2}\right) 10^{-2} \\ & \Gamma_{2} = - \left(6.829 - 7.181 \times 10^{-2}a + 3.708 \times 10^{-4}a^{2}\right) 10^{-3} \\ & \Gamma_{3} = + \left(7.005 - 6.645 \times 10^{-2}a + 3.708 \times 10^{-4}a^{2}\right) 10^{-3} \\ & \Gamma_{5} = - \left(8.864 - 18.08 \times 10^{-2}a + 4.140 \times 10^{-4}a^{2}\right) 10^{-3} \\ & \Gamma_{5} = - \left(8.864 - 18.08 \times 10^{-2}a + 9.985 \times 10^{-4}a^{2}\right) 10^{-3} \\ & \Gamma_{5} = - \left(8.864 - 18.08 \times 10^{-2}a + 3.265 \times 10^{-4}a^{2}\right) 10^{-3} \\ & \Gamma_{7} = + \left(1.953 - 4.881 \times 10^{-2}a + 3.265 \times 10^{-4}a^{2}\right) 10^{-3} \\ & \Gamma_{7} = + \left(1.953 - 4.881 \times 10^{-2}a + 3.265 \times 10^{-4}a^{2}\right) 10^{-3} \\ & \Gamma_{7} = + \left(4.787 - 9.484 \times 10^{-2}a + 5.039 \times 10^{-4}a^{2}\right) 10^{-3} \\ & \text{Br}(B \to D\ell \bar{\nu}_{\ell}) = \tau_{\bar{B}} \Gamma(\bar{B} \to D\ell \bar{\nu}_{\ell}) \\ & \equiv \tau_{\bar{B}} G_{F}^{2} |V_{4}|^{2} V_{1}(1)^{2} \times \left[\Gamma_{1} + \Gamma_{2} \rho_{1}^{2} + \Gamma_{3} \rho_{1}^{4}\right] \\ & \Gamma_{1} = + 8.788 \times 10^{-2} \\ & \Gamma_{2} = -5.230 \times 10^{-2} \\ & \Gamma_{3} = + 0.8190 \times 10^{-2} \end{aligned}$$

Assume Type II 2HDM.

 $p_1^2 = 1.186 \pm 0.036 \pm 0.041$ (HFAG).

Itoh

a = 1±1 (M. Tanaka and R. Watanabe).

 $m_b = 4.20 \pm 0.07$ GeV and $m_c = 0.901^{+0.111}_{-0.113}$ GeV (MSbar, PRD77, 113016 (2008)).

Gaussian assumption for the errors.

$$\begin{split} C_{S_1} &= -\frac{m_\tau m_b}{m_{H_{\pm}^2}} \tan^2\beta \\ C_{S_2} &= -\frac{m_\tau m_c}{m_{H_{\pm}^2}} \end{split}$$

BR(B \rightarrow D^{*}T ν) and BR(B \rightarrow D^{*}I ν) from Y. Sakaki, R. Watanabe, and M. Tanaka Signature

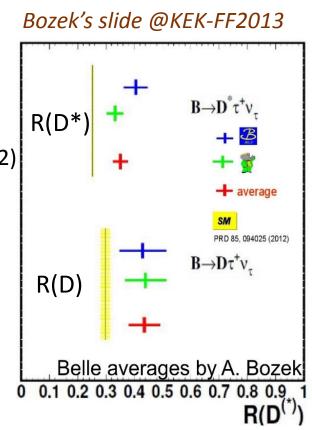
 $Br(\bar{B} \rightarrow D^* \tau \bar{\nu}_{\tau}) = \tau_B \Gamma(\bar{B} \rightarrow D^* \tau \bar{\nu}_{\tau})$ $\equiv \tau_{\tilde{B}}G_{F}^{2}|V_{cb}|^{2}A_{1}(1)^{2}\times \left|\Gamma_{1}+\Gamma_{2}\rho_{A_{1}}^{2}+\Gamma_{3}\rho_{A_{1}}^{4}\right|$ $+\left(\Gamma_4+\Gamma_5\rho_{A_1}^2+\Gamma_6\rho_{A_1}^4\right)\left(\frac{4.91\text{GeV}+1.77\text{GeV}}{m_b+m_c}\right)\text{Re}(C_{S_1}-C_{S_2})$ + $(\Gamma_7 + \Gamma_8 \rho_{A_1}^2 + \Gamma_9 \rho_{A_1}^4) \left(\frac{4.91 \text{GeV} + 1.77 \text{GeV}}{m_b + m_c}\right)^2 |C_{S_1} - C_{S_2}|^2$ $\Gamma_1 = + \left(5.538 - 0.005388R_1(1) + 0.1344R_1(1)^2 - 2.027R_2(1) + 0.3519R_2(1)^2 + 5.400 \times 10^{-2}a_3 + 7.117 \times 10^{-4}a_3^2 - 2.444 \times 10^{-2}R_2(1)a_3\right) 10^{-2}$ $\Gamma_2 = -\left(15.64 - 0.01815R_1(1) + 0.4034R_1(1)^2 - 6.847R_2(1) + 1.226R_2(1)^2 + 17.11 \times 10^{-2}a_3 + 20.83 \times 10^{-4}a_3^2 - 7.749 \times 10^{-2}R_2(1)a_3\right)10^{-3}$ $\Gamma_{3} = + \begin{pmatrix} 12.97 & -0.01635R_{1}(1) + 0.3373R_{1}(1)^{2} & -6.254R_{2}(1) + 1.144R_{2}(1)^{2} & +14.90 \times 10^{-2}a_{3} & +17.09 \times 10^{-4}a_{3}^{2} & -6.756 \times 10^{-2}R_{2}(1)a_{3} \end{pmatrix} 10^{-4} + 1.14R_{2}(1)^{2} & +1.14R_{2}(1)^{2} & +1.14R_{2}(1)^$ $-1.028R_2(1) + 0.2327R_2(1)^2 + 5.972 \times 10^{-2}a_3 + 8.307 \times 10^{-4}a_3^2 - 2.701 \times 10^{-2}R_2(1)a_3$ $\Gamma_4 = + (1.136)$ $\Gamma_5 = -(3.611)$ $-3.272R_2(1) + 0.7412R_2(1)^2 + 17.55 \times 10^{-2}a_3 + 22.48 \times 10^{-4}a_3^2 - 7.946 \times 10^{-2}R_2(1)a_3$ $-2.859 R_2(1) + 0.6481 R_2(1)^2 + 14.44 \times 10^{-2} a_3 + 17.35 \times 10^{-4} a_3^2 - 6.541 \times 10^{-2} R_2(1) a_3 \right) 10^{-4} + 10^{-4} R_2(1)^2 + 10^{ \Gamma_6 = + (3.154)$ $-0.2834R_2(1) + 0.06409R_2(1)^2 + 1.738 \times 10^{-2}a_3 + 2.538 \times 10^{-4}a_3^2 - 0.7857 \times 10^{-2}R_2(1)a_3 \Big) 10^{-2}$ $\Gamma_7 = + (0.3132)$ $-0.8368R_2(1) + 0.1895R_2(1)^2 + 4.724 \times 10^{-2}a_3 + 6.346 \times 10^{-4}a_3^2 - 2.138 \times 10^{-2}R_2(1)a_3 + 10^{-3}a_3 + 6.346 \times 10^{-4}a_3^2 - 2.138 \times 10^{-2}R_2(1)a_3 + 10^{-3}a_3 + 6.346 \times 10^{-4}a_3^2 - 2.138 \times 10^{-2}R_2(1)a_3 + 10^{-3}a_3 + 6.346 \times 10^{-4}a_3^2 - 2.138 \times 10^{-2}R_2(1)a_3 + 10^{-3}a_3 + 6.346 \times 10^{-4}a_3^2 - 2.138 \times 10^{-2}R_2(1)a_3 + 10^{-3}a_3 + 10^{-3}a_3$ $\Gamma_8 = -(0.9240)$ $-0.6908R_2(1) + 0.1565R_2(1)^2 + 3.658 \times 10^{-2}a_3 + 4.600 \times 10^{-4}a_3^2 - 1.657 \times 10^{-2}R_2(1)a_3 + 10^{-4}a_3^2 - 10^{-2}a_3 + 1$ $\Gamma_9 = + (0.7623)$ $Br(\bar{B} \to D^{\bullet} \ell \bar{\nu}_{\ell}) = \tau_B \Gamma(\bar{B} \to D^{\bullet} \ell \bar{\nu}_{\ell})$ $\equiv \tau_B G_F^2 [V_{cb}]^2 A_1(1)^2 \times [\Gamma_1 + \Gamma_2 \rho_{A_1}^2 + \Gamma_3 \rho_{A_2}^4]$ $\Gamma_1 = + \left(32.87 - 0.04784R_1(1) + 0.8060R_1(1)^2 - 17.68R_2(1) + 3.351R_2(1)^2\right) \times 10^{-2}$ $\Gamma_2 = -\left(15.34 - 0.02262R_1(1) + 0.3460R_1(1)^2 - 9.521R_2(1) + 1.875R_2(1)^2\right) \times 10^{-2}$ $\Gamma_3 = + \left(1.993 - 0.002827R_1(1) + 0.04062R_1(1)^2 - 1.337R_2(1) + 0.2699R_2(1)^2\right) \times 10^{-2}$

Assume Type II 2HDM.

 $\rho_{A1}^2 = 1.207 \pm 0.015 \pm 0.021$ (HFAG). $R_1(1) = 1.403 \pm 0.033$ (HFAG). $R_2(1) = 0.854 \pm 0.020$ (HFAG). $a_3 = 1 \pm 1$ (M. Tanaka and R. Watanabe). $m_b = 4.20 \pm 0.07$ GeV and $m_c = 0.901^{+0.111} - 0.113$ GeV (MSbar, PRD77, 113016 (2008)).

Gaussian assumption for the errors.

$$C_{S_1} = -\frac{m_\tau m_b}{m_{H_{\pm}^2}} \tan^2 \beta$$
$$C_{S_2} = -\frac{m_\tau m_c}{m_{H_{\pm}^2}}$$


Experimental values : R(D^(*))

Belle average

- Naïve average for inclusive and exclusive hadronic tags (A. Bozek's average @KEK-FF0213)
 - $R(D^*) = 0.405 \pm 0.047$
 - $R(D) = 0.430 \pm 0.091$
 - Inclusive tag, 535MBB (69%), PRL 99, 191807 (2007)
 - Inclusive tag, 657MBB (85%), PRD 82, 072005 (2010)
 - Hadronic tag, 657MBB (85%), arXiv:0910.4301

BaBar results

- $R(D^*) = 0.332 \pm 0.024 \pm 0.018$
- $R(D) = 0.440 \pm 0.058 \pm 0.042$
 - Hadronic tag, 471MBB (100%), PRL 109, 101802 (2012)

23

Purely leptonic *B* decay " $B \rightarrow \tau v$ "

Branching fraction in SM

$$\mathscr{B}(B \to \tau \nu)_{\rm SM} = \frac{G_F^2 \tau_B}{8\pi} \boldsymbol{f}_B^2 |\boldsymbol{V}_{\rm ub}|^2 m_B^3 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left(\frac{m_\tau}{m_B}\right)^2$$

- f_B : decay constant calculate on the Lattice
- V_{ub} : CKM matrix element

Branching fraction in NP

$$\mathcal{B}(B \to \tau \nu) = \mathbf{r}_{H} \cdot \mathcal{B}(B \to \tau \nu)_{\text{SM}}$$

$$\mathbf{r}_{H} = \left(1 - m_{B}^{2} \frac{\tan^{2}\beta}{m_{H^{+}}^{2}}\right)^{2} \quad \text{Type-II 2HDM} \quad \text{Destructive interference}$$

$$(PRD 48, 2342 (1993)) \quad \text{between } W \text{ and } H^{+}.$$

$$\mathbf{r}_{H} = \left(1 - \frac{m_{B}^{2}}{1 + \tilde{\epsilon}_{0} \tan \beta} \frac{\tan^{2}\beta}{m_{H^{+}}^{2}}\right)^{2} \text{ SUSY} \quad (D \to D)$$

$$(D \to D) \quad \text{Destructive interference}$$

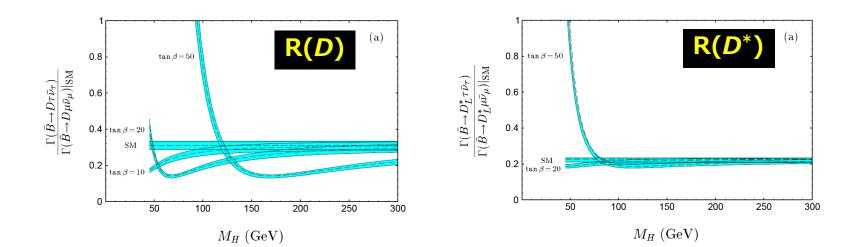
$$(D \to D) \quad$$

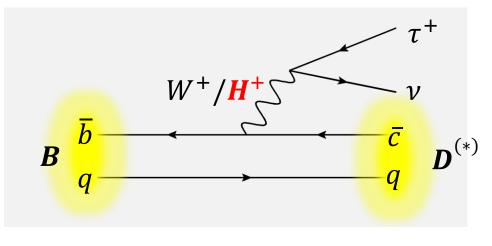
 \overline{b}

U

24

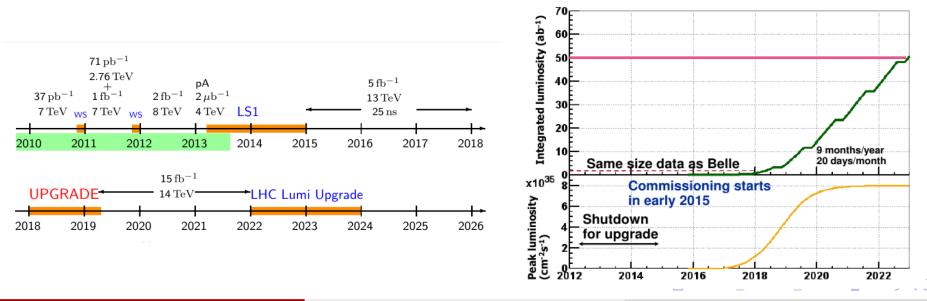
Semi-tauonic *B* decay " $B \rightarrow D^{(*)}\tau v$ "


• Different vertex contribution


$$-B \rightarrow \tau \nu$$
 : $H - b - u$

$$- B \to D^{(*)}\tau\nu: H - b - c$$

•
$$R(D^{(*)}) = \frac{BF(B \to D^{(*)}\tau\nu)}{BF(B \to D^{(*)}l\nu)} \ (l = e, \mu)$$


– Suppress theoretical (form factor, V_{cb}) and experimental (efficiency) uncertainties.

LHCb/Belle II schedules

- LHCb (A. Contu, Charm 2013)
 - expect $\sim 8~{\rm fb^{-1}}$ by 2018
 - 2018 mid 2019 upgrade (3 $4 \times \text{increase}$ in D meson yields)
 - then additional 15 fb⁻¹ by 2022
- Belle II
 - 2017: start to increase luminosity
 - collect $\sim 10~{
 m ab}^{-1}$ by mid 2019
 - collect 50 ab^{-1} by 2023

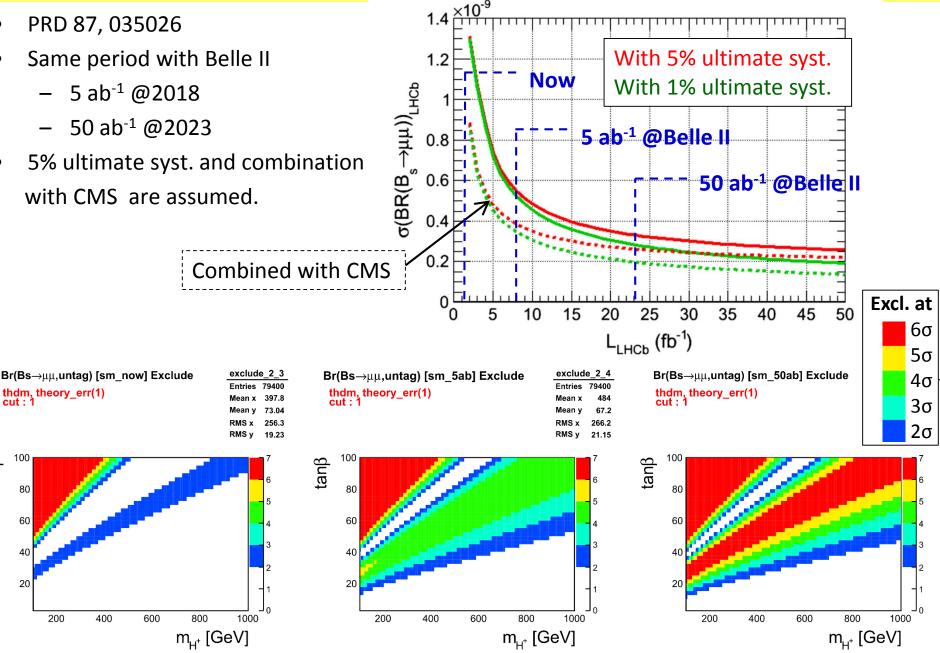
Prospect of Br($B_s \rightarrow \mu\mu$) on type-II 2DHM

PRD 87, 035026

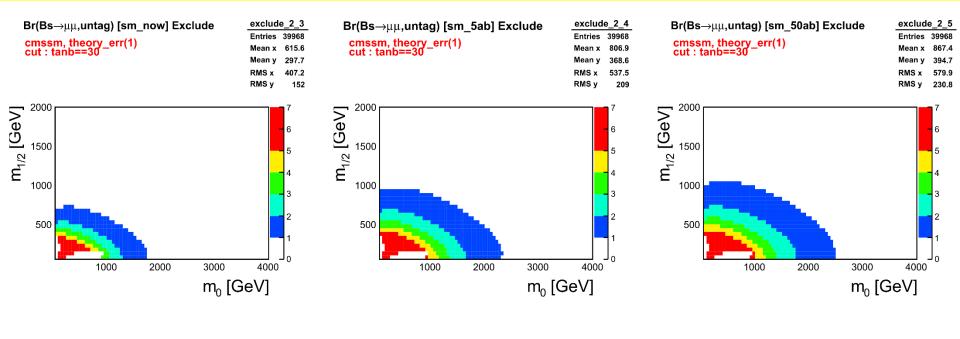
cut : 1

100

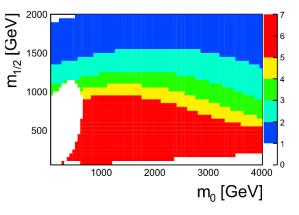
80

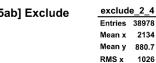

60

40

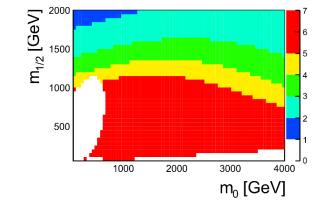

20

tanβ

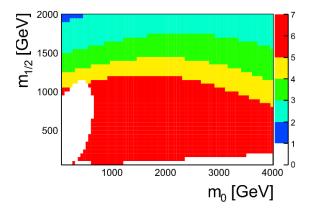

- Same period with Belle II
- 5% ultimate syst. and combination with CMS are assumed.


Prospect of Br($B_s \rightarrow \mu\mu$) on CMSSM

Br(Bs→μμ,untag) [sm_now] Exclude	exclude_2_3
	Entries 38978
cmssm, theory_err(1) cut : tanb==50	Mean x 2103
	Mean y 766.6
	RMS x 1004
	RMSy 469



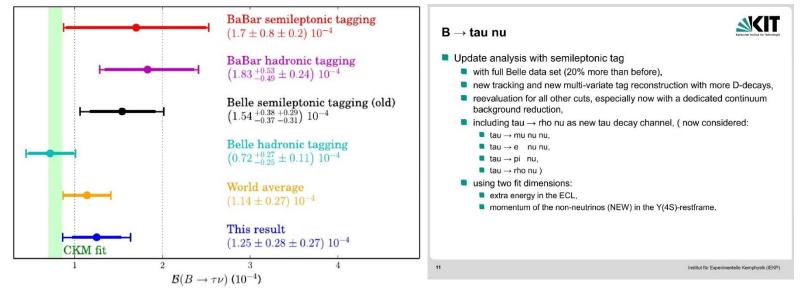
Br(Bs→μμ,untag) [sm_5ab] Exclude cmssm, theory_err(1) cut : tanb==50



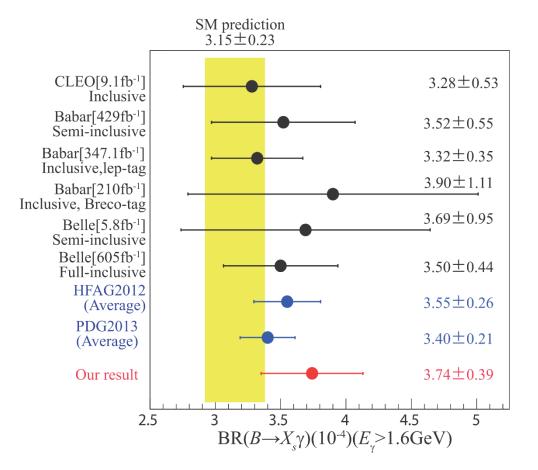
RMS y

500.8

Br(Bs→μμ,untag) [sm_50ab] Exclude	_exclude_2_5	
	Entries	38978
cmssm, theory_err(1) cut : tanb==50	Mean x	2133
	Mean y	902.2
	RMS x	1033
	RMS y	504.5


Belle average

- Naïve private average for semileptonic and hadronic tags
- $Br(B \to \tau \nu) = (0.91 \pm 0.23) \times 10^{-4}$
 - $(1.25 \pm 0.28 \pm 0.27) \times 10^{-4}$: semileptonic tag, 772MBB (100%), CKM2014
 - $(0.72^{+0.27}_{-0.25} \pm 0.11) \times 10^{-4}$: hadronic tag, 772MBB (100%), PRL 110, 131801 (2013)


BaBar average

- $Br(B \to \tau \nu) = (1.79 \pm 0.48) \times 10^{-4}$
 - $(1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$: semileptonic tag, 468MBB (100%), PRD 81, 051101(R) (2010)
 - $(1.83^{+0.53}_{-0.49} \pm 0.24) \times 10^{-4}$: hadronic tag, 468MBB (100%), PRD 88, 031102(R) (2013)

Martin's slide @ CKM2014

$B \rightarrow X_{s}\gamma$

 $B \rightarrow X_{s}\gamma$

Slide by Misiak @FPCP2013

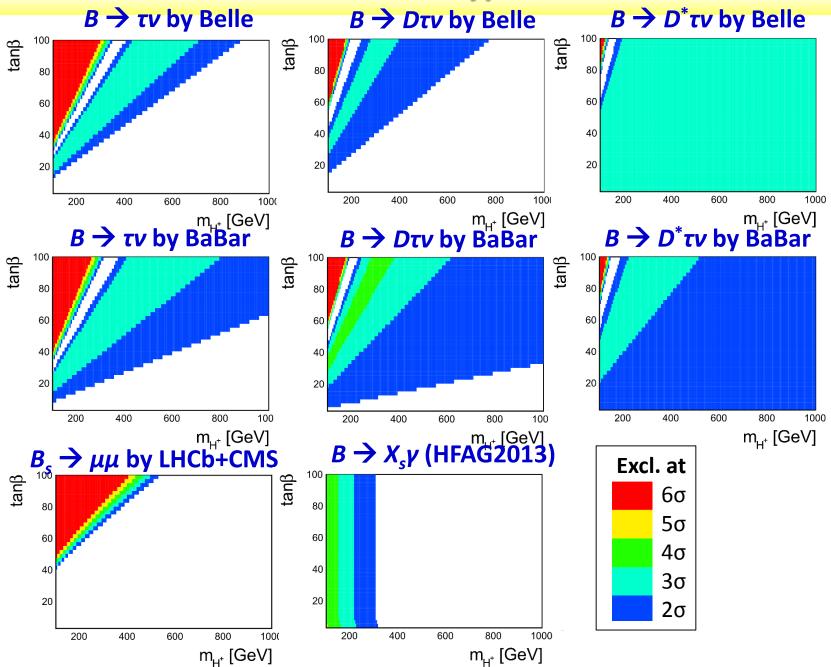
Update of the SM prediction (preliminary)

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{SM}} = (3.14 \pm 0.22) \times 10^{-4}$$

Hardly any change w.r.t $(3.15\pm0.23)\times10^4$ in 2006. (several ~ $1\div2\%$ corrections cancel by chance).

Contributions to the total TH uncertainty (summed in quadrature):

5% non-perturbative, 3% from the unknown $U(r, E_0)$

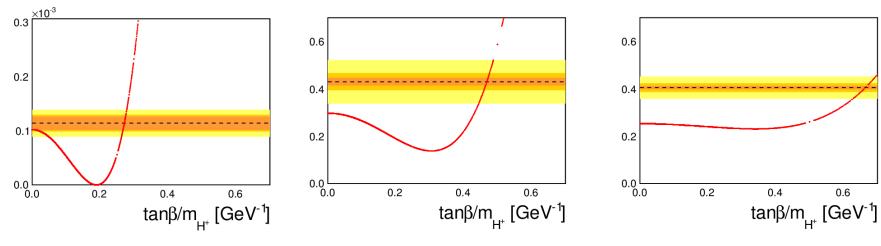

3% higher order $\mathcal{O}(\alpha_s^3)$, **2.2%** parametric

Experimental world average (HFAG, 2.08.2012):

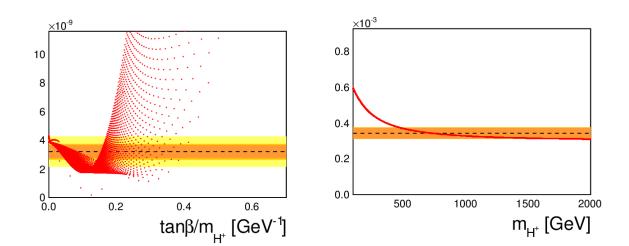
$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{EXP}} = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$$

Experiment agrees with the SM at better than $\sim 1\sigma$ level. Uncertainties: TH $\sim 7\%$, EXP $\sim 6.5\%$.

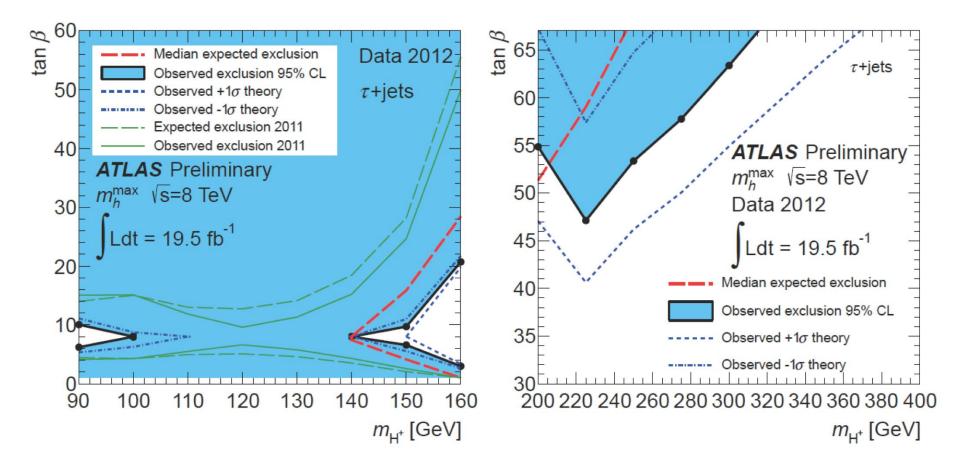
Constraints on Type-II 2HDM



Type-II 2HDM


R(D)

R(D*)



Charged Higgs constraint from ATLAS

